质点从可自由移动的凹曲面上滑下的运动轨迹问题

合集下载

大学物理课后习题答案解析详解

大学物理课后习题答案解析详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=r r r r r rr r当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv -= ⎰⎰-=t v v kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt e v dx t k t x -⎰⎰=000 )1(0t k e k v x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x10 m处,初速度v 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以 0d 2gh d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+vv v ,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理(上册)课后习题及答案

大学物理(上册)课后习题及答案
分离变量得: ,即 ,
因此有: ,∴
⑵由 得: ,两边积分得:

⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,

5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,

⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:

大学物理章质点动力学习题答案

大学物理章质点动力学习题答案

第二章 质点动 力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数;解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式2代入式1得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r ;解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩习题2-2图擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件;解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m,用质量不计的滑轮和细绳连接,并不计摩擦,则A和B 的加速度大小各为多少 ; 解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-5如本题图所示,已知两物体A 、B 的质量均为m=,物体A 以加速度a =s 2 运动,求物体B 与桌面间的摩擦力;滑轮与连接绳的质量不计解:分别对物体和滑轮受力分析如图,由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-6质量为M 的三角形木块,放在光滑的水平桌面上,另一质量为m 的木块放在斜面上如本题图所示;如果所有接触面的摩擦均可忽略不计,求M 的加速度和m 相对M 的加速度;AB 习题2-4图习题2-5图aθ习题2-3图ma AmgT A T B a Bmg解:如图m 相对M 的相对加速度为m a ',则 cos ,sin ,mxm my m a a a a θθ''''== 在水平方向,cos mxmx Mx mx mxMx m M a a a a a a a a θ'=-''∴=+=-+在竖直方向sin mymy myma a a a θ'='∴=由牛顿定律可得,sin cos cos sin sin mx mM my m MN ma ma ma mg N ma ma N Ma θθθθθ'-==-+'-===解得θ+θθ=2sin cos sin m M mg a M , 2()sin sin m M m g a M m θθ++= 2-7在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球;当钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解:取钢球为隔离体,受力分析如图所示,在图示坐标中列动力学方程得,2sin sin cos cos ()/n F ma mR F mg R h Rθωθθθ====-解得钢球距碗底的高度2ω-=g R h2-8光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ;物体的初速率为v 0,求:1t 时刻物体的速率;2当物体速率从v 0减少到v 0/2时,物体所经历的时间及经过的路程;解:1设物体质量为m,取图示的自然坐标系,由牛顿定律得,02222tv 2v (1)(2)(3)4dv 4dt u v N n f t f Nv F ma m R dv F m a m dtF uF v dvu R dt ===-=-=-⎰⎰0由上三式可得=()R 对()式积分得=-习题2-6图00Rv v R v tμ∴=+(2) 当物体速率从v 0减少到v 0/2时,由上式00Rv vR v tμ∴=+可得物体所经历的时间0t R v μ'=经过的路程t t 000vdt dt ln 2Rv Rs R v t μμ''=+⎰⎰==2-9从实验知道,当物体速度不太大时,可以认为空气的阻力正比于物体的瞬时速度,设其比例常数为k;将质量为m 的物体以竖直向上的初速度v 0抛出; 1试证明物体的速度为t m ktm ke v e kmg v --+-=0)1(2证明物体将达到的最大高度为)1ln(020mgkv k g m k mv H +-=3证明到达最大高度的时间为)1ln(0mgkv k mt H +=证明:由牛顿定律可得0000220200ln (1)(2),()ln(13tvv mmt t k kx mg mg kv mdv dt mg kvmg kv m mg t v e v e k mg kv kmvdvdx mg kvmg kv u du kdvk mgdu k mgdudx mdu dx mdu m u m u mv kv m g x k k mg m t k --+-=++∴==-++=-++==∴=-+=-+∴=-+=⎰⎰⎰⎰dv(1)-mg-kv=m ,dt,dv -mg-kv=mv ,dx 令,)()0ln0t ln mg kv mg kvmg kv m v k mg k +++∴=+当时,=即为到达最高点的时间2-10质量为m 的跳水运动员,从距水面距离为h 的高台上由静止跳下落入水中;把跳水运动员视为质点,并略去空气阻力;运动员入水后垂直下沉,水对其阻力为-b v 2,其中b 为一常yf =-kvmgv量;若以水面上一点为坐标原点O,竖直向下为Oy 轴,求:1运动员在水中的速率v 与y 的函数关系;2跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1/10假定跳水运动员在水中的浮力与所受的重力大小恰好相等解:运动员入水可视为自由落体运动,所以入水时的速度为0v =入水后如图由牛顿定律的0220//0100mg-f-F=ma mg=F f=bv dv a=dt v dy (2)0.4,0.1m vy ln 5.76m b y v v by m by m dv v dy dvb mv dyb dv m vv v e m v v v ---=∴-=-=====⎰⎰b将已知条件代入上式得,m=-=2-11一物体自地球表面以速率v 0竖直上抛;假定空气对物体阻力的值为f =-km v 2,其中k 为常量,m 为物体质量;试求:1该物体能上升的高度;2物体返回地面时速度的值;解:分别对物体上抛和下落时作受力分析如图,h120m 1ln()2v 01ln()2(2)m v=v 1gyvv vvdv dy g k g k y k g k g k k g vdvdy g k k =-++∴=-+∴+=-∴+⎰⎰⎰⎰222220max 222-/0dv mvdv (1)-mg-k v =m=,dt dy v v v 物体达到最高点时,=,故v h=y =dv mvdv下落过程中,-mg+k v =m=dt dy-v v ()2-12长为60cm 的绳子悬挂在天花板上,下方系一质量为1kg 的小球,已知绳子能承受的最大张力为20N ;试求要多大的水平冲量作用在原来静止的小球上才能将绳子打断解:由动量定理得000I mv I v m∆=-∆∴=,如图受力分析并由牛顿定律得,2020220/202.47mv T mg l mv T mg lmg I l I Ns-==+≥∴+∆≥∆≥2-13一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为;爆炸后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为100m;问第二块落在距抛出点多远的地面上 设空气的阻力不计解:取如图示坐标系,根据抛体运动规律,爆炸前,物体在最高点得速度得水平分量为()1010x 2x 12y 2x 0x (1),v 2mv mv 30mv mv 414v v 100x x v x t==+=2111121物体爆炸后,第一块碎片竖直下落的运动方程为1y =h-v t-gt 2当碎片落地时,y =0,t=t 则由上式得爆炸后第一块碎片抛出得速度为1h-gt 2=()t 又根据动量守恒定律,在最高点处有1=()211=-22联立以上()-()式得爆炸后第二块碎片抛出时的速度分量分别为=2=2x 11212x 2222y 222214.7v t 5y =h+v t -60,x 500my ms v v ms gt y --====21211h-gt 2t 爆炸后第二块碎片作斜抛运动,其运动方程为x =x +()1()2落地时由式(5)和(6)可解得第二块碎片落地点得水平位置=2-14质量为M 的人手里拿着一个质量为m 的物体,此人用与水平面成θ角的速率v 0向前跳去;当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出;问:由于人抛出物体,他跳跃的距离增加了多少假设人可视为质点解:取如图所示坐标,把人和物视为一系统,当人跳跃到最高点处,在向左抛物得过程中,满足动量守恒,故有()00000m cos ()v u mu v cos m mu v v- cos m sin t g m sin x vt um gv Mv m v u v v v v v θθθθθ=+-∆∆∆+M 式中为人抛物后相对地面的水平速率,-为抛出物对地面得水平速率,得=++M人的水平速率得增量为==+M而人从最高点到地面得运动时间为=所以人跳跃后增加的距离为==(+M )2-15铁路上有一静止的平板车,其质量为M,设平板车可无摩擦地在水平轨道上运动;现有N 个人从平板车的后端跳下,每个人的质量均为m,相对平板车的速度均为u;问:在下列两种情况下,1N 个人同时跳离;2一个人、一个人地跳离,平板车的末速是多少所得的结果为何不同,其物理原因是什么解:取平板车及N 个人组成的系统,以地面为参考系,平板车的运动方向为正方向,系统在该方向上满足动量守恒;考虑N 个人同时跳车的情况,设跳车后平板车的速度为v,则由动量守恒定律得 0=Mv+Nmv -uv =Nmu/Nm+M 1又考虑N 个人一个接一个的跳车的情况;设当平板车上商有n 个人时的速度为v n ,跳下一个人后的车速为v n -1,在该次跳车的过程中,根据动量守恒有M+nmv n =M v n -1+n-1m v n -1+mv n -1-u 2 由式2得递推公式v n -1=v n +mu/M+nm 3当车上有N 个人得时即N =n,v N =0;当车上N 个人完全跳完时,车速为v 0, 根据式3有,v N-1=0+mu/Nm+Mv N-2= v N-1+mu/N-1m+M ………….v 0= v 1+mu/M+nm将上述各等式的两侧分别相加,整理后得,0n 0mu v nm,1,2,3....v vM nm M Nm n N N +≤+=∑N=1=M+由于故有,即个人一个接一个地跳车时,平板车的末速度大于N 个人同时跳下车的末速度。

第一章 质点运动学课后习题解答

第一章 质点运动学课后习题解答
故物体的速度与位置的关系为
1-12.一质点在平面内运动,其加速度 ,且 , 为常量。(1)求 和 的表达式;(2)证明质点的轨迹为一抛物线t=0时, , 。
解:由 得
两边积分得
因 , 为常量,所以a是常矢量,上式变为 即
由 得
两边积分,并考虑到 和a是常矢量,

(2)为了证明过程简单起见,按下列方式选取坐标系,使一个坐标轴(如x轴)与a平行,并使质点在t=0时刻位于坐标原点。
弹2: (3)
(4)
由(1)(2)(3)(4),解得: , , ,
或者 , , , 。(答案里少这种情况)
解:(1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为
x=vt,y=1/2gt2
飞机水平飞行速度v=100 m·s-1,飞机离地面的高度y=100 m,由上述两式可得目标在飞机正下方前的距离
(2) 视线和水平线的夹角为
(3) 在任意时刻物品的速度与水平轴的夹角为
取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为
所以
(4)
把t=2s代入式(3)、(4),可得该时刻质点的速度和加速度。
1-6.已知运动函数为 (R,ω为常量),求质点的速度、加速度、切向加速度和法向加速度。
解:速度:
速度大小:
加速度:
加速度大小:
切向加速度: ;法向加速度:
1-7.质点沿半径为 的圆周运动, 运动方程为 (SI). 求:⑴ s时, 质点的切向加速度和法向加速度.⑵当加速度的方向和半径成 角时,角位移是多少?
式中x,y的单位为m,t的单位为s.
试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.
解(1) 速度的分量式为

专题01 质点模型-高考物理模型系列之对象模型(解析版)

专题01 质点模型-高考物理模型系列之对象模型(解析版)
【答案】13m
(ii).置换质点
若物体不能看作质点,但作为参考系的静止物体可看作质点时,可通过转换参考系将问题转化为质点的运动.
例2.一辆汽车匀加速通过路边一线杆,若车头通过线杆时的速度为V1=1m/s,车尾通过线杆时的速度为v2=7m/s,则车身中点通过线杆时的速度为.
【答案】5m/s
【解析】:本题中汽车不能看作质点,但路边线杆的宽度相对汽车长度可以忽略,可将线杆看作质点.以汽车为参考系,线杆从车头向车尾匀加速通过汽车,设经过车身中点时的速度为v,加速度为a,车身长度为2x,则由车头到车身中点 ,由车身中点到车尾 ,两式联立有
,即车身中点经过线杆时的速度为5m/s.
模型演练
1.如图所示,具有圆锥形状的回转器(陀螺),绕它的轴在光滑的桌面上以角速度 快速旋转,同时以速度v向左运动,若回转器的轴一直保持竖直,为使回转器从桌子的边缘滑出时不会与桌子边缘发生碰撞,速度v至少应等于(设回转器的高为H,底面半径为R,不计空气对回转器的作用)()
(ii)物体上的各点运动情况都相同的,所以研究它上面某一点运动规律就可以代替整体运动情况,这种情况下物体也可当质点处理,不过是取该物体上的一点来研究,并不一定是不计物体大小,如火车过桥。
(iii)转动的物体只要不要研究它的转动,也可以看成质点。例如一个乒乓球运动员发出一个弧圈球,如果另一个运动员要确定回球时拍子触球位置就不能把乒乓球看成质点,但是如果研究它在空中运动的时间仍可以把它质点。
(iv).划分质点
在连续体上划分出一块适当的部分作为质点,通过类比,再研究等效模型。
例4.如图所示,在水平地面上有一辆运动的平板小车,车上固定一个盛水的杯子,杯子的直径为R。当小车做匀加速运动时,水面呈如图所示状态,左右液面的高度差为 ,则小车的加速度方向指向何处?加速度的大小为多少?

第二章习题答案

第二章习题答案

第二章习题答案2.1.1 质点的运动学方程为j t i t r j i t r ˆ)14(ˆ)32()2(ˆ5ˆ)23()1(-+-=++=求质点的轨迹并用图表示解:(1)⎭⎬⎫=+=523y t x 平行于x 轴的直线:y=5(2)⎭⎬⎫-=-=1432t y t x 消去t 的轨迹方程:0534=-+y x2.1.2 质点的运动学方程为kj e i e r t t ˆ2ˆˆ22++=-。

(1)求质点的轨迹。

(2)求自t = -1 至t = 1质点的位移解:(1)由运动方程得质点轨迹的参数方程为 )3()2()1(222⎪⎩⎪⎨⎧===-z ey e x tt (1)x (2)消去t ,得轨迹方程 ⎩⎨⎧==21z xy(2)自t = -1 至t = 1质点的位移:je e i e e r r r k j e i e r k j e i e r t t ˆ)(ˆ)(ˆ2ˆˆˆ2ˆˆ,1,1222211221221-------+-=-=∆++=++==-= 2.1.3 质点的运动学方程为j t i t r ˆ)32(ˆ42++=。

(1)求质点的轨迹;(2)求自t=0至t=1质点的位移解:由质点的运动方程⎩⎨⎧+==)2(32)1(42t y t x (1) 质点的轨迹:消去t 得:2)3(-=y x(2) 位移:ji r r r j i r j r t t ˆ2ˆ4ˆ5ˆ4ˆ3101221+=-=∆+====2.2.1 雷达站于某瞬时测得飞机位置为R 1=4100m ,θ1=33.70,0.75s 后测得R 2=4240m ,θ2=29.30,R 1,R 2均在铅直平面内,求飞机瞬时速度的近似值和飞行方向(α角)。

解:取雷达站位置为原点,飞机在两个时刻的位置矢量分别为r 1和r 2,则| r 1|=R 1, | r 2|=R 2,如图所示由余弦定理,在0.75s 时间间隔内飞机的位移的大小为mR R R R r r r r r 4.349)3.297.33cos(42404100242404100)cos(2)cos(200222121222121212221≈-⨯⨯-+=--+=--+=∆θθθθ飞机的瞬时速度的大小:==∆∆≈smt r v 75.04.349465.8m/s飞机的瞬时速度方向:由正弦定理)3.297.33sin(4.349sin 4240)sin(sin 00212-=⇒-∆=γθθγr r100001207.341806.11193.0arcsin 18090,93.04.4sin 4.3494240sin ≈--=∴≈-=∴>∴>≈=γθαγγγr r另解:利用矢量在直角坐标系中的正交分解. 选平面直角坐标系,取雷达站的位置为坐标原点,x 轴沿水平方向,y 轴铅直向上,则在两个时刻飞机的位置矢量分别可表示为ji j i jR i R r ji j i jR i R r ˆ98.2074ˆ57.3697ˆ3.29sin 4240ˆ3.29cos 4240ˆsin ˆcos ˆ86.2274ˆ01.3411ˆ7.33sin 4100ˆ7.33cos 4100ˆsin ˆcos 00222220011111+=⨯+⨯=+=+=⨯+⨯=+=θθθθ 飞机飞行0.75s 后的位移矢量为j i r r r ˆ88.199ˆ56.28612-=-=∆飞机瞬时速度的大小的近似值:s m t rv /8.46575.038.34975.088.19956.28622=≅+=∆∆≈飞机瞬时速度的方向与x 轴的夹角:09.3482.038.34956.286ˆcos =∴==∆⋅∆=ααr i r2.2.2 一圆柱体沿抛物线轨道运动.抛物线的轨道方程为y=x 2/200(长度:mm).第一次观测到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处.求圆柱体瞬时速度的近似解:第一次观测时,x=249mm, y=x 2/200=(249)2/200≈310mm ,j i r ˆ310ˆ2491+=2ms 后,x=234mm, y=x 2/200=(234)2/200≈273.78mm ,j i r ˆ78.273ˆ2342+=圆柱体的位移:mm r j i r r r 2.3922.3615ˆ22.36ˆ152212≈+=∆--=-=∆∴ms mm msmm t r v /6.1922.39==∆∆≈速度与x 轴的夹角:5.112383.02.3915ˆcos -≈∴-≈-=∆⋅∆=ααr i r2.2.3 一人在北京音乐厅内听音乐,离演奏着17m 。

5.1 曲线运动 (人教版新教材)高中物理必修二第五章【知识点+练习】

第五章抛体运动1 曲线运动知识点曲线运动1.曲线运动(1)速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.(3)曲线运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向曲线的内侧(凹侧).若物体在恒力作用下做曲线运动,物体的运动轨迹越来越接近力的方向,但不会与力的方向完全相同。

3.曲线运动的分类(1)匀变速曲线运动:加速度恒定的曲线运动,即物体在恒力作用下的曲线运动。

(2)变加速曲线运动:加速度不断变化的曲线运动,即物体在变力作用下的曲线运动。

4.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变.【例1】已知质点从A点运动到B点,其速度逐渐减小,下列图中能正确表示质点在C 点处受力的是()【例2】质点在某一平面内沿曲线由P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力.则下列选项中可能正确的是()随堂练习1.(多选)关于曲线运动,下列说法中正确的是()A.变速运动一定是曲线运动B.做曲线运动的物体所受的合外力一定不为零C.速率不变的曲线运动是匀速运动D.曲线运动也可以是速率不变的运动2.做曲线运动的物体,在其轨迹曲线上某一点的加速度方向()A.为通过该点的曲线的切线方向B.与物体在这一点时所受合外力方向垂直C.与物体在这一点的速度方向一致D.与物体在这一点的速度方向的夹角一定不为零3.(多选)物体受到几个力作用而做匀速直线运动,若突然撤去其中的一个力,它可能做()A.匀速直线运动B.匀加速直线运动C.匀减速直线运动D.曲线运动4.若已知物体的速度方向和它所受合力的方向如图所示,可能的运动轨迹是() 5.某质点做曲线运动时,下列说法正确的是()A.在某一点的速度方向是该点轨迹的切线方向B.在任意时间内位移的大小总是大于路程C.在某一段时间内质点受到的合外力有可能为零D.速度的方向与合外力的方向必在同一条直线上6.小球在水平面上做匀速直线运动,当它受到如图的方向的力作用时,小球可能的运动方向是()A.Oa B.Ob C.Oc D.Od7.(多选)物体受到几个恒力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做()A.静止或匀速直线运动B.匀变速直线运动C.非匀变速曲线运动D.匀变速曲线运动8.(多选)对曲线运动中的速度的方向,下列说法正确的是()A.在曲线运动中,质点在曲线上任一点的速度方向总是与这点的切线方向相同B.在曲线运动中,质点的速度方向有时也不一定是沿着轨迹的切线方向C.旋转雨伞时,伞面上的水滴由内向外做螺旋运动,故水滴速度方向不是沿其切线方向的D.旋转雨伞时,伞面上的水滴由内向外做螺旋运动,水滴速度方向总是沿其轨道的切线方向9.(多选)下列关于力和运动关系的说法中,正确的是()A.物体做曲线运动,一定受到了力的作用B.物体做匀速运动,一定没有力作用在物体上C.物体运动状态变化,一定受到了力的作用D.物体受到摩擦力作用,运动状态一定会发生改变10.某质点在一段时间内做曲线运动,则在此段时间内()A.速度可以不变,加速度一定在不断变化B.速度可以不变,加速度也可以不变C.速度一定在不断变化,加速度也一定在不断变化D.速度一定在不断变化,加速度可以不变第五章抛体运动1 曲线运动【例1】答案:C解析:根据曲线运动中合力F应指向轨迹的凹侧,可排除A、D项.在B项中,F的方向与v的方向成锐角,质点从A到B加速,故B错.在C项中,F的方向与v的方向成钝角,质点从A到B减速.故C正确.【例2】答案:D解析:质点做曲线运动时,速度方向是曲线上这一点的切线方向,选项A错误;质点所受合外力和加速度的方向指向运动轨迹的凹侧,选项B、C错误,只有选项D正确.随堂练习1、BD2、D3、答案:BCD解析:撤去其中的一个力,其他剩余的力的合力与撤去的力大小相等,方向相反,若初速v0与撤去的力F0方向相同,则撤去F0时,v0与F合(剩余力的合力)方向相反,物体做匀减速直线运动;若v0与F0方向相反,则撤去F0时,v0与F合方向相同,物体将做匀加速直线运动;若v0与F0不在一条直线上,撤去F0后,v0与F合也不在一条直线上,物体做曲线运动,故选项BCD正确。

水平面上可以自由移动的光滑圆弧的例题

水平面上可以自由移动的光滑圆弧的例题概述在物理学和工程学中,光滑圆弧是一种常见的运动轨迹。

它具有许多独特的特性,可以通过一些简单的例题来加深对其运动规律的理解。

本文将通过一些例题,来探讨在水平面上自由移动的光滑圆弧的相关问题。

例题一:光滑圆弧的速度和加速度假设一个半径为R的光滑圆弧在水平面上自由移动,当圆弧的角度为θ时,求圆弧上一点的速度和加速度。

解析:1. 根据圆弧的几何关系,可以得到圆弧上一点的速度方向与切线方向一致,且大小为ωR,其中ω为圆弧的角速度。

2. 根据速度的定义,可以得到圆弧上一点的速度大小为v=ωR。

3. 根据加速度的定义,可以得到圆弧上一点的加速度大小为a=αR,其中α为圆弧的角加速度。

结论:当圆弧的角度为θ时,圆弧上一点的速度大小为v=ωR,加速度大小为a=αR。

例题二:光滑圆弧的运动方程假设一个半径为R的光滑圆弧以角速度ω0从初始角度0开始匀速运动,求圆弧上一点的位移函数和角度函数。

解析:1. 根据匀速运动的特点,可以得到圆弧上一点的位移函数为s=Rθ,其中s为位移,θ为角度。

2. 根据角速度的定义,可以得到圆弧上一点的角度随时间变化的函数为θ=ω0t。

结论:圆弧上一点的位移函数为s=Rθ,角度随时间变化的函数为θ=ω0t。

例题三:光滑圆弧的动能和功率假设一个半径为R的光滑圆弧以角加速度α匀加速运动,求圆弧上一点的动能和功率。

解析:1. 根据动能的定义,可以得到圆弧上一点的动能为E=1/2*I*ω^2,其中I为转动惯量,ω为角速度。

2. 根据功率的定义,可以得到圆弧上一点的功率为P=τ*ω,其中τ为转矩。

3. 根据圆弧的运动规律和动能定理,可以得到圆弧上一点的动能随时间变化的函数为E=1/2*I*ω^2,功率随时间变化的函数为P=τ*ω。

结论:圆弧上一点的动能函数为E=1/2*I*ω^2,功率函数为P=τ*ω。

结语通过以上例题的分析,我们可以更深入地理解水平面上自由移动的光滑圆弧的运动规律,进一步认识到光滑圆弧在物理学和工程学中的重要性,并为相关问题的研究和应用奠定基础。

高考物理曲线运动解题技巧讲解及练习题(含答案)

高考物理曲线运动解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:0v ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++代入数值解得:0v ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++解得:0v ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是0v ≤0v ≤≤3.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()221 2A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.5.如图所示,将一小球从倾角θ=60°斜面顶端,以初速度v 0水平抛出,小球落在斜面上的某点P ,过P 点放置一垂直于斜面的直杆(P 点和直杆均未画出)。

高中物理竞赛习题专题一:质点运动学(含详解)

高总物理竞赛习题专题一:质点运动学一.选择题1.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率为v,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v =( D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =答案:C2.如上题图1-5,此时小船加速度为( ) A.0 B.θθcos )tan (20l v C.lv 20)tan (θ D.θcos 0v 答案:B3.地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小为( )A.s m /1094.13-⨯B.s m /1094.14-⨯C.0D.s m /100.35-⨯答案:A解析:设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =htg ωt,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v二.计算题4.质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1 ,求质点的运动方程.解析: 由分析知,应有⎰⎰=t t a 0d d 0vv v 得 03314v v +-=t t (1)由 ⎰⎰=t xx t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v0=-1 m ·s-1,x0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 5.一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -Bv,式中A 、B 为正恒量,求石子下落的速度和运动方程.解析:本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式dv =a(v)dt 分离变量为t a d )(d =v v 后再两边积分. 解:选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为 t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v 得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t eB A y tBt yd )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e B A t B A y6.质点在Oxy 平面内运动,其运动方程为r =2.0ti +(19.0 -2.0t2 )j,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t1=1.0s 到t2 =2.0s 时间内的平均速度;(3) t1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.解析:根据运动方程可直接写出其分量式x =x(t)和y =y(t),从中消去参数t,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和an ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t, y =19.0-2.0t2消去t 得质点的轨迹方程:y =19.0 -0.50x2(2) 在t1 =1.00s 到t2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t1 =1.00s时的速度v(t)|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 8.已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f(x),可由运动方程的两个分量式x(t)和y(t)中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元ds,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为 2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元ds,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入ds,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P9.一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a)图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t)和y ′=y ′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x ′和y =y0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2 ,则质点P 的参数方程为t TR x π2sin =', t T R y π2cos -=' 坐标变换后,在Oxy 坐标系中有 t T R x x π2sin='=, R t T R y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t10.如图所示,半径为R 的半圆凸轮以等速v0沿水平面 向右运动,带动从动杆AB 沿竖直方向上升,O 为凸轮圆心,P 为其顶点.求:当∠AOP=α时,AB 杆的速度和加速度.根据解析:速度的合成,运用平行四边形定则,得:v 杆=v0tan α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质点从可自由移动的凹曲面上滑下的运动轨迹问题 收稿日期:2003-12-23;修回日期:2004-09-02 作者简介:谢自芳(1955—),女,湖南隆回人,湖南大学应用物理系副教授,主要从事普通物理的教学和研究.谢自芳,陈曙光,张 智(湖南大学应用物理系,湖南长沙 410082) 摘要:运用质心运动定理,分析了质点在可自由移动的凹曲面上滑下时,质点对惯性系的运动轨迹方程.并就质点的运动平面与凹曲面的交线方程分别为直线、椭圆、双曲线、抛物线等情况进行了讨论.关键词:质心;惯性系;凹曲面;椭圆;双曲线;抛物线中图分类号:O 313.2 文献标识码:A 文章编号:100020712(2005)0120028202 设凹曲面是某一物体的表面,静止在一个光滑的水平面上,质量为m 1.一个质量为m 2的质点从该物体表面自由下滑.众所周知,质点从物体表面自由下滑是作一平面运动,如图1所示.设坐标系O -xy 为与地面固连的静止坐标系,O ′-X Y 为与凹曲面物体固连的运动坐标系.t =0时刻,两坐标系重合.X 轴沿水平方向,Y 轴通过质点的初始位置垂直向上.设质点的运动平面与物体表面的交线方程为F X ,Y =0(1)其中X Y 平面即为运动平面.F (X ,Y )=0是质点相对于凹曲面的运动轨迹.图1在质点的下滑过程中,由于系统在x 方向没有受到外力作用,根据质心运动定律[1],整个系统的质心在x 方向上是不动的,但物体的质心则是向左平移,现在我们求质点下滑时相对静止坐标系(即惯性系)的运动轨迹.设t 秒以后,质点下滑到如图2所示的位置,m 2向前移动x ,m 1向后移动x 1,X =x +x 1,Y =y .由式(1)得F x +x 1,y=0(2) 在开始滑动时,设m 2和m 1的质心位置分别为图2x 20和x 10x 20=0,由于系统的质心在x 方向没有位移,因而系统在不同的状态下,其质心的x 位置不变,即x c0=x c其中:x c0=m 1x 10+m 2x 20m 1+m 2x c =m 1x 10-x 1+m 2x 20+xm 1+m 2故可得:-m 1x 1+m 2x =0x 1=m 2x /m 1(3)x +x 1=x 1+m 2/m 1(4)故质点对惯性系的运动轨迹方程为F1+m 2/m 1x ,y =0(5) 首先讨论两种极限情形,设m 1很大或m 2很小,这时m 2/m 1=0,故F1+m 2/m 1x ,y =F x ,y =0m 2的运动轨迹即原来的交线(1).如果m 2很大,m 1很小,设F X ,Y 为X 的多项式,最高幂次为n ,即第24卷第1期大 学 物 理Vol.24No.12005年1月COLL EGE PHYSICS Jan.2005F X ,Y =C 0Y +C 1Y X +…+C n Y X n=0其中C nY ≠0,则 F x 1+m 2/m 1,y =C 0y +C 1y x 1+ m 2/m 1)+C 2y x 21+m 2/m 12+…+ C n y xn1+m 2/m 1n=全式用1+m 2/m 1n除,可得C n y x n=0即x =0时,m 2的运动轨迹为直线,垂直下落.以上讨论仅限于质点的运动轨迹,不涉及质点下滑的时间与速度,因此轨迹的形状与曲面是否光滑无关,只要摩擦不太大,质点能滑动就行.几种特殊的相交曲线:1)相交曲线是直线,方程为Y =-k X +c即F X ,Y=Y +k X -c =0(6)式中k 、c 都是大于零的正数.由式(5)可得质点的轨迹方程为y +kx 1+m 2/m 1-c =0(7)即m 2的运动轨迹仍为直线,只是坡度更陡.2)相交曲线是椭圆形,如图3所示,图中OA =h =b ,方程为图3X -a2a2+Y -b 2b2=1(8)其中a ≠b .由式(5)可得质点的轨迹方程为1+m 2/m 1x -a 2a2+y -b2b2=1(9)将式(9)整理得x -a1+m 2/m 12a21+m 2/m 12+x -b2b2=1(10)由式(10)可知,质点运动的轨迹还是椭圆,椭圆中心向左移动距离为a -a1+m 2/m 1=a ・m 2m 1+m 2,a 轴变短.由式(10)可知,如果a >b ,并且a1+m 2/m 1=b ,即m 2/m 1=a /b -1时,质点运动的轨迹是以短半轴为半径的圆.如在式(8)中,a =b =R 时,则相交曲线为一圆,这时质点的运动轨迹(9)却是一椭圆.3)相交曲线为双曲线的一部分,如图3所示,此时OA =h ,设其方程式为X +a 2a2-Y -h2b2=1(11)中心在-a ,h ,两个焦点在(a 2+b 2-a ,h )和(-a 2+b 2-a ,h ),实轴为a ,虚轴为b .质点开始从(0,h )处下滑,由式(5)可得质点的轨迹方程为1+m 2/m 1x +a 2a2-y -h2b2=1整理后得x +a1+m 2/m 12a1+m 2/m 12-y -h 2b2=1(12)即轨迹仍然为一双曲线,中心在-a1+m 2/m 1,h ,实轴为a1+m 2/m 1,缩短了一些,虚轴不变,双曲线两焦点向中心靠近.4)相交曲线为抛物线的一部分,如图3所示,此时OA =h =d 2/2p ,方程为X -d 2=2p Y (13)顶点在d ,0,焦点在d ,p2,由式(5)可得质点的运动轨迹为1+m 2/m 1x -d2=2py即x -d1+m 2/m 12=2p1+m 2/m 12y(14)轨迹仍为一抛物线,顶点在d1+m 2/m 1,0,焦点在d 1+m 2/m 1,p21+m 2/m 1.参考文献:[1] 张三慧.大学物理学第一册[M ].北京:清华大学出版社,1999.229.(下转32页)第1期 谢自芳等:质点从可自由移动的凹曲面上滑下的运动轨迹问题29表1v 0Πm ・s -1t 1Πs y max Πm t 2Πs t 全Πs x max (射程)Πm 射程之比6110粗糙球31406013131707110177168光滑球21984314331216119127145113931109粗糙球2120221692128414884189光滑球118318170119531785819411443 讨论1)计算结果表明,当击球速度大时,其射程较大,且均在200m 以内,这应是贴近实际的结果.当击球速度减小,使得粗糙球阻力系数取最小值时,两种表面的球射程都减小,且都在100m 之内,只是射程之比比前者稍大,但两种速度下击球其射程之比都远小于4.6.可见文献[1]中4.6倍的说法值得商榷.2)上述计算虽作了几方面的近似,如取θ=45°(实际上最佳仰角小于45°),还没有考虑球的旋转(球的旋转可使射程增大些)、弧线球等.但这些近似对两种表面的球的射程都有影响,应不影响比值.3)若不计空气阻力,球的射程与质量无关,当以61.0m ・s -1的速度击球时,最大射程经计算约为390m ,实际上是远远达不到的.由此可见,空气阻力的作用是比较显著的,计算时必须加以考虑.参考文献:[1] [美]吉尔・沃克.生活中的物理学[M ].徐婉华,叶庆桐译.北京:科学普及出版社,1984.174.[2] 姜兴华等.流体力学[M ].成都:西南交通大学出版社,1999.208~211.[3] 赵金保.球类运动中的流体力学问题[J ].力学与实践,1988,10(6):33~35.[4] 杨宝胜,王淑惠.仰角取何值时铅球掷得最远[J ].物理通报,1990(5):7~9.A discussion about the range of the ball in golfL IU Ya 2jun(College of Physics and Electronic Information ,Y an ′an University ,Y an ′an ,Shaanxi 716000,China )Abstract :A range question of the ball in golf with the rough and smooth surface is discussed.K ey w ords :golf ;air resistance ;range.(上接29页)The problem of the locus of a particle sliding dow n ona horigontally free cancave surfaceXIE Zi 2fang ,CHEN Shu 2guang ,ZHAN G Zhi(Department of Applied Physics ,Hunan University ,Changsha 410082,China )Abstract :The possible tracks of a particle m 2,sliding down along a free movable concave surface with the mass m 1are analyzed.The cases of stright line ,ellipse ,hyperbola ,and parabola are given as examples.K ey w ords :barycentre ;inertial system ;concave surface ;ellipse ;hyperbola ;parabola32 大 学 物 理 第24卷。

相关文档
最新文档