2016-2017年贵州省贵阳市初三上学期期末数学试卷及答案

合集下载

2016-2017学年第一学期期末考试九年级数学答案

2016-2017学年第一学期期末考试九年级数学答案

2016—2017学年第一学期期末考试试卷九年级数学参考答案二、填空题(每题5分,共30分)11.60 12.3 13.π48 14.5415. ②③ 16.5 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.3602r n S π= ………………4分=ππ91036021002=⨯(2cm )………………4分 18.解:(1)一次出拳小聪出“石头”的概率是;………………2分(2)如图:………………4分则小聪胜小明的概率是=; ………………2分19.设经过t 小时后,乙船在甲船的正东方………………1分︒⨯=︒-302045)10100(Sin t Sin t ………………3分解得:)12(101210-=+=t ………………3分(不化简不扣分)答:经过)12(10-小时后,乙船在甲船的正东方.………………1分 20.(1) C ………………3分(2) 4)1(221--=x y ,其顶点为(1,-4), ………………1分 而抛物线2y 的顶点坐标为(m ,2),由它们的系数关系,可以得出友好抛物线的顶点的横坐标相同,纵坐标抛物线1y 是抛物线2y 的k 倍,………………2分∴2-=k , ∴1222++-=x x y ………………2分21.解:(1)y 1=2x ﹣20,(0<x≤200)………………2分y 2=10x ﹣40﹣0.05x 2=﹣0.05x 2+10x ﹣40.(0<x≤80).………………2分(2)对于y 1=2x ﹣20,当x=200时,y 1的值最大=380万元.………………2分对于y 2=﹣0.05(x ﹣100)2+460, ∵0<x≤80, ∴x=80时,y 2最大值=440万元.………………2分∵440>380,∴选择生产乙产品利润比较高.………………2分22.(1)证△OPI ≌△ODI (SAS) ………………6分 (2) I 为△OPQ 的内心,且∠OQP=90°,所以∠OIP=135°,……………4分则∠OID=135°,所以∠PID=90°………………2分23.(1)证△BHF ∽△DFG (两角对应相等的两个三角形相似) ………2分得出DGBFDF BH =,………………2分 又因为F 是BD 的中点,所以24BD GD BH =⋅………………2分 (2)同理可得△CBF ∽△FDG , ∴FGCFDF BC =, 又∵DF=BF ,∴FGCFBF BC = ∵∠CBF=∠CFG ,∴△CBF ∽△CFG ………………4分 ∴∠BCF =∠FCG ………………1分当CA=CG 时,CF ⊥AD ………………1分24.(1)3(2)(4)8y x x =-+-343832++-=x x ………………5分(2)当CD ∥BF 时,△COD ∽△FDB ∴DBDFOD OC = ∴ tt t t --+-=4)4)(2(833………………3分解得:41-=t (舍),22=t ………………2分∴ t=2时,CD ∥BF(3)当40<<t 时,①若CE=EF ,t t t 2383452+-=,32=t ………………1分 ②若CF=EF , 53)2383(852⨯+-=t t t ,911=t ………………1分③若CE=CF , 3433438362+-++-=t t t ,0=t (舍………1分当t>4时,只有CE=EF ,t t t 2383452-=,322=t …………1分∴ 当32=t 或119或223时CEF ∆为等腰三角形.。

九年级2016--2017期末数学试卷

九年级2016--2017期末数学试卷

人教版九年级2016--2017期末数学试卷一.选择题(共12分)1.方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD的大小为()A.90°B.125°C.135°D.145°4.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.45.在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.6.对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大二.填空题(共24分)7.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.8.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.9.二次函数y=x2+4x﹣3的最小值是.10.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为.11.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=度.12.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.13.关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=,b=.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三.解答题(共84分)15.解方程:x2+4x﹣1=0.16.如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.17.已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.19.如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.22.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C (0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.23.把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为cm,高为cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.24.已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.25.如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.26.已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.九年级2016--2017期末数学试卷一.选择题(共6小题)1.(2016秋•南京期中)方程x2=x的根是()A.x=1 B.x=﹣1 C.x1=0,x2=1 D.x1=0,x2=﹣1【解答】解:x2=x,x2﹣x=0,x(x﹣1)=0,x=0,x﹣1=0,x1=0,x2=1,故选C.2.(2016•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.3.(2016•长春模拟)如图,四边形ABCD为⊙O的内接四边形,若∠BOD=90°,则∠BCD 的大小为()A.90°B.125°C.135°D.145°【解答】解:∵∠BOD=90°,∴∠A=∠BOD=45°,∵四边形ABCD为⊙O的内接四边形,∴∠A+∠BCD=180°,∴∠BCD=135°,故选:C.4.(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.5.(2016•张家界)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.【解答】解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.6.(2016•三明)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.二.填空题(共8小题)7.(2016•临夏州)三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为12.【解答】解:x2﹣13x+40=0,(x﹣5)(x﹣8)=0,所以x1=5,x2=8,而三角形的两边长分别是3和4,所以三角形第三边的长为5,所以三角形的周长为3+4+5=12.故答案为12.8.(2016•本溪)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为1.【解答】解:∵关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,∴k≠0且b2﹣4ac>0,即,解得k>﹣1且k≠0,∴k的最小整数值为:1.故答案为:1.9.(2016•兰州)二次函数y=x2+4x﹣3的最小值是﹣7.【解答】解:∵y=x2+4x﹣3=(x+2)2﹣7,∵a=1>0,∴x=﹣2时,y有最小值=﹣7.故答案为﹣7.10.(2016•黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为π.【解答】解:∵,∴S 阴影==πAB2=π.故答案为:π.11.(2016•牡丹江)如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=6,BC=3,则∠BDC=30度.【解答】解:连接AC,∵AB是直径,∴∠ACB=90°,∵AB=6,BC=3,∴sin∠CAB===,∴∠CAB=30°,∴∠BDC=30°,故答案为:30.12.(2016•聊城)如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.13.(2016春•延庆县期末)关于x的一元二次方程ax2+bx﹣2016=0有一个根为x=1,写出一组满足条件的实数a,b的值:a=1,b=2015.【解答】解:把x=1代入ax2+bx﹣2016=0得a+b﹣2016=0,当a=1时,b=2015.故答案为:1,2015.14.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S△BCD=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∵﹣<0,∴S△BCD有最大值,最大值为15,故答案为15.三.解答题(共12小题)15.(2016•淄博)解方程:x2+4x﹣1=0.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.16.(2015•香坊区三模)如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.(1)在图1中画△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且以A、B、C、D为顶点的四边形是轴对称图形.(2)在图2中画△ABE(点E在小正方形的顶点上),使△ABE的周长等于△ABC的周长,且以A、B、C、E为顶点的四边形是中心对称图形,并直接写出该四边形的面积.【解答】解:(1)如图1所示:(2)如图2所示:四边形ACBE的面积为:2×4=8.17.(2016春•南开区期末)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0 (Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若△ABC的两边AB、AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求△ABC的周长.【解答】(1)证明:∵△=(2k+3)2﹣4(k2+3k+2)=1,∴△>0,∴无论k取何值时,方程总有两个不相等的实数根;(2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴(2k+3)2﹣4(k2+3k+2)=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6.∴△ABC的周长为14或16.18.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).19.(2015秋•玄武区期末)如图,在半径为2的⊙O中,弦AB长为2.(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.【解答】解:(1)过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD=AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD==.即点O到AB的距离为.(2)如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA=(360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.20.(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.【解答】证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.22.(2016春•荣成市校级月考)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(﹣1,0),点C(0,5),点D(1,8)都在抛物线上,M为抛物线的顶点.(1)求抛物线的函数解析式;(2)求直线CM的解析式;(3)求△MCB的面积.【解答】解:(1)根据题意得,解得,所以二次函数解析式为y=﹣x2+4x+5;(2)y=﹣x2+4x+5=﹣(x﹣2)2+9,则M点坐标为(2,9),设直线MC的解析式为y=mx+n,把M(2,9)和C(0,5)代入得,解得,所以直线CM的解析式为y=2x+5;(3)把y=0代入y=2x+5得2x+5=0,解得x=﹣,则E点坐标为(﹣,0),把y=0代入y=﹣x2+4x+5得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以S△MCB=S△MBE﹣S△CBE=××9﹣××5=15.23.(2016秋•孝感校级月考)把一张边长为40cm的正方形硬纸板进行裁剪,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)若剪掉的正方形的边长为9cm时,长方体盒子的底面边长为22cm,高为9cm.(2)要使折成的长方体盒子的底面积为484cm2,那么剪掉的正方形边长为多少?(3)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.【解答】解:(1)如图所示,由已知得:BC=9cm,AB=40﹣2×9=22cm,故答案为:22,9;(2)设剪掉的正方形的边长为x cm,则(40﹣2x)2=484,即40﹣2x=±22,解得x1=31(不合题意,舍去),x2=9;答:剪掉的正方形边长为9cm;③折成的长方体盒子的侧面积有最大值,设剪掉的正方形的边长为x cm,盒子的侧面积为y cm2,则y与x的函数关系式为y=4(40﹣2x)x,即y=﹣8x2+160x,y=﹣8(x﹣10)2+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm2,此时剪掉的正方形的边长是10cm.24.(2016春•合肥校级月考)已知,如图,△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A、B、D三点.(1)求证:AB是⊙O的直径;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为3,∠BAC=60°,求DE的长.【解答】(1)证明:如图1,连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB是⊙O的直径;(2)证明:如图2,连接OD,∵AO=BO,BD=DC,∴DO是△BAC的中位线,∴DO∥AC,∴DO⊥DE,∴DE为⊙O的切线;(3)解:如图3,∵AO=3,∴AB=6,又∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AD=3,∵AC×DE=CD×AD,∴6×DE=3×3,解得:DE=.25.(2015•南丹县一模)如图,∠C=90°,⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,连接OE,OF.AO的延长线交BC于点D,AC=6,CD=2.(1)求证:四边形OECF为正方形;(2)求⊙O的半径;(3)求AB的长.【解答】(1)证明:∵⊙O是Rt△ABC的内切圆,分别切BC,AC,AB于点E,F,G,∴∠C=∠CFO=∠CEO=90°,∴四边形CFOE是矩形,∵OF=OE,∴四边形OECF为正方形;(2)解:由题意可得:EO∥AC,∴△DEO∽△DCA,∴=,设⊙O的半径为x,则=,解得:x=1.5,故⊙O的半径为1.5;(3)解:∵⊙O的半径为1.5,AC=6,∴CF=1.5,AF=4.5∴AG=4.5,设BG=BE=y,∴在Rt△ACB中AC2+BC2=AB2,∴62+(y+1.5)2=(4.5+y)2,解得:y=3,∴AB=AG+BG=4.5+3=7.5.26.(2016•亭湖区一模)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.第21页(共21页)。

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图图形中完全是中心对称图形的一组是()A . ①②B . ③④C . ①③D . ②④2. (2分) (2017九上·金华开学考) 如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A . 5B . 10C . 8D . 63. (2分)(2018·青岛) 已知一次函数y= x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A .B .C .D .4. (2分)某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A . 15%B . 20%C . 5%D . 25%5. (2分) (2016九上·苍南月考) 如图,二次函数图象,过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A . 2a+b=0B . ac>0C .D .6. (2分)如图,抛物线y1=ax2+bx+c与直线y2=kx+n的图象交于A(﹣4,﹣1),B两点,下列判断中:①abc >0;②a+b+c<0;③不等式ax2+bx+c<kx+n的解集为﹣4<x<;④方程ax2+bx+c=﹣1的解为x=﹣4,其中正确的个数是()A . 1B . 2C . 3D . 47. (2分)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是()A .B .C .D .8. (2分)如图,在△ABC中,AB为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A . 50ºB . 60ºC . 70ºD . 80º9. (2分)如图,在Rt△ABC中,∠ACB=90°,M为AB边的中点,将Rt△ABC绕点M旋转,使点A与点C重合得到△CED,连接MD.若∠B=26°,则∠BMD等于()A . 76°B . 96°C . 52°D . 104°10. (2分) (2019九上·德清期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是().A . a>0B . abc>OC . 2a+b<0D . ax2+bx+c=o有两个不相等的实数根二、填空题 (共7题;共8分)11. (2分)(2015·义乌) 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为________.12. (1分)从1,2,3,4,5五个数中任意取2个(不可重复),它们的和是偶数的概率为________ .13. (1分)(2017·临沂模拟) 在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB=6cm,高OC=8cm.则这个圆锥漏斗的侧面积是________.14. (1分) (2017九上·浙江月考) 如图,弦AB的长等于⊙O的半径,那么弦AB所对的圆周角的度数________.15. (1分) (2019八上·威海期末) 当x=________时,多项式x2+2x﹣5有最小值.16. (1分)如图,边AB是⊙O内接正六边形的一边,点C在上,且BC是⊙O内接正八边形的一边,若AC是⊙O内接正n边形的一边,则n=________.17. (1分) (2016九上·岑溪期中) 方程x2﹣3x=0的解是________.三、解答题 (共9题;共67分)18. (5分) (2019八下·嘉兴期中) 解下列一元二次方程:(1)(2)19. (10分) (2018八上·东台期中) 阅读下面材料,并解决问题:(1)如图(1),等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.请将下列解题过程补充完整。

贵州省贵阳市九年级上学期期末数学试卷

贵州省贵阳市九年级上学期期末数学试卷

贵州省贵阳市九年级上学期期末数学试卷姓名: ________ 班级: ___________________ 成绩: ___________________一、精心选一选(共10题;共20分)1.(2分)(2015八下•箫山期中)用配方法将方程x2+6x-ll=0变形,正确的是()A・(x-3) 2=20B・(x-3) 2=2C・(x+3) 2=2D・(x+3) 2=202.(2分)(2017九上•宣化期末)在一个不透明的盒子中装有12个红球,若干个篮球,它们除颜色不同外,4其余均相同,若从中随机摸出一个球为红球的概率是7 ,则篮球的个数为()A・4B・6C・8D・93.(2分)如图,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为()A ・ 4cmB ・ 5cmC ・ 6cmD ・ 8cm• l-?w-4・(2分)在反比例函数y==T的图象上有三点(xl , yl), (x2 , y2), (x3 , y3).若xl>x2>0> x3 ,则下列各式正确的是()A ・ y3>yl>y2B ・ y3>y2>ylC ・ yl>y2>y3D ・ yl>y3>y25・(2分)(2016九上•江北期末)如图,圆内接四边形ABCD的BA, CD的延长线交于P, AC, BD交于E,则图中相似三角形有( )6. (2 分)RtAABC 中,ZC=90° , AB 二 13, BC 二5,贝ijtan Z A 的值(_5_A ・T213D ・T27・(2分)如图,一个空心圆柱体,其左视图正确的是( )°. n8. ( 2分)(2018・日照)已知二次函数 尸ax2+bx+c (aH0)的图象如图所示,下列结论: nano①2a+b〈0;②abc>0:③4a«2b+c>0;④a+c>0,其中正确结论的个数为(A . 1个B . 2个C . 3个D . 4个9.(2分)下列说法正确的是()A •全等的两个图形成中心对称B •成中心对称的两个图形必须重合C •成中心对称的两个图形全等D •旋转后能够重合的两个图形成中心对称10.(2分)正六边形ABCDEF内接于00,正六边形的周长是12,则00的半径是()二、细心填一填(共8题;共8分)11.(1分)(2017 •十堰模拟)我市某果园2014年豹;猴桃产量为100吨,2016年狒猴桃产量为150吨,设该果园徹猴桃产量的年平均增长率为X,则根据题意可列方程为__________ .12.(1分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸岀一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳左于0.2, 那么可以推算出n大约是 ____________ .13.(1分)已知一圆锥的底而半径为lcm,母线长为4cm,则它的侧而积为____________ cm2 (结果保留n ).14.(1分)(2017 •江阴模拟)如图,ZUBC三个顶点的坐标分别为A (2, 2), B (4, 2), C (6, 4),以原点0为位似中心,将AABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为____________ ・lTTTTt^x15.(1分)(2016九下•苏州期中)如图,00是以原点为圆心,2为半径的圆,点P是直线y= - x+4 ±的一点,过点P作00的一条切线PQ, Q为切点,则切线长PQ的最小值为___________ ・16.(1分)(2019九上•孝感月考)二次函数7=疋一 N 一 3的顶点坐标为___________ .17.(1分)(2017 •遵义)如图,点E, F在函数y二舟的图象上,直线EF分别与x軸、y轴交于点A、B,且BE: BF=1: 3,则ZXE0F的面积是_______ ・18.(1分)(2015九上•房山期末)活动楼梯如图所示,ZB二90° ,斜坡AC的坡度为1: b斜坡AC的坡而长度为8m,则走这个活动楼梯从A点到C点上升的髙度BC为__________ ・三. 解答题(共6题;共51分)19・(6分)(2017 •乐陵模拟)为鼓励大学生创业,政府制左了小型企业的优惠政策,许多小型企业应运而生.某市统讣了该市2015年月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:2015年1-5月旨月新注册小201、年1-5月各月新注册屮型企业型企业数量折线统计囹数量占今年前五月新注册小型企A数里赛业总蚩的百分比扇形统计图(1)某市2015年1・5月份新注册小型企业一共 _________ 家,请将折线统计图补充完整.(2)该rlf 2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2 家企业了解其经营情况•请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.20. (5分)(2016九上•延庆期末)如图,已知00是AABC的外接圆,AB是00的直径,D是AB的延长线上的一点,AE丄DC交DC的延长线于点E,且AC平分ZEAB.求证:DE是00的切线・21・(5分)(2018九上•吴兴期末)如图所示,点D在ZiABC的AB边上,AD二2, BD二4, AC二2占•求证:△ACD S/XA BC.22.(5分)(2020 •虹口模拟)某次台风来袭时,一棵笔直大树树干AB (假泄树干AB垂直于水平地面)被刮倾斜7° (即ZBAB' =T)后折断倒在地上,树的顶部恰好接触到地而D处,测得ZCDA=37° , AD=5米,求这棵大树AB的髙度.(结果保留根号)(参考数拯:sin37^0.6> cos37=0・8, tan37^0. 75)23.(15分)(2017 •平谷模拟)直线y= - 3x+3与x 轴、y 轴分别父于A 、B 两点,点A 关于直线- 1的对 称点为点C. 54g 21° ■■5 ・4 -3•: ?0 -1-2 1 2x■ (1) 求点C 的坐标;(2) 若抛物线y=mx2+nx - 3m (mHO )经过A 、B 、C 三点,求抛物线的表达式;(3) 若抛物线y=ax2+bx+3 (aHO )经过A, B 两点,且顶点在第二象限.抛物线与线段AC 有两个公共点,求 a 的取值范困.24. (15分)(2014 •河南)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10 台B 型电脑的利润为3500元.(1) 求每台A 型电脑和B 型电脑的销售利润:(2) 该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进 A 型电脑x 台,这100台电脑的销售总利润为y 元.① 求y 关于x 的函数关系式:② 该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3) 实际进货时,厂家对A 型电脑出厂价下调m (0<mV100)元,且限定商店最多购进A 型电脑70台,若 商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设il •出使这100台电脑销售总利润最大的进货 方案.精心选一选(共10题;共20分)1- 1. D2- 1. °3- 1. °4- 1. A5- 1. °6- 1.人7- 1. 88- 1. 89- 1.匚10- 1. B二、细心填一填(共8题;共8分)【第1空】100(1十X) &150【第1空】10【第1空】也【第1空】(2, 1 )【第1空】2【第1空】(I _4)【第1空】|【第1空】4电三、解答题(共6题;共51分)I—【第1空】16参考答案11-1、12-1.13-1. 14-1. 15-1. 16-1. 17-1.设该镇今年3月新注册的小型企业为甲.乙.丙.丁,冥中臥 乙为养殖企业.画树状图得; /1\ /N /4\ /N 乙丙丁甲丙丁甲乙丁冃乙丙••哄有12种等可能的结果,甲.乙2家企业恰好被抽到的有2种,・••所抽取的2家企业恰好都是弄殖企业的載率为:鲁=£.\zCAO=zACO f vAC^zEAB r /.zEAC=zCAO=zACO r .-.AEiiCO , 又AE 丄DE , •■•CO 丄 DE f 20-1.・・・DE 是OO 的切线 #?: vAD=2f AC=2°JJ B f BD=4 fAC 心$ ■■■■■■■ MV MB ■■■■■ •辺 _ 2T _ 3 ..ID AC ••疋=丽 又TN A 二N A F 2]-]、・・-ABC-二ACD.19-2 甲 乙 丙 丁K解:过点4{乍力£丄点£ .则“4£心山£6 90 o •・••点Bfi9^彩(0阳);当尸• 3x+3=0时,x=l r•••点A 的坐标为(1,0).・・•点A 关于直线x 二-1的対称点为点G 23-1. •舄t 的坐标为(-3f0) ••在f zADC= 37 o f-cos37 o 二塔二竽=08 ,;.£?£= 4 r•*sin37。

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷

贵州省贵阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列食品商标中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)下列说法正确的是()A . 垂直于半径的直线是圆的切线B . 圆周角等于圆心角的一半C . 圆是中心对称图形D . 圆的对称轴是直径3. (2分) (2019八下·温州期中) 用配方法解方程 ,配方后正确的是()A .B .C .D .4. (2分)(2020·孝感) 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为()A .B .C .D .5. (2分)如图,⊙O是正方形ABCD的内切圆,与各边分别相切于点E、F、G、H,则∠1的正切值等于()A .B .C . 1D . 26. (2分) (2016八上·杭州期末) 如图,在平面直角坐标系中,等腰直角三角形ABC的腰长为2,直角顶点A在直线l:y=2x+2上移动,且斜边BC∥x轴,当△ABC在直线l上移动时,BC的中点D满足的函数关系式为()A . y=2xB . y=2x+1C . y=2x+2﹣D . y=2x﹣7. (2分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A . 3:4B . 4:3C . 7:9D . 9:78. (2分)同时投掷两枚硬币每次出现正面都向上的概率是()A .B .C .D .9. (2分)(2019·秦安模拟) 下列二次函数的图象通过平移能与二次函数的图象重合的是()A .B .C .D .10. (2分)如图,若将图正方形剪成四块,恰能拼成图的矩形,设,则的值为()A .B .C .D .11. (2分)如图,以图中的直角三角形三边为边长向外作三个正方形M、P、Q,且正方形M、P的面积分别为225和81,则正方形Q的面积是()A . 144B . 196C . 12D . 1312. (2分)对于抛物线,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(-5,3)D . 开口向上,顶点坐标(-5,3)二、填空题 (共4题;共4分)13. (1分)(2018·龙东模拟) 已知圆锥底面圆的直径是20cm,母线长40cm,其侧面展开图圆心角的度数为________.14. (1分)(2014·淮安) 一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为________.15. (1分)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1 ,△QMN的面积记为S2 ,则S1 ________S2 .(填“>”或“<”或“=”)16. (1分)若(x2+y2)2﹣3(x2+y2)﹣10=0,则x2+y2=________ .三、解答题 (共10题;共117分)17. (10分)解方程:(1) x2﹣4x+1=0(用配方法)(2)(x+1)(x+2)=2x+4.18. (10分) (2016七下·潮州期中) 读语句作图(1)点P是直线AB外一点,直线CD经过点P,且与直线AB垂直;(2)直线AB、CD是相交直线,点P是直线AB、CD外的一点,直线EF经过点P且与直线AB平行,与直线CD 相交于点E.19. (14分)(2017·准格尔旗模拟) 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有________人,m=________,n=________;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是________度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.20. (15分) (2019八上·无锡月考) 已知函数y=(2m+1)x+m﹣3.(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.21. (10分)如图,在 ABCD中,F是AD的中点,延长BC到点E,使CE= BC,连结DE,CF。

2016-2017学年贵州省贵阳市九年级(上)期末数学试卷

2016-2017学年贵州省贵阳市九年级(上)期末数学试卷

2016-2017学年贵州省贵阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1. 某几何体的主视图和左视图如图所示,则该几何体可能是( )A.长方体B.圆锥C.正方体D.球2. 关于x 的一元二次方程3x 2−2x +m =0的一个根是−1,则m 的值为( ) A.5 B.−5C.1D.−13. 已知AC 为矩形ABCD 的对角线,则图中∠1与∠2一定不相等的是( )A.B.C. D.4. 一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是( ) A.6 B.9 C.10 D.155. 下列各点不在反比例函数y =12x上的是( )A.(3, 4)B.(−3, −4)C.(6, −2)D.(−6, −2)6. 如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为点C ,则AC:CB 为( )A.1:3B.1:4C.1:5D.1:67. 小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①③C.③④D.②④8. 如图所示电路,任意闭合两个开关,能使灯L 2亮起来的概率是( )A.12B.13C.23D.159. 如图,是三个反比例函数y=k1x,y =k 2x,y =k 3x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为( )A.k 1>k 2>k 3B.k 3>k 1>k 2C.k 2>k 3>k 1D.k 3>k 2>k 110. 如图,矩形ABCD 的周长是20cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68cm 2,那么矩形ABCD 的面积是( )A.9cm 2B.16cm 2C.21cm 2D.24cm 2二、填空题(每小题4分,共20分)方程3x 2−5x =0的二次项系数是________.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.在平面直角坐标系中,直线y =x +1与反比例函数y =kx 的图象的一个交点A(a, 2),则k 的值为________.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每天每次从每组中抽出一张,两张牌的数字之积为2的概率为________.如图,在平行四边形ABCD 中,EF // AB 交AD 于E 交BD 于F ,DE:EA =3:4,EF =6,则CD 的长为________.三、解答题(满分50分)如图,已知△ABC ,利用尺规作出一个新三角形,使新三角形与△ABC 对应线段比为2:1(不写作法,保留作图痕迹).一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x ,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是多少.(2)如果摸出这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表或画树状图的方法说明理由.如图所示,某小区计划在一块长20米,宽15米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径x 是多少?(精确到0.1)已知,如图,AC ⊥BC ,BD ⊥BC ,AC >BC >BD .(1)请你添加一个条件,使△ABC 相似于△CDB ,你添加的条件是________;(2)若DB =3,BC =4,在(1)的条件下,求AC 的长度.如图,已知平行四边形ABCD 中,对角线AC ,BD 交于点O ,E 是BD 延长线上的点,且△ACE 是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若∠AED =2∠EAD ,求证:四边形ABCD 是正方形.如图,在平面直角坐标系中,一次函数y =2x +2与x 轴,y 轴分别交于点A ,B ,与反比例函数y=4x 在第一象限交于点C .(1)写出点A ,B ,C 的坐标.(2)过x 轴上的点D(3, 0)作平行于y 轴的直线l 分别与直线AB 和反比例函数y =4x 交于点P ,Q ,求△APQ 的面积.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70∘,∠B =80∘.则∠C =________度,∠D =________度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60∘,∠ABC =90∘,AB =5,AD =4.求对角线AC 的长.参考答案与试题解析2016-2017学年贵州省贵阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.【答案】A【考点】由三视图判断几何体【解析】根据常见几何体的三视图确定即可得.【解答】解:A,长方体的主视图和左视图均为矩形,符合题意;B,圆锥的主视图和左视图均为等腰三角形,不符合题意;C,正方体的主视图和左视图均为正方形,不符合题意;D,球的主视图和左视图均为圆,不符合题意.故选A.2.【答案】B【考点】一元二次方程的解【解析】根据一元二次方程的解的定义把x=−1代入方法得到关于m的一次方程,然后解一次方程即可.【解答】解:把x=−1代入方程得3+2+m=0,解得m=−5.故选B.3.【答案】D【考点】三角形的外角性质矩形的性质【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:A,对顶角相等,A一定相等,故A不符合题意;B,不确定,可能相等,也可能不相等,故B不符合题意;C,不确定,可能相等,也可能不相等,故C不符合题意;D,一定不相等,因为∠1=∠ACD,∠2>∠ACD,故D符合题意.故选D.4. 【答案】B【考点】相似三角形的性质【解析】首先设与它相似的三角形的最短边的长为x,然后根据相似三角形的对应边成比例,即可得方程x3=217,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴x3=217,解得:x=9.故选B.5.【答案】C【考点】反比例函数图象上点的坐标特征【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:A,∵x=3时,y=123=4,∴此点在反比例函数的图象上,故本选项不符合题意;B,∵x=−3时,y=−123=−4,∴此点在反比例函数的图象上,故本选项不符合题意;C,∵x=6时,y=126=2≠−2,∴此点不在反比例函数的图象上,故本选项符合题意;D,∵x=−6时,y=−126=−2,∴此点在反比例函数的图象上,故本选项不符合题意.故选C.6.【答案】C【考点】平行线分线段成比例【解析】构建如图所示的图形,利用平行线分线段成比例得到ACCB=ADDE=15.【解答】解:如图,∵ CD // BE , ∴ ACCB =ADDE =15. 故选C . 7.【答案】 B【考点】 矩形的性质全等三角形的应用【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题. 【解答】解:∵ 只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点, ∴ 带①③两块碎玻璃,就可以确定平行四边形的大小. 故选B . 8.【答案】 C【考点】列表法与树状图法 【解析】先根据题意画出树状图,得出共有6种情况,再根据能使灯L 2亮起来的情况有4种,即可得出能使灯L 2亮起来的概率. 【解答】解:根据题意画树状图如下:∵ 共有6种情况,能使灯L 2亮起来的情况有4种, ∴ 能使灯L 2亮起来的概率是46=23. 故选C . 9.【答案】 C【考点】反比例函数的图象 【解析】根据反比例函数图象上点的坐标特点可得k =xy ,进而可分析k 1、k 2、k 3的大小关系. 【解答】解:读图可知:三个反比例函数y =k 1x的图象在第二象限;故k 1<0;y =k 2x,y =k 3x在第一象限;且y =k 2x,的图象距原点较远,故有:k 3<k 2;综合可得:k 2>k 3>k 1. 故选C . 10.【答案】 B【考点】 正方形的性质 矩形的性质【解析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=68,2(x +y)=20,利用完全平方公式即可求出xy 的值. 【解答】解:设AB =x ,AD =y ,∵ 正方形ABEF 和ADGH 的面积之和为68cm 2, ∴ x 2+y 2=68.∵ 矩形ABCD 的周长是20cm , ∴ 2(x +y)=20.∵ (x +y)2=x 2+2xy +y 2, ∴ 100=68+2xy , ∴ xy =16,∴ 矩形ABCD 的面积为:xy =16. 故选B .二、填空题(每小题4分,共20分) 【答案】 3【考点】一元二次方程的一般形式 一元二次方程的定义【解析】先找出方程的二次项,再找出项的系数即可. 【解答】解:方程3x 2−5x =0的二次项为3x 2,二次项系数是3.故答案为:3. 【答案】太阳光,通过作图发现相应的直线是平行关系 【考点】 平行投影 【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影. 【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子, 理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光;通过作图发现相应的直线是平行关系. 【答案】 2【考点】函数的综合性问题 【解析】将y =2代入y =x +1中求出x 值,进而即可得出点A 的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,此题得解. 【解答】解:当y =x +1=2时,x =a =1, ∴ 点A 的坐标为(1, 2).∵ 点A(1, 2)在反比例函数y =kx 的图象上,∴ k =1×2=2. 故答案为:2. 【答案】12【考点】列表法与树状图法 【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率. 【解答】解:画树形图得:由树状图可知共有2×2=4种可能,两张牌的积为2的有2种, 所以概率24=12. 故答案为:12.【答案】 14【考点】相似三角形的性质与判定平行四边形的性质 【解析】由于DE:EA =3:4,所以DE:DA =3:7,又因为EF // AB ,所以△DEF ∽△DAB ,所以DEDA =EFAB ,从而可求出AB 的长度. 【解答】解:∵ DE:EA =3:4, ∴ DE:DA =3:7. ∵ EF // AB ,∴ △DEF ∼△DAB , ∴DE DA =EF AB,∴ 37=6AB,∴ AB =14,∴ CD =AB =14. 故答案为:14.三、解答题(满分50分)【答案】解:如图,△A′B′C′即为所求作三角形.【考点】作图-相似变换 【解析】平面内任取一点O ,作射线AO 、BO 、CO ,再射线上分别截取OA′=2OA 、OB′=2OB 、OC′=2OC ,顺次连接A′、B′、C′即可得. 【解答】解:如图,△A′B′C′即为所求作三角形.【答案】解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是33100, 故出现“和为8”的概率是33100.(2)假设x =7,则P (和为9)=16≠13,所以,x 的值不能为7.【考点】利用频率估计概率 列表法与树状图法【解析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x =7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案. 【解答】解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是33100, 故出现“和为8”的概率是33100.(2)假设x =7,则P (和为9)=16≠13,所以,x 的值不能为7. 【答案】解:根据题意得:4×14πx 2=12×20×15,解得:x 1≈6.9,x 2≈−6.9(舍去). 答:每个扇形的半径为6.9米. 【考点】一元二次方程的应用一元二次方程的应用--几何图形面积问题【解析】根据4个扇形的面积是长方形荒地面积的一半即可得出关于x 的一元二次方程,解之即可得出结论. 【解答】解:根据题意得:4×14πx 2=12×20×15,解得:x 1≈6.9,x 2≈−6.9(舍去). 答:每个扇形的半径为6.9米. 【答案】 ∠A =∠DCB(2)∵ △ABC ∼△CDB ,DB =3,BC =4,∴AC BC=BC DB,即AC4=43, 解得AC =163.【考点】相似三角形的判定 【解析】(1)根据相似三角形的判定定理即可得出结论; (2)根据相似三角形的性质即可得出结论. 【解答】解:(1)∵ AC ⊥BC ,BD ⊥BC , ∴ ∠ACB =∠CBD , 又∠A =∠DCB , ∴ △ABC ∼△CDB .∴ 可以添加的条件是∠A =∠DCB . 故答案为:∠A =∠DCB .(2)∵ △ABC ∼△CDB ,DB =3,BC =4, ∴ ACBC =BCDB , 即AC 4=43,解得AC =163.【答案】证明:(1)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO ⊥AC (三线合一),即AC ⊥BD ,∴ 四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形). (2)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO 平分∠AEC (三线合一), ∴ ∠AED =12∠AEC =12×60∘=30∘, 又∵ ∠AED =2∠EAD ∴ ∠EAD =15∘,∴ ∠ADO =∠DAE +∠DEA =15∘+30∘=45∘(三角形的一一个外角等于和它外角不相邻的两内角之和), ∵ 四边形ABCD 是菱形, ∴ ∠ADC =2∠ADO =90∘, ∴ 平行四边形ABCD 是正方形. 【考点】 正方形的判定 菱形的判定 平行四边形的性质【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得△AOE ≅△COE ,∴ ∠AOE =∠COE =90∘,∴ BE ⊥AC ,∴ 四边形ABCD 是菱形;(2)根据有一个角是90∘的菱形是正方形.由题意易得∠ADO =∠DAE +∠DEA =15∘+30∘=45∘,∵ 四边形ABCD 是菱形,∴ ∠ADC =2∠ADO =90∘,∴ 四边形ABCD 是正方形. 【解答】证明:(1)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO ⊥AC (三线合一),即AC ⊥BD ,∴ 四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形). (2)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO 平分∠AEC (三线合一), ∴ ∠AED =12∠AEC =12×60∘=30∘,又∵ ∠AED =2∠EAD ∴ ∠EAD =15∘,∴ ∠ADO =∠DAE +∠DEA =15∘+30∘=45∘(三角形的一一个外角等于和它外角不相邻的两内角之和), ∵ 四边形ABCD 是菱形, ∴ ∠ADC =2∠ADO =90∘, ∴ 平行四边形ABCD 是正方形. 【答案】解:(1)当y =2x +2=0时,, ∴ 点A 的坐标为(−1, 0); 当x =0时,y =2x +2=2, ∴ 点B 的坐标为(0, 2);联立两函数解析式成方程组, {y =2x +2,y =4x,解得:{x 1=−2,y 1=−2,或{x 2=1,y 2=4.∴ 点C 的坐标为(1, 4).(2)当x =3时,y =2x +2=8,∴ 点P 的坐标为(3, 8); 当x =3时,y =4x=43,∴ 点Q 的坐标为(3, 43). ∴ PQ =8−43=203,AD =3−(−1)=4,∴ S △APQ =12PQ ⋅AD =12×203×4=403.【考点】函数的综合性问题 【解析】(1)分别将x =0、y =0代入y =2x +2中求出与之对应的y 、x 的值,由此即可得出点B 、A 的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点C 的坐标;(2)将x =3分别代入一次函数和反比例函数解析式中求出y 值,由此即可得出点P 、Q 的坐标,进而即可得出PQ 的长度,由点A 、D 的坐标即可得出线段AD 的长度,再利用三角形的面积公式即可求出△APQ 的面积. 【解答】解:(1)当y =2x +2=0时,, ∴ 点A 的坐标为(−1, 0); 当x =0时,y =2x +2=2, ∴ 点B 的坐标为(0, 2);联立两函数解析式成方程组, {y =2x +2,y =4x,解得:{x 1=−2,y 1=−2,或{x 2=1,y 2=4.∴ 点C 的坐标为(1, 4).(2)当x =3时,y =2x +2=8, ∴ 点P 的坐标为(3, 8); 当x =3时,y =4x=43,∴ 点Q 的坐标为(3, 43).∴ PQ =8−43=203,AD =3−(−1)=4,∴ S △APQ =12PQ ⋅AD =12×203×4=403.【答案】130,80(2)证明:如图2所示,连接BD ,∵ AB =AD , ∴ ∠ABD =∠ADB .∵ ∠ABC =∠ADC ,∴ ∠ABC −∠ABD =∠ADC −∠ADB , ∴ ∠CBD =∠CDB , ∴ CB =CD .(3)分两种情况:①当∠ADC =∠ABC =90∘时,延长AD ,BC 相交于点E ,如图所示.∵ ∠ABC =90∘,∠DAB =60∘,AB =5, ∴ ∠E =30∘,∴ AE =2AB =10,∴ DE =AE −AD =10−4=6 ∵ ∠EDC=90∘,∠E=30∘, ∴ CD =2√3,∴ AC =√AD 2+CD 2=√42+(2√3)2=2√7.②当∠BCD =∠DAB =60∘时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N ,如图4所示,则∠AMD =90∘,四边形BNDM 是矩形, ∵ ∠DAB =60∘, ∴ ∠ADM =30∘,∴ AM =12AD =2,∴ DM =2√3,∴ BM =AB −AM =5−2=3, ∴ 四边形BNDM 是矩形,∴ DN =BM =3,BN =DM =2√3, ∵ ∠BCD =60∘,∴ CN =√3,∴ BC =CN +BN =3√3, ∴ AC =√52+(3√3)2=2√13. 综上,AC 为2√13或2√7. 【考点】 四边形综合题 【解析】过点CCE ⊥AB 于点E ,交BD 于点M′点M 作M′N ⊥BC 于′,则CE 即M +M 的最小再根据BC4√2,∠ABC5∘BD 分∠AB 可知BCE 是等腰角三角形,由锐角角函数的定义即可出E 的长. 【解答】(1)解:∵ 四边形1是“等对角四边形”,∠A ≠∠C , ∴ ∠D =∠B =80∘,∴ ∠C =360∘−∠A −∠B −∠D =360∘−70∘−80∘−80∘=130∘. 故答案为:130;80.(2)证明:如图2所示,连接BD ,∵ AB =AD , ∴ ∠ABD =∠ADB . ∵ ∠ABC =∠ADC ,∴ ∠ABC −∠ABD =∠ADC −∠ADB , ∴ ∠CBD =∠CDB , ∴ CB =CD .(3)分两种情况:①当∠ADC =∠ABC =90∘时,延长AD ,BC 相交于点E ,如图所示.∵ ∠ABC =90∘,∠DAB =60∘,AB =5,∴ ∠E=30∘,∴ AE=2AB=10,∴ DE=AE−AD=10−4=6∵ ∠EDC=90∘,∠E=30∘,∴ CD=2√3,∴ AC=√AD2+CD2=√42+(2√3)2=2√7.②当∠BCD=∠DAB=60∘时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示,则∠AMD=90∘,四边形BNDM是矩形,∵ ∠DAB=60∘,∴ ∠ADM=30∘,∴ AM=1AD=2,2∴ DM=2√3,∴ BM=AB−AM=5−2=3,∴ 四边形BNDM是矩形,∴ DN=BM=3,BN=DM=2√3,∵ ∠BCD=60∘,∴ CN=√3,∴ BC=CN+BN=3√3,∴ AC=√52+(3√3)2=2√13.综上,AC为2√13或2√7.。

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案

人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。

若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。

抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年贵州省贵阳市初三上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.(3分)关于x的一元二次方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.5B.﹣5C.1D.﹣13.(3分)已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A.B.C.D.4.(3分)一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6B.9C.10D.155.(3分)下列各点不在反比例函数y=上的是()A.(3,4)B.(﹣3,﹣4)C.(6,﹣2)D.(﹣6,﹣2)6.(3分)如图,在6×6的正方形网格中,连接两格点A,B,线段AB与网格线的交点为点C,则AC:CB为()A.1:3B.1:4C.1:5D.1:67.(3分)小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B. ①③C.③④D. ②④8.(3分)如图所示电路,任意闭合两个开关,能使灯L2亮起来的概率是()A.B.C.D.9.(3分)如图,是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k3>k1>k2C.k2>k3>k1D.k3>k2>k1 10.(3分)如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF 和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么矩形ABCD 的面积是()A.9cm2B.16cm2C.21cm2D.24cm2二、填空题(每小题4分,共20分)11.(4分)方程3x2﹣5x=0的二次项系数是.12.(4分)如图所示,此时的影子是在下(太阳光或灯光)的影子,理由是.13.(4分)在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k的值为.14.(4分)小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每人每次从每组中抽出一张,两张牌的数字之积为2的概率为.15.(4分)如图,在平行四边形ABCD中,EF∥AB交AD于E交BD于F,DE:EA=3:4,EF=6,则CD的长为.三、解答题(满分50分)16.(5分)如图,已知△ABC,利用尺规作出一个新三角形,使新三角形与△ABC 对应线段比为2:1(不写作法,保留作图痕迹).17.(8分)一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:摸球总次数1020306090120180240330450210132430375882110150“和为8“出现的频数0.200.500.430.400.330.310.320.340.330.33“和为8“出现的频率解答下列问题:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是.(2)如果摸出这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表或画树状图的方法说明理由.18.(7分)如图所示,某小区计划在一块长20米,宽15米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径x是多少?(精确到0.1)19.(7分)已知,如图,AC⊥BC,BD⊥BC,AC>BC>BD.(1)请你添加一个条件,使△ABC相似于△CDB,你添加的条件是;(2)若DB=3,BC=4,在(1)的条件下,求AC的长度.20.(8分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD 延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.21.(7分)如图,在平面直角坐标系中,一次函数y=2x+2与x轴y轴分别交于点A,B与反比例函数y=在第一象限交于点C.(1)写出点A,B,C的坐标.(2)过x轴上的点D(3,0)作平行于y轴的直线l分别与直线AB和反比例函数y=交于点P,Q求△APQ的面积.22.(8分)对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=度,∠D=度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;(3)已知:在“等对角四边形ABCD”中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.2016-2017学年贵州省贵阳市初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球【解答】解:A、长方体的主视图和左视图均为矩形,符合题意;B、圆锥的主视图和左视图均为等腰三角形,不符合题意;C、正方体的主视图和左视图均为正方形,不符合题意;D、球的主视图和左视图均为圆,不符合题意;故选:A.2.(3分)关于x的一元二次方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.5B.﹣5C.1D.﹣1【解答】解:把x=﹣1代入方程得3+2+m=0,解得m=﹣5.故选:B.3.(3分)已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A.B.C.D.【解答】解:A、对顶角相等,A一定相等,故A不符合题意;B、不确定,可能相等,也可能不相等,故B不符合题意;C、不确定,可能相等,也可能不相等,故C不符合题意;D、一定不相等,因为∠1=∠ACD,∠2>∠ACD,故D符合题意.故选:D.4.(3分)一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6B.9C.10D.15【解答】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选:B.5.(3分)下列各点不在反比例函数y=上的是()A.(3,4)B.(﹣3,﹣4)C.(6,﹣2)D.(﹣6,﹣2)【解答】解:A、∵x=3时,y==4,∴此点在反比例函数的图象上,故本选项不符合题意;B、∵x=﹣3时,y=﹣=﹣4,∴此点在反比例函数的图象上,故本选项不符合题意;C、∵x=6时,y==2≠﹣2,∴此点不在反比例函数的图象上,故本选项符合题意;D、∵x=﹣6时,y=﹣=﹣2,∴此点在反比例函数的图象上,故本选项不符合题意.故选:C.6.(3分)如图,在6×6的正方形网格中,连接两格点A,B,线段AB与网格线的交点为点C,则AC:CB为()A.1:3B.1:4C.1:5D.1:6【解答】解:如图,∵CD∥BE,∴==.故选:C.7.(3分)小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B. ①③C.③④D. ②④【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选:B.8.(3分)如图所示电路,任意闭合两个开关,能使灯L2亮起来的概率是()A.B.C.D.【解答】解:根据题意画树状图如下:∵共有6种情况,能使灯L2亮起来的情况有4种,∴能使灯L2亮起来的概率是=,故选:C.9.(3分)如图,是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k3>k1>k2C.k2>k3>k1D.k3>k2>k1【解答】解:读图可知:三个反比例函数y=的图象在第二象限;故k1<0;y=,y=在第一象限;且y=y=的图象距原点较远,故有:k3<k2;综合可得:k2>k3>k1.故选:C.10.(3分)如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF 和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么矩形ABCD 的面积是()A.9cm2B.16cm2C.21cm2D.24cm2【解答】解:设AB=x,AD=y,∵正方形ABEF和ADGH的面积之和为68cm2∴x2+y2=68,∵矩形ABCD的周长是20cm∴2(x+y)=20,∵(x+y)2=x2+2xy+y2,∴100=68+2xy,∴xy=16,∴矩形ABCD的面积为:xy=16故选:B.二、填空题(每小题4分,共20分)11.(4分)方程3x2﹣5x=0的二次项系数是3.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.12.(4分)如图所示,此时的影子是在太阳光下(太阳光或灯光)的影子,理由是通过作图发现相应的直线是平行关系.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13.(4分)在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k的值为2.【解答】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.14.(4分)小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每人每次从每组中抽出一张,两张牌的数字之积为2的概率为.【解答】解:画树形图得:由树状图可知共有2×2=4种可能,两张牌的和为3的有2种,所以概率=,故答案为:.15.(4分)如图,在平行四边形ABCD中,EF∥AB交AD于E交BD于F,DE:EA=3:4,EF=6,则CD的长为14.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7,∵EF∥AB,∴△DEF∽△DAB,∴∴,AB=14,∴CD=AB=14故答案为:14三、解答题(满分50分)16.(5分)如图,已知△ABC,利用尺规作出一个新三角形,使新三角形与△ABC 对应线段比为2:1(不写作法,保留作图痕迹).【解答】解:如图,△A′B′C′即为所求作三角形.17.(8分)一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:摸球总次数1020306090120180240330450210132430375882110150“和为8“出现的频数0.200.500.430.400.330.310.320.340.330.33“和为8“出现的频率解答下列问题:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是.(2)如果摸出这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表或画树状图的方法说明理由.【解答】解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是,故出现“和为8”的概率是;故答案为:(2)假设x=7,则P(和为9)=≠,所以,x的值不能为7.18.(7分)如图所示,某小区计划在一块长20米,宽15米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径x是多少?(精确到0.1)【解答】解:根据题意得:4×πx2=×20×15,解得:x1≈6.9,x2≈﹣6.9(舍去).答:每个扇形的半径大约是6.9m.19.(7分)已知,如图,AC⊥BC,BD⊥BC,AC>BC>BD.(1)请你添加一个条件,使△ABC相似于△CDB,你添加的条件是∠A=∠DCB;(2)若DB=3,BC=4,在(1)的条件下,求AC的长度.【解答】解:(1)∵AC⊥BC,BD⊥BC,∴∠ACB=∠CBD,∴可以添加的条件是∠A=∠DCB.故答案为:∠A=∠DCB;(2)∵△ABC∽△CDB,DB=3,BC=4,∴=,即=,解得AC=.20.(8分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD 延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC(三线合一),即AC⊥BD,∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC(三线合一),∴∠AED=∠AEC=×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD是正方形.21.(7分)如图,在平面直角坐标系中,一次函数y=2x+2与x轴y轴分别交于点A,B与反比例函数y=在第一象限交于点C.(1)写出点A,B,C的坐标.(2)过x轴上的点D(3,0)作平行于y轴的直线l分别与直线AB和反比例函数y=交于点P,Q求△APQ的面积.【解答】解:(1)当y=2x+2=0时,x=﹣1,∴点A的坐标为(﹣1,0);当x=0时,y=2x+2=2,∴点B的坐标为(0,2);联立两函数解析式成方程组,,解得:或,∴点C的坐标为(1,4).(2)当x=3时,y=2x+2=8,∴点P的坐标为(3,8);当x=3时,y==,∴点Q的坐标为(3,).∴PQ=8﹣=,AD=3﹣(﹣1)=4,=PQ•AD=××4=.∴S△APQ22.(8分)对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=130度,∠D=80度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;(3)已知:在“等对角四边形ABCD”中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣70°﹣80°﹣80°=130°;故答案为:130,80;(2)证明:如图2所示,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.。

相关文档
最新文档