母差保护

合集下载

母差保护的工作原理、保护范围

母差保护的工作原理、保护范围

母差保护的工作原理、保护围母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进展的一些切换、投退操作则往往认识模糊.1 母线差动保护围是否是确定的,保护对象是否是不变的通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的根本原则是一致的,即各侧或各元件的电流互感器, 按差接法接线,正常运行以及保护围以外故障时,差电流等于零,保护围故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定.但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的围会随母线倒闸操作的进展、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).无视了这一点,在进展母线倒闸操作时,对母线差动保护的一些必要的切换投退操作肯定就认识模糊、甚至趋于盲目了.2 母线倒闸操作时是否须将母线差动保护退出"在进展倒闸操作时须将母线差动保护退出〞是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进展,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行. 根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线, 可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而防止事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故.事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线.3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入实际工作中一些运行人员片面地认为,母线倒闸操作会使母线差动保护失去选择性,故在操作完成后,合入母线差动保护的非选择性开关.产生这一认识误区的根源在于他们不明白母线差动保护装置中设置这一非选择性开关的目的.母线保护有多种类型,不同类型的母线保护其实现保护的工作原理是不一样的.*些类型的母线保护由于其工作原理本身存在缺陷, 在进展母线倒闸操作时会使装置失去对故障母线的选择性.因此,问题的关键是运行人员要弄清楚:哪种类型的母线保护在母线倒闸操作时会失去对故障母线的选择性以及怎样在适当的时候将装置的非选择性开关合入, 在什么时候又该将装置的非选择性开关拉开,抑或是否应使该开关保持合入状态.这里仅就固定连接的母线差动保护和母联电流相位比拟原理差动保护以及电流相位比拟式母线保护作一简单说明.(1) 固定连接的母线差动保护.这种母线差动保护要求母线上的电源元件,必须按照事先规定好的固定连接方式运行,母线故障时,母线差动保护的动作才有选择性.当母线保护采用此种类型时,进展电源元件的倒换,将使保护失去选择性.因此,倒换前合入母线差动保护非选择性开关,倒完后也不拉开.对负荷元件,则在倒换前合入非选择性开关,倒换后拉开非选择性开关,同时负荷元件的跳闸压板也作相应的切换.(2) 母联电流相位比拟原理的母线差动保护.这种保护无固定连接的要求.只要母差保护的跳闸压板位置与元件母线隔离开关所接母线位置相对应就可以了.因此,倒换操作前将非选择性开关合入,倒换后再拉开,并对母线差动保护跳闸压板及重合闸放电压板,切换到倒换后所对应的母线位置就可以了.这种保护存在的缺点是2组母线分列运行时,母线将失去选择故障母线组的能力.(3) 电流相位比拟式母线差动保护.这种保护只反响电流间的相位,具有较高的灵敏度.倒闸过程中,需合入非选择性开关,倒闸后将被操作元件的跳闸压板及重合闸放电压板切换至与所接母线对应的比相出口回路就可以了.如果片面地认为倒闸操作就使保护失去选择性,并没有适时地合入或拉开保护的非选择性开关,相反地会使母线差动保护不能按设计的工作原理工作,从而真正失去选择性.更具体地讲,倒母线时,母线差动保护的非选择性开关合理的操作顺序是:①双母线改为单母线运行前,先合入非选择性开关,后取母联断路器直流控制回路熔断器;②单母线改为双母线运行后,先投入母联断路器直流控制回路熔断器,后拉母线差动保护非选择性开关.这样,就能保证在任何情况下,由母线差动保护装置动作切除故障.4 母联断路器代路时,是否母线差动保护可不作任何切换操作一些运行人员错误地认为母联断路器自然是母差保护的围,母差保护动作母联断路器也该跳开.殊不知,母联断路器代路时,由母联断路器送电的备用母线,实际上已是线路的一局部.线路上发生故障理应由线路断路器跳闸切除,而此时母联断路器代路实际上就只能起到线路断路器的作用.但如果此时母差保护不作任何切换,则备用母线故障母线保护也将动作.显然这种代路方式母线保护动作是不必要的,也是不合理的.这时,正确的切换操作是把母联断路器所代线路及其母线划出母线差动保护围之外.无论哪种原理的母线差动保护,均要操作母联断路器的母线差动保护电流试验盒(或连片),同时使被代线路本身的母线差动保护电流互感器 TA从运行的母线差动保护电流回路上甩开,短接好.这样,才能保证母联断路器代路时,母线差动保护平安、合理运行.5 做相关试验时,是否只要母线元件的隔离开关拉开了,就不会影响母线差动保护的正常工作运行人员本应该非常清楚,母线差动保护的动作与否取决于参加差动继电器的差电流大小,只要到达了动作值,母线差动保护就会动作切除母线元件.虽然停电母线元件的隔离开关拉开了,但因母线差动保护的所有电流互感器二次回路是并在一起的,即使一次设备已停电,其二次回路也要按运行设备对待,不得将母线差动电流回路随便接地、短路或误引入外接电源.运行人员要特别重视如下几个环节:(1) 运行中的母线差动保护的电流互感器二次电路被短接后,不管这种短接与母线差动保护的总差回路脱离或相连、均已破坏了母线差动保护的工作原理,在正常或发生穿越性故障时,均将引起二次差电流的不平衡,并可能产生误动.(2) 母线元件设备做一次回路短路试验,如电流互感器TA的一次通电试验,工作前应将母线差动保护停用,或将与试验回路有关的母线差动保护的电流互感器TA从运行的母线差动保护电流回路上甩开,短接好.应该指出,母线差动保护在母线倒闸操作过程中的切换、投退要与该母线采用的母线保护的类型,保护的技术特性、母线的结线方式及倒闸前后母线运行方式的变换,甚至要与电网的运行方式具体结合起来.运行人员在进展倒闸操作时,要十清楚确:操作是否破坏了固定连接的要求、是否会使保护失去选择性;操作完毕后, 母线方式是否改变、母线保护是否具有自适应性等等.只有这样,才能确保倒闸操作过程中及其操作完成后母线及其保护的平安合理运行.。

母差保护

母差保护

主接线图 11、母联失灵保护:启动:(1)差动投入+大差越限+母联电流越限-→延时(待分析)(2)母联充电保护动作+母联电流越限-→延时说明:(1)母联失灵保护动作时,为了使差动动作而解除母联电流,故差动投入应作为母联失灵保护判据之一;(2)母联过流保护可能由区外故障启动,故不应启动母联失灵保护;(3)母联充电保护是为解除送电在故障母线而设,故应启动母联失灵保护;(4)大差选择故障,小差选择母线,即大差越限时,母线应有故障发生或线路CT断线。

若为线路CT断线,应闭锁差动保护,闭锁母联失灵保护。

若为母线故障,应启动差动保护,启动母联死区保护(若故障在死区),启动母联失灵保护(若母联开关跳不开)。

特别注意的是,在线路检修时,如无特殊处理(即在单元设置中把检修线路的刀闸连接关系均设为“无”),该线路试验电流可能造成大差越限;(5)母联失灵保护应在保护跳母联开关不成的情况下启动,一般从保护发跳闸命令到母联开关辅助接点返回需要100ms时间,故对于大差越限启动判据来说,母联失灵保护延时应大于100ms延时;(6)特殊情况,如下图示:母联合位,I母不带其它回路且I母短路故障,I母差动动作,若母联开关失灵,则解除母联电流,I母小差随即为零,则I母故障未解除即返回。

2、 母联死区保护:说明:(1)母联CT 侧母线运行且母联分位,当发生死区故障,大差越限,母联CT 侧母线电压故障且小差越限,保护正常动作;(2)双母线运行(母联合位),当发生死区故障,大差越限,母联CT 侧母线电压故障且小差为零,保护正常不动作;母联开关侧母线电压故障且小差越限,保护正常动作;母联跳开后,母联CT 侧母线小差随即越限,保护正常动作;(3)对于第二种情况,若母联未跳开,则母联CT 侧小差为零,保护拒动。

此时应由母联失灵保护动作,解除母联电流后,使母联CT 侧母线差动动作。

(如果母联失灵保护投入,则死区故障时,因母联跳不开,程序将进入失灵保护逻辑,死区保护动作将延时,延时时间即随失灵保护设定延时;如果母联失灵保护不投,则死区故障时,因母联跳不开,程序走不到死区保护逻辑,将造成保护拒动)补充:当发生死区故障,保护动作时,母联开关分位而有短路电流流过,有此可作为判别条件。

母差及失灵保护

母差及失灵保护

《母差及失灵保护》一、母差保护 1、BP-2B 母差保护大差电流:不包括母联以外的所有元件电流之和,I d =I 1+I 2+…+I n ; 小差电流:包括一条母线各元件及母联电流之和,I d =I 1+I 2+…+I n +I m 。

〔大差、小差正常差流不应超过0.1 A 〕差动保护:使用大差比率差动元件作为区内故障判断元件。

即由大差比率元件是否动作,区分母线区外故障还是母线区内故障。

使用小差比率差动元件作为故障母线选择元件。

即由小差比率元件是否动作,决定故障发生在哪一段母线。

跳I 母各单元跳母联跳II 母各单元母差及失灵保护的电压闭锁回路: 对称性故障 不对称故障 接地故障 其目的:一是防止有关人员误碰母差〔失灵〕保护出口继电器时,发生母差〔失灵〕保护出口继电器时,发生母差〔失灵〕保护误动作。

二是为了防止电流回路断线引起差动保护误动作。

2、RCS-915母差保护为防止母差保护在母线近端发生区外故障时CT 严重饱和的情况下发生误动作,本装置根据CT 饱和的波形特点设置了CT 饱和检测元件,用以判别差动电流是否由区外故障CT 饱和引起,如果是则闭锁差动保护出口,否则开放保护出口。

由谐波制动原理构成的CT 饱和检测元件。

母差保护的工作框图(以I 母为例)二、远传/1、远传:线路T 接高抗器、3/2接线开关失灵〔或死区故障〕时启动远传。

〔远传的本质是通过本侧保护利用通道将开入接点状态反映到对侧对应的开出接点上〕。

2、远跳:一般母差〔失灵〕保护动作时,通过光纤差动保护远跳对侧。

〔远 跳在整定时要经对侧保护启动控制〕。

母差〔失灵〕保护将线路跳闸的同时,向线路对侧发出允许跳闸、解除闭锁脉冲或远跳脉冲,将对侧开关跳闸。

〔目的是防止在线路开关与CT 之间发生短路时,对侧的保护以Ⅱ段时限跳闸。

〕N大差比率差动元件 I I 母电压闭锁开放II I 母比率差动元件 大差谐波制动开放I 母母差〔失灵〕保护动作后,同时通过纵联保护跳故障母线线路的对侧开关,对于光纤差动保护,通过远跳跳对侧后对侧不重合,对于高频闭锁式保护或光纤允许式保护,对侧纵联保护动作后重合闸动作一次。

母差保护体系知识介绍

母差保护体系知识介绍

母差保护体系知识介绍与其他主设备保护相比,母线保护的要求更为苛刻。

当变电站母线发生故障时,如不及时切除故障,将会损坏众多电力设备,破坏系统的稳定性,甚至导致电力系统瓦解。

如果母线保护拒动,也会造成大面积的停电。

因此,设置动作可靠、性能良好的母线保护,使之能迅速有选择地切除故障是非常必要的。

常见的母线故障有:绝缘子对地闪络、雷击、运行人员误操作、母线电压和电流互感器故障等。

在大型发电厂及变电站的母线保护装置中,通常配置有母线差动保护、母联充电保护、母联失灵保护、母联死区保护、母联过流保护、母联非全相保护、其他断路器失灵保护等。

其中,最为主要的是母差保护。

本期我们一起了解一下母线差动保护的相关内容。

1、母差保护的原理和线路差动保护相同,母线差动保护的基本原理也是基于基尔霍夫定律:在母线正常运行及外部故障时,各线路流入母线的电流和流出母线的电流相等,各线路的电流向量和等于零;当母线上发生故障时,各线路电流均流向故障点,其向量和(差动电流)不再等于零,满足一定条件后,出口跳开相应开关。

母线差动保护,由ABC三相分相差动元件构成。

每相差动元件由小差差动元件及大差差动元件构成。

大差元件用于判断是否为母线故障,小差元件用于选择出故障具体在哪一条母线。

为了提高保护的可靠性,在保护中还设置有起动元件、复合电压闭锁元件、CT回路断线闭锁元件等。

2、差动保护的动作方程首先规定CT的正极性端在母线侧,一次电流参考方向由线路流向母线为正方向。

差动电流:指所有母线上连接元件的电流和的绝对值;制动电流:指所有母线上链接元件的电流的绝对值之和。

以如图的双母接线方式的大差为例。

差动电流和制动电流为:差动继电器的动作特性一般如下图所示。

蓝色区域为非动作区,红色区域为动作区。

这种动作特性称作比率制动特性。

动作逻辑的数学表达式也在图中给出。

此动作方程适用于南瑞继保RCS—915及许继电气WMH—800A母线保护装置。

除此之外,还有一种复式比率制动特性,动作特性如下图所示。

母差保护的保护范围

母差保护的保护范围

母差保护的保护范围
母差保护是一种常见的电气保护装置,其主要目的是保护电力系统中的发电机、变压器等设备免受电气故障的影响。

母差保护的保护范围由以下几个方面组成。

1. 相间短路保护:母差保护能够快速检测到相间短路故障,并通过断开故障电路的方式保护电力系统中的设备。

2. 地故保护:母差保护能够检测到设备内部的地故障,并在故障发生时及时进行保护,以避免故障扩散,造成严重后果。

3. 母线保护:母差保护能够对母线进行保护,当母线出现故障时,母差保护能够及时检测并保护母线,以保证电力系统的正常运行。

4. 过电压保护:母差保护还能够对电力系统中的过电压进行保护,当电力系统中出现过电压时,母差保护能够及时检测并采取相应的保护措施。

总之,母差保护的保护范围非常广泛,能够有效地保护电力系统中的各种设备免遭电气故障的影响,确保电力系统的安全稳定运行。

- 1 -。

母差及失灵保护讲解

母差及失灵保护讲解

母差二次回路电流分析一、母差保护基本原理由于母差保护二次电流回路上三相独立的,任一相电流回路断线,或有差流都不会影响另外两相电流回路,因此以下讨论都只针对母差保护单相二次电流回路,三相电流回路与单相是完全一样的,只需A、B、C 相并联。

1.正常情况下母差二次电流分析母差保护,其基本原理是电流的基尔霍夫定理:即同一时刻,流入某一节点(或封闭曲面)的总电流为零。

固定连接母差保护二次电流回路原理图如下:左图为二次电流回路图,右图为一次接线图。

其中,各线路开关电流正方向规定如图,以流入母线为正方向,母联开关电流以流入I母为正方向。

CJI、CJ2和CJ11分别为I母选择元件、II母选择元件和母差启动元件,电流正方向规定如图,以流出元件方向为正方向。

CJ1电流为母线I各线路电流和母联电流之和,CJ2电流为母线II各线路电流和母联电流之差,CJ11为CJ1和CJ2电流之和,ICJ11=ICJ1+ICJ2。

ICJ1=I11+I12+…+I1n+ILICJ2=I21+I22+…+I2n-ILICJ11=ICJ1+ICJ2= I11+I12+...+I1n+I21+I22+ (I2)以上各母差二次线圈CT,若固定接死在母差二次回路中(I母或II母),则称为固定连接式母差保护;若能够在I母和II母之间切换(由闸刀辅助接点),则称为自适应式母差保护,微机保护都是自适应式。

,正常运行及区外故障时(由于区外故障与正常运行类似,故以下讨论,提到正常运行时,若无特别说明,都包括区外故障情况)。

流入I母和II母的总电流为零,由基尔霍夫定理可知,此时CJ1、CJ2和CJ11的电流都为零,故母差不动作。

区内故障,例如母线I故障,则各线路和母联都有短路电流流入I母,此时CJ1电流为总短路电流,即故障电流;对II母来说,各线路电流流入,而母联电流流出,故总电流为零,CJ2电流为零;而CJ11为CJ1和CJ2电流之和,故CJ1和CJ11电流都不为零,为短路电流,故I母母差动作。

变电运行母差保护


单母线分段接线方式
定义
单母线分段接线方式是指将一段 母线分成两段或多段,每段之间 通过断路器分隔,进出线分别挂
在不同分段上。
特点
分段断路器在正常运行时不承载 负荷电流,只在故障时承受故障 电流。这种接线方式提高了供电
可靠性和灵活性。
应用场景
适用于进出线回路数较多、负荷 较大的枢纽变电站。
双母线接线方式
02 母差保护装置
母差保护装置的构成
01
02
03
输入部分
用于采集和接收各种保护 信号,如电流、电压等。
逻辑部分
根据输入信号进行逻辑运 算,判断是否发生故障。
输出部分
根据逻辑部分的判断结果, 输出跳闸信号或报警信号。
母差保护装置的工作原理
实时监测
母差保护装置实时监测母线的电 流、电压等参数,判断是否发生
作用
母差保护能够有效地保障电力系 统的安全稳定运行,避免因母线 故障导致的大规模停电事故。
母差保护的重要性
保障电力系统的稳定性
母差保护能够快速切除母线上的故障 ,防止事故扩大,从而保障电力系统 的稳定性。
提高供电可靠性
通过母差保护,可以避免因母线故障 导致的大规模停电事故,提高供电可 靠性。
母差保护的基本原理
变电运行母差保护
contents
目录
• 母差保护基本概念 • 母差保护装置 • 变电站母线运行方式 • 母差保护校验 • 母差保护异常处理 • 母差保护发展趋势和展望
01 母差保护基本概念
母差保护定义
母差保护
在电力系统中,母差保护是指能 够快速而有选择性地切除母线上 的故障,防止事故扩大的专用装 置。
06 母差保护发展趋势和展望

(完整版)母差保护


第三章 母线保护逻辑框图
1、母线电流差动保护功能模块逻辑 图
第三章 母线保护逻辑框图
第三章 母线保护逻辑框图
第三章 母线保护逻辑框图
第三章 母线保护逻辑框图
第三章 母线保护逻辑框图
第三章 母线保护逻辑框图
第三章 母线保护逻辑框图
2、差动保护的启动元件 (1) 母线电压突变量起动AU (2) 支路电流突变量起动 (3)大差动电流越线起动,需与I II母线复合电压配合
≥1
母联IC>0.2In
母差跳一母
一母比例差动元件
&
大差比例差动元件
二母比例差动元件
&
母差跳二母
&
0 400
母联电流退出小差
&
&
Tsq
跳二母
&
Tsq
跳一母
第三章 母线保护逻辑框图
4、母联非全相逻辑图
第三章 母线保护逻辑框图
5、母线充电及过流保护
当任一组母线检修后再投入之前,利用母联断路器对该母线进 行充电试验时可投入母联充电保护,当被试验母线存在故障时,利 用充电保护切除故障。
第三章 母线保护逻辑框图
(4) 母差保护的复合电压闭锁元件,由低电 压元件、负序电压元件及零序电压元件构成。
U 3U 0 U2
信号
≥1
接通差动保护跳各断路器回路
第三章 母线保护逻辑框图
3、母线保护的死区问题与原因分析 (1)死区问题与原因分析
**
LH3
* *
LH4
i3 i4
QF 1 I3 I 4
5、双母线电流差动保护TA、TV接线原理图
第一章 母线保护原理
(三)、双母线电流差动保护的原理接线图

继电保护母差保护范围

继电保护母差保护范围全文共四篇示例,供读者参考第一篇示例:继电保护作为电力系统中非常重要的一环,具有重要的作用,它主要是通过识别电力系统中出现的故障和异常状态,并及时采取措施来保护电力系统的正常运行。

在继电保护系统中,母差保护也是其中的一种,其主要作用是检测电力系统中各个部分之间的电流差异,以判断是否存在故障并采取相应的保护措施。

母差保护范围指的是母差保护所保护的区域范围,即保护范围。

母差保护的作用是在系统发生故障时,能够快速准确地定位到故障点,从而对相关设备进行保护,防止故障扩大影响整个系统的运行。

母差保护的范围一般会根据电力系统的具体情况和要求来确定,下面我们来详细介绍一下母差保护范围的相关内容。

母差保护的范围通常包括电力系统中的母线、主变压器和重要的连接线路。

这些部分都是电力系统中非常关键的设备,一旦出现故障可能会对整个系统造成严重影响,因此需要在这些部分设置母差保护,以确保系统的安全稳定运行。

在这些部分设置母差保护的原因主要是因为这些部分的电流变化比较明显,且故障可能性较大,因此需要及时监测并采取保护措施。

母差保护的范围还会根据电力系统的具体结构和接线方式来确定。

在传统的电力系统中,一般会将整个系统划分为几个不同的区域,每个区域都会有相应的母线和主变压器,因此在每个区域都需要设置相应的母差保护来监测该区域内的电流差异情况。

当某个区域出现故障时,母差保护就能够及时响应并对该区域内的设备进行保护,以避免故障蔓延影响其他区域。

随着电力系统的发展和进步,现代电力系统通常都会采用数字化的母差保护装置来进行母差保护,这种装置具有更高的精度和灵活性,能够更好地适应电力系统的要求。

数字化的母差保护装置还可以实现远程监控和控制,能够对系统进行更加全面和精细的管理和保护,确保系统的安全稳定运行。

母差保护的范围是非常重要的,它直接关系到电力系统的安全稳定运行。

在设置母差保护的范围时,需要考虑系统的整体结构和接线方式,并根据实际情况确定保护范围。

母差保护原理

母差保护原理1概述1.1概述母线保护的基本原理:母线正常运行时:母线发生故障时:母线保护的要求l区外故障绝对不允许误动l区内故障必须快速动作1.2母差保护现中阻抗母差保护l优点:1、动作速度快2、抗TA饱和能力强l缺点:1、需辅助变流器2、调试、维护复杂3、不适应综合自动化的要求微机母差保护目前普遍采用的是比率差动继电器制动系数K直接影响到其抗TA饱和能力。

为提高抗饱和能力必须提高K值,而提高K值势必降低保护在区内故障时的灵敏度,尤其在重负荷下故障或经过渡电阻故障时矛盾更为突出。

1.3母差保护的难点母差保护的难点在于如何兼顾区外故障时的安全性与区内故障时的灵敏度问题。

因此有必要研制一种全新的、不完全依赖于制动系数的抗TA饱和判据,以根本上解决了安全性与灵敏度矛盾的问题。

1.4电流互感器饱和的研究1.4.1电流互感器饱和的研究结论1由于电流互感器存在角差,因此即使一、二次电流有效值的差不大于10%,它所引起的差流也往往会大于一次电流的10%。

结论2一次电流越大,其饱和时波形畸变得越厉害,因而在差动保护中所引起的差电流越大;但即使一次电流达到100多倍额定电流,其二次电流也不会为零。

结论3当一次电流含有很大的非周期分量且衰减时间常数较长时,即使稳态电流倍数满足10%误差曲线,但在暂态过程中,尤其是在起始的2~3个周波之内,二次电流会出现严重的缺损,从而引起的很大的差电流。

结论 4故障起始电流互感器总有一段正确传变时间,一般情况下大于2ms。

图1.4.1为动模实验室实录的母线区内、外故障波形。

图1.4.2 为区外故障,短路支路电流互感器极度饱和的情况下,差动保护也不会误动。

图1.4.3为区内故障伴随电流互感器深度饱和,保护10ms 快速出口(包括出口继电器时间5ms)。

图1.4.4为电流20In,时间常数180ms(89°),电流互感器的波形1.4.2抗电流互感器饱和判据1.4.2.1 RCS-915判据1:反应工频变化量的自适应阻抗加权式差动保护(专利技术)自适应阻抗加权式差动保护:即利用电压工频变化量起动元件自适应地开放加权算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

母线的故障
• 绝缘子老化,污秽引起的闪路接地故障和雷击造 成的短路比较多 • 主要故障有单相接地短路和相间短路故障,两相 接地短路故障和三相短路故障几率比较少 • 母线上故障较少,一般都为区外故障
对母线保护的要求
• 高度的安全性和可靠性 误动会造成大面积的停 电,拒动会损害电力设备以及系统的瓦解 • 选择性强,动作速度快 要良好的区分区内和区 外故障,还要确定故障母线,及早发现故障并切 除
电流型母差保护类型
• 常用的母差保护元件有常规比率差动判据、工频变化 量比率差动元件、复式比率差动元件 • 差流计算相同,制动电流计算有差异
母线运行方式的电流校验
– 引ቤተ መጻሕፍቲ ባይዱ隔离刀闸的辅助接点实现对母线运行方式的自适应。
– 同时用各支路电流和电流分布来校验刀闸辅助接点的正 确性
– 当发现刀闸辅助接点状态与实际不符,即发出“开入异 常”告警信号
抗TA饱和方法
• 1.同步识别法 母线故障时,母线电压和出线元件上 电流发生变化,产生差流,即工频电压和工频电流变 化与差动元件中的差流同时出现,当区外故障TA饱 和时母线电压和出线电流立即发生变化,但由于故障 后3-5ms TA磁路才会饱和,差流才出现,差动元件 中的差流比故障电流晚出现3-5ms 在母差保护中,当故障电流与差动元件中的差流同 时出现时,认为是区内故障开放差动;当故障电流比 差动元件中差流早出现时,认为差动元件中的差流是 区外故障TA饱和产生的,立即将差动闭锁一段时间
差回路的构成
• 差动回路是由一个母线大差动和几个各段母线小差动 所组成的; • 大差动是指除母联开关和分段开关以外的母线上所有 其余支路电流所构成的差动回路; • 某段母线小差动是指与该段母线相连接的各支路电流 构成的差动回路,其中包括了与该段母线相关联的母 联开关和分段开关; • 母线上所有元件极性相同,母联CT极性同II母线上元 件极性; • 大差动判别母线故障,小差动判别故障母线。
母线分列运行的说明(2)
• 母线分列运行时,死区故障,故障点位于母联的开关和TA之间。 此时,按差电流回路,Ⅰ母差动动作,然后启动母联失灵跳Ⅱ母, 如果两母线的复合电压闭锁均开放,则造成母线完全退出运行。 如果故障时Ⅰ母复合电压闭锁不开放(故障点在Ⅱ母),Ⅱ母复 合电压闭锁开放,会造成保护拒动。因此,在母线分列运行时, 装置封母联TA,若发生图3.14所示故障时,差动保护直接出口跳 Ⅱ母。 装置通过自动和手动两种方式判别母线是并列运行还是
微机母线保护装置
胡晓丽
母线的接线方式
• 单母线 35-66KV出线少 单母线分段 110KV出线 少于四回 • 双母线 110KV以上,出线四回以上 • 3/2断路器接线 220KV及以上电压等级 • 双母双分段接线及双母带旁路接线可靠性和灵活 性都比较高,但由于使用的电气设备比较多,结 构比较复杂
З
“和电流”与“差电流”
• 和电流
m
Ir Ij
j 1
• 差电流
Id
Ij
j 1
m
起动元件
1、和电流突变量判据: 2、差电流越限判据: 3、起动元件返回判据:
ir Idset
Id Idset
Id 0.75 Idset
普通比率差动判据
无意义区
动作区
起动值
复式比率差动判据
与其它保护配合
• 母线保护动作后作用于纵联保护停信(闭锁式) 母线上发生故障或断路器失灵时,为了使线路对侧 高频报护迅速作用于跳闸,母线保护动作后应使本侧 收发信机停信,在3/2接线方式中不能采用,因为 此时母线故障并不要求对侧断路器跳闸 • 闭锁线路重合闸 为了防止线路断路器对故障母线进行重合,母线保护 动作后应闭锁线路重合闸 • 启动断路器失灵保护 为了防止断路器失灵,母线保护动作后应启动断路器 失灵保护
一般配置
• 220kV母线保护功能一般包括母线差动保护,母 联相关的保护(母联失灵保护、母联死区保护、 母联过流保护、母联充电保护等),断路器失灵 保护。对重要的220kV母线应当实现双重化,配 置两套母线保护。500kV母线往往采用3/2接线, 相当于单母线接线,因此其母线保护相对简单, 一般仅配置母线差动保护,断路器失灵保护往往 置于断路器保护中。3/2接线的母线其拒动的危害 性远大于误动,所以母线保护实现双重化。
抗TA饱和方法
• 自适应阻抗加权抗饱和
采用工频变化量阻抗元件△Z,是母线电压变化量与差 流变化量的比值 发生故障时,差动元件电压元件以及阻抗元件同时动作, 即判为母线故障,如果电压元件在先而差动元件及阻抗元 件后动作,即判为区外故障TA饱和,立即将差动闭锁
抗TA饱和方法
• 基于采样值的重复多次判别法 上述两种方法,只适用于故障瞬间,只能将保护暂短 闭锁,否则当发生区内故障时,将致使母差拒绝动作 若在对差流一个周期的连续R次采样中,有S次及以 上不满足差动元件动作要求,认为是外部故障TA饱 和,继续闭锁差动。若有连续S次及以上满足动作条 件,判为区外故障转为区内故障,立即开放差动。
TA饱和特点介绍
• 当TA一次电流很大时、含有很大的非周期分量时、铁 芯中有很大的剩磁时、TA二次负载阻抗很大时TA很容 易饱和 • TA饱和特点 当出线故障时,某一出线元件TA饱和,二次电流大大 减少,故障发生瞬间,铁芯中磁通不能突变,TA不能 立即进入饱和区,存在3-5ms的线性传变区 TA饱和后,每个周期内一次电流过零点附近存在不饱 和时段,TA一次二次成正比 TA饱和后,励磁电阻下降,内阻降低 饱和后电流中存在很大的二次和三次谐波分量
断路器失灵保护
• 对于双母线和单母线接线方式,由于失灵保护的动作 对象是跳失灵断路器所在的母线上的所有断路器,其 跳闸对象与母线保护跳闸对象完全一致,所以将失灵 保护与母线保护做在同一套装置中以节省二次电缆。 但是3/2接线方式中,边断路器失灵时除要求跳边断 路器所在的母线上的所有断路器外,还要跳中断路器。 而中断路器失灵时,要求跳同一串上相邻的两个边断 路器。所以它们的跳闸对象与母线保护的跳闸对象不 相同。因此在3/2接线方式中失灵保护不做在母线保 护装置中,另外与重合闸一起做成一套断路器保护。
– 在状态确定的情况下自动修正错误的刀闸接点 – 当负荷很小间隔发生刀闸位置不正确,不及时修正容易 造成保护区内故障误动作
差动回路
以 I1,I2,---,In 表示各元件电流数字量;以 Ilk 表示母联电流数 字量; 以S11,S12,---,S1n表示各元件I母刀闸位置,0表示刀闸分,1 表示刀闸合; 以S21,S22,---,S2n表示各元件II母刀闸位置; 以Slk 表示母线并列运行状态,0表示分列运行,1表示并列运行; 各元件TA的极性端必须一致;一般母联只有一侧有TA,装置 默认母联TA的极性与II母上的元件一致。 则差流计算公式为: 大差电流 Id = I1 + I2 + --- + In I母小差电流 Id1 = I1 * S11+ I2* S12 + --- + In* S1n- Ilk * Slk — II母小差电流 Id2 = I1 * S21+ I2* S22 + --- + In* S2n-+ Ilk * Slk
• 复式比率差动判据动作表达式:
Id
Id Idset Id Kr ( Ir Id )
其中Id为母线上各元件的矢量和,即差电流。 Ir为母线上各元件的标量和,即和电流。 Idset为差电流门坎定值; Kr为复式比率系数(制动系数)
Kr
(1) (2)
Idset Ir-Id
若忽略CT误差和流出电流的影响,在区外故障时,Id = 0, 0/Ir为0;在区内故障时,Id = Ir,Id/0为∞。由此可见,复 式比率差动继电器能非常明确地区分区内和区外故障,Kr值的 选取范围达到最大,即从0到∞ 。
• 并列运行时倒闸操作:
– 可预先投互联压板;
– 可预先设定保护控制字中的“强制母线互联” 软压板,强制母线互联; – 或依靠刀闸辅助接点自适应倒闸操作; – 此时差动回路改为一个母线大差动。
差回路的构成
• 母线分列运行时:
– 可分列运行后投分列压板强制(注意预合母联 开关前,应将压板退出);
– 或依靠母联开关接点自适应分列运行操作(仅 常闭接点合,常开接点断,装置认为母联开关 断开);
谐波制动原理
• TA饱和时差电流的波形将发生畸变,其中会有大量 的谐波分量。用谐波制动可以防止区外故障TA饱和 误动。但是,当区内故障TA饱和时,差电流中同样 会有谐波分量。因此,为防止区内故障或区外故障转 区内故障TA饱和使差动保护拒动,必须引入其他辅 助判据,以确定是区内故障还是区外故障。利用区外 故障TA饱和后在线性传变区无差流方法,而区内故 障时一直存在差流的方法来区别区内、外故障,而利 用谐波制动防止区外故障误动。但是此方法为了正确 测量谐波含量以及每周有线性传变区的原理,因此需 要的时间比较长。
对电流互感器的要求
• 母线保护应接在专用TA二次回路中,并且要求在 该回路中不接入其他设备的保护装置或测量装置, TA精度要求高,抗饱和能力强 • 母线TA安装位置应尽量靠近线路或变压器一侧, 使母线保护和线路保护变压器保护有重叠区
TA饱和对母线保护的影响
• 母线区外故障时TA饱和对母线保护的影响: 由于离故障点最近支路的电流互感器饱和其电流不 能线性传变到二次侧,产生缺损,差动元件中的电流 就是这部分缺损电流,如果TA饱和比较严重,差动 元件的动作电流就越大,造成保护误动。 • 母线区内故障时TA饱和对母线保护的影响: 由于电流互感器的饱和,饱和的电流互感器不能线 性传变一次电流使差动回路的电流大大降低,会影响 差动元件的灵敏度,可能造成母差保护的拒动。
双母线母差保护逻辑框图(以一相为例)
信号
大差元件
跳断路器 小差元件 与 与
相关文档
最新文档