华东师大初中数学八年级上册等腰三角形性质定理 (提高) 巩固练习[精选]

合集下载

[精品]华东师大初中数学八年级上册等腰三角形性质定理 (提高) 知识讲解

[精品]华东师大初中数学八年级上册等腰三角形性质定理 (提高) 知识讲解

等腰三角形性质定理(提高)【学习目标】1. 了解等腰三角形的有关概念, 掌握等腰三角形的轴对称性2.利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.3. 掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.4. 会利用等腰三角形的性质进行简单的推理、判断、计算和作图.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形.3.等腰三角形的对称性(1)等腰三角形是轴对称图形(2)∠B=∠C(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx即为所求”.(3) 等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a2.【高清课堂:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的各个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形的性质的作用证明两条线段或两个角相等的一个重要依据.3.尺规作图:已知底边和底边上的高已知线段a,h(如图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.作法:1.作线段BC=a.2.作线段BC的垂直平分线l,交BC与点D.3.在直线l上截取DA=h,连接AB,AC.△ABC就是所求作的等腰三角形.【典型例题】类型一、等腰三角形中的分类讨论【高清课堂:389301 等腰三角形的性质及判定:例2(1)】1、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ).A.60° B.120° C.60°或150° D.60°或120°【答案】D;【解析】由等腰三角形的性质与三角形的内角和定理可知,等腰三角形的顶角可以是锐角、直角、钝角,然而题目没说是什么三角形,所以分类讨论,画出图形再作答.(1)顶角为锐角如图①,按题意顶角的度数为60°;(2)顶角为直角,一腰上的高是另一腰,夹角为0°不符合题意;(3)顶角为钝角如图②,则顶角度数为120°,故此题应选D.【总结升华】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是忽视了顶角为120°这种情况,把三角形简单的认为是锐角三角形.举一反三:【高清课堂:389301 等腰三角形的性质及判定:例2(2)】【变式1】已知等腰三角形的周长为13,一边长为3,求其余各边.【答案】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.而由构成三角形的条件:两边之和大于第三边可知:3+3<7,故不能组成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【变式2】等腰三角形有一个外角是100°,这个等腰三角形的底角是.【答案】50°或80°.解:①若100°的外角是此等腰三角形的顶角的邻角, 则此顶角为:180°﹣100°=80°, 则其底角为:(180°﹣80°)÷2=50°;②若100°的外角是此等腰三角形的底角的邻角, 则此底角为:180°﹣100°=80°;故这个等腰三角形的底角为:50°或80°. 故答案为:50°或80°. 类型二、等腰三角形的操作题2、(2016•顺义一模)我们把过三角形的一个顶点,且能将这个三角形分割成两个等腰三角形的线段称为该三角形的“等腰线段”.例如:如右图,Rt △ABC ,取AB 边的中点D ,线段CD 就是△ABC 的等腰线段.(1)请分别画出下列三角形的等腰线段;(2)例如,在△EFG 中,∠G =2∠F ,若△EFG 有等腰线段,请直接写出∠F 的度数的取值范围.【思路点拨】(1)利用三角形的等腰线段的定义画图; (2)分类讨论等腰线段,从而求得∠F 的度数. 【答案与解析】解:(1)三角形的等腰线段如图所示,(2)设∠F=x ,则∠G=2x , 如图2,线段EM 是等腰线段, ∵△EMG 是等腰三角形,C A∴EM=EG,ME=MF,∴∠F=∠MEF=x,∠EMG=∠G=2x,∴2x<90°,∴x<45°;如图3,GN为等腰线段,∴NF=NG,GN=GE,∴∠F=∠NGF=x,∠E=∠ENG,∴∠EGN=x,∠ENG=2x,∴∠E=2x,∴x+2x+2x=180°,∴x=36°,∴∠F的度数的取值范围为0°<x≤45°.【总结升华】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.也考查了等腰三角形的性质.举一反三:【变式】直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F,探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中的∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.【答案】解:若△CDF是等腰三角形,则一定是等腰直角三角形.设∠B为x度∠1=45°,∠2=∠A=90°-x①当BD=BE时∠3=1802x︒-,45°+90°-x+1802x︒-=180°,x=30° .②经计算ED=EB不成立.③当DE=DB时∠3=180°-2x45°+90°-x+180°-2x=180°,x=45°.综上所述,∠B=30°或45°.类型三、等腰三角形性质的综合应用3、如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交 AC 于F.求证:AF =EF.【思路点拨】根据点D 是BC 的中点,延长AD 到点H ,得到△ADC ≌△HDB ,利用全等三角形的对应角相等,对应边相等进行等量代换,得到△AEF 中的两个角相等,然后用等角对等边证明AE=EF . 【答案与解析】证明:延长AD 到H 使DH =AD ,连接BH.∵AD 是BC 边上的中线, ∴BD =CD在△ADC 和△HDB 中,BD D BDH CDA AD HD C ⎧⎪∠∠⎨⎪⎩===, ∴△ADC ≌△HDB , ∴∠1=∠H ,BH =AC ∵BE =AC , ∴BE =BH , ∴∠3=∠H , ∴∠1=∠3 又∵∠2=∠3, ∴∠1=∠2, ∴AF =EF【总结升华】证明不在同一个三角形的两条线段相等,而它们所在的三角形不全等,可以利用辅助线将它们转移到同一个三角形中,然后通过等腰三角形来证明. 举一反三:【变式】如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF .求证:AC =BF .【答案】证明:延长AD 至点G ,使DG =AD ,连接BG..,,,().AD BD CD ACD GBD AD DG ADC GDB CD BD ACD GBD SAS ==⎧⎪∠=∠⎨⎪=⎩∵为中线,∴在△和△中,∴△≌△,.,.,..BG AC G CAD AE EF CAD AFE BFD AFE G BFD BF BG AC =∠=∠=∠=∠∠=∠∠=∠==∴∵∴又∵∴∴4、如图,AC =BC ,∠ACB =90°,∠A 的平分线AD 交BC 于点D ,过点B 作BE ⊥AD 于点E.求证:BE =12AD.【答案与解析】证明:如图,延长BE 、AC 交于点F.∵∠1=∠2,AE =AE ,∠AEB =∠AEF =90°, ∴△AEB ≌△AEF (ASA ).∴BE =FE =12BF. A BCDE FG∵∠3=90°-∠F =∠2,BC =AC, ∴Rt △BCF ≌Rt △ACD (ASA ) ∴BF =AD ,BE =12AD. 【总结升华】在几何解题的过程中,当遇到角分线或线段垂线时常考虑使用翻折变换,可保留原有图形的性质,且使原来分散的条件相对集中,以利于问题的解决. 举一反三:【变式】如图1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上. (1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC=45°,原题设其它条件不变.求证:△AEF ≌△BCF .【答案】证明:(1)∵AB=AC ,D 是BC 的中点,∴∠BAE=∠EAC ,在△ABE 和△ACE 中,AB AC BAE EAC AE AE ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△ACE (SAS ),∴BE=CE ;(2)∵∠BAC=45°,BF ⊥AF , ∴△ABF 为等腰直角三角形, ∴AF=BF ,∵AB=AC ,点D 是BC 的中点, ∴AD ⊥BC ,∴∠EAF+∠C=90°, ∵BF ⊥AC ,∴∠CBF+∠C=90°, ∴∠EAF=∠CBF ,在△AEF 和△BCF 中,90EAF CBF AF BFAFE BFC ∠∠⎧⎪⎨⎪∠∠︒⎩====∴△AEF ≌△BCF (ASA ).5、如图,△ABC 是等边三角形,D是AB 边上的一点,以CD 为边作等边三角形CDE ,使点E 、A 在直线DC 的同侧,连接AE . 求证:AE ∥BC .【思路点拨】根据等边三角形性质推出BC=AC ,CD=CE ,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE ,根据SAS 证△ACE ≌△BCD ,推出∠EAC=∠DBC=∠ACB ,根据平行线的判定推出即可. 【答案与解析】证明:∵△ABC 和△DEC 是等边三角形,∴BC=AC ,CD=CE ,∠ABC=∠BCA=∠ECD=60°, ∴∠BCA-∠DCA=∠ECD-∠DCA , 即∠BCD=∠ACE ,∵在△ACE 和△BCD 中AC BC ACE BCD CD CE ⎧⎪∠∠⎨⎪⎩===, ∴△ACE ≌△BCD (SAS ), ∴∠EAC=∠B=60°=∠ACB , ∴AE ∥BC .【思路点拨】本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE ≌△BCD ,主要考查学生的推理能力.。

华师大版初中数学八年级上册专题训练13.3 等腰三角形(含答案)

华师大版初中数学八年级上册专题训练13.3 等腰三角形(含答案)

13.3 等腰三角形专题一 与等腰三角形有关的探究题1. 设a 、b 、c 是三角形的三边长,且ca bc ab c b a ++=++222,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是等腰直角三角形.其中真命题的个数是( )A.4个B.3个C.2个D.1个 2. 如图,已知:∠MON =30°,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3……在射线 OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,若OA 1=1,则△A 2013B 2013A 2014 的边长为( )201220133. 如图,在△AB 1A 中, ∠B =20°,AB =1A B ,在1A B 上取一点C,延长1AA 到2A ,使得12A A =1A C ; 在2A C 上取一点D,延长12A A 到3A ,使得23A A =2A D ;……,按此做法进行下去,求∠n A 的度数.4. 如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.5. 如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.专题二等腰(边)三角形中的动点问题6. 已知ΔABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图中的①②③),先用量角器分别测量∠BQM的大小,将结果填写在下面对应的横线上,然后猜测∠BQM在点M、N的变化中的取值情况,并利用图③证明你的结论.测量结果:图①中∠BQM=______;图②中∠BQM=______;图③中∠BQM=______.7. 如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=______°;点D从B向C运动时,∠BDA逐渐变_____ (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE 是等腰三角形.8. 阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:12AB•r1+12AC•r2=12AB•h,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?_____(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r= _____.若不存在,请说明理由.状元笔记[知识要点]1.等腰三角形的性质:(1)等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线;(2)等腰三角形底边上的高、中线及顶角的平分重合(简称为“三线合一”);(3)等腰三角形的两底角相等(简称“等角对等边”).2.等边三角形的性质:等边三角形的三个内角相等,且都等于60°.3.等腰三角形的判定:(1)有两个角相等的三角形是等腰三角形(简称为“等角对等边”.(2)三个角都是60°的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.【方法技巧】1.等边对等角或等角对等边必须在同一个三角形中.2.判断一个三角形的形状一般要考虑:①等腰三角形;②直角三角形;③等边三角形;④等腰直角三角形.3.“等边对等角”和“等角对等边”成为今后证明角或边相等又一新方法.参考答案1. C 【解析】 由ca bc ab c b a ++=++222得:222()()()0a b b c a c -+-+-=,所以000a b b c a c -=⎧⎪-=⎨⎪-=⎩,所以a b c ==,所以②、③是真命题,故选C. 2. C 【解析】 ∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠1=60°. ∵∠MON=30°, ∴∠2=30°=∠MON , ∴A 1B 1 =OA 1=1= A 1A 2.同理可证:A 2B 2 =OA 2 =2,A 2A 3=OA 2 =2,A 3A 4=OA 3 =4=22,A 4A 5=OA 4 =8=32. 以此类推:A 2013B 2013A 2014=22012. 故选C .3. 解:如图,在△AB 1A 中, ∵∠B =20°,AB =1A B , ∴∠1AA B =80°. 在△12A A C 中, ∵12A A =1A C ,∴∠12A A C =112AA B ∠=1802⨯=211802-⎛⎫⨯ ⎪⎝⎭=40°. 在△23A A D 中, ∵23A A =2A D ,∴∠23A A D =1212A A C ∠=118022⨯⨯=311802-⎛⎫⨯ ⎪⎝⎭=20°. 依此类推, 得∠n A 的度数为11802n -⎛⎫⎪⎝⎭.故∠n A 的度数为1n-11808022n -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭或.4. 解:(1)∵△AOC 绕直角顶点C 按顺时针方向旋转90°得△BDC , ∴∠OCD=90°,CO=CD , ∴△COD 是等腰直角三角形;(2)△BOD 为等腰三角形. 理由如下:∵△COD 是等腰直角三角形, ∴∠COD=∠CDO=45°,而∠AOB=140°,α=95°,∠BDC=95°,∴∠BOD=360°-140°-95°-45°=80°,∠BDO=95°-45°=50°, ∴∠OBD=180°-80°-50°=50°. ∴△BOD 为等腰三角形. 5. 解:(1)△ODE 是等边三角形, 其理由是:∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°, ∵OD ∥AB ,OE ∥AC ,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°, ∴△ODE 是等边三角形; (2)BD=DE=EC ,其理由是: ∵OB 平分∠ABC ,且∠ABC=60°, ∴∠ABO=∠OBD=30°, ∵OD ∥AB ,∴∠BOD=∠ABO=30°,∴∠DBO=∠DOB , ∴DB=DO , 同理可证EC=EO. ∵DE=OD=OE , ∴BD=DE=EC . 6. 60°,60°,60°.证明: ∵BM=CN ;∠ABM=∠BCN=60°;BA=BC.ΔABM ≌ΔBCN(SAS),∠BAM=∠CBN;8. 解:(1)证明:连结AP ,BP ,CP.则=ABC BPC APC APB S S S S ++△△△△,即12311112222BC h BC r AC r AB r ⋅=⋅+⋅+⋅, ∵AB=BC=AC ,∴r 1+r 2+r 3=h (定值). (2)存在;2.。

华师大版八年级数学上册导学案含答案-13.3 1 等腰三角形的性质

华师大版八年级数学上册导学案含答案-13.3   1 等腰三角形的性质

13.3 等腰三角形1 等腰三角形的性质学习目标:1.理解等腰三角形和等边三角形的有关概念.2.借助轴对称图形的性质来理解等腰(边)三角形的性质.(重点)3.能运用等腰(边)三角形的性质解决有关问题.(难点)自主学习一、知识链接1.三角形按边来分类可分为三角形、三角形和三角形.2.证明两个三角形全等的方法有、、、、.二、新知预习根据已有的知识完成下题:1.有两条边相等的三角形叫做,相等的两边叫做,另一边叫做,两腰的夹角叫做,腰和底边的夹角叫做 (请在下图中标出来).2.(1)已知等腰三角形的周长是14 cm,若一边长是6 cm,则另外两边为.(2)等腰三角形的顶角为150°,则它的底角为.合作探究一、探究过程探究点1:等腰三角形的性质活动:如图,把一张长方形的纸片按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?问题1 得到的△ABC是等腰三角形吗?如果是,请指出它的腰和底角.问题2 每个人剪的三角形大小不同,将AB与AC重合时,你发现∠A与∠C有什么特点?【要点归纳】等腰三角形的两底角相等.(简写成“”)例1如图,△ABC中,已知AB=AC,BC平分∠ABD,∠A=100°,求∠1的度数.问题3 前面的活动中,AD与BC的位置关系是什么?量一量∠BAD与∠CAD的度数,你发现了什么?【要点归纳】等腰三角形底边上的中线、高及顶角的平分线互相重合.(简称“”)例2如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AD上一点,求证:BE=CE.【归纳总结】1.“三线合一”是用来证明两角相等、两线段相等及两条直线互相垂直的重要依据. 2.“三线合一”不能逆过来用,即:一个三角形中,已知三线中的“二线”重合(如高和角平分线重合),那么不能直接说明这个三角形是等腰三角形.但可以通过三角形全等来证明这个三角形是等腰三角形.例3如图,点D,E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=CE.探究点2:等边三角形的概念及性质问题根据学过的知识,我们知道等边三角形的三条边都相等.试根据“等边对等角”说一说等边三角形的三个内角的关系.【要点归纳】等边三角形的性质定理:等边三角形的角相等,并且每个角都等于.例4如图,已知等边△ABC中,D为AC的中点,CE为BC的延长线,且CE=CD.求∠BDE 的度数.二、课堂小结内容等腰三角形概念有相等的三角形叫做等腰三角形.性质定理(1)等腰三角形的相等.(简称“”)(2)等腰三角形的、、重合.(简称“”)等边三角形概念三边的三角形叫做等边三角形.性质定理等边三角形的都相等,并且每个角都等于.当堂检测1.一个等腰三角形的底角是40°,则它的顶角是()A.40°B.50°C.80°D.100°【变式题】等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A.40°,40°B.80°,20°C.50°,50°D.50°,50°或80°,20°2.如图,已知OA=OB=OC,BC∥AO.若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°第2题图第3题图第4题图3.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,则∠ADB的度数是.4.如图,△ABC中,AE为中线,AD为高,∠BAD=∠EAD.若BC=10,则DC=.5.如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.6.如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于点E,求∠ADE的度数.参考答案自主学习 一、知识链接1.三条边都不相等的 等腰 等边2.SAS ASA AAS SSS HL 二、新知预习1.等腰三角形 腰 底边 顶角 底角2.(1)6cm ,2cm 或4cm ,4cm (2)15° 合作探究一、探究过程 探究点1【要点归纳】等边对等角例1 解:∵AB=AC ,∠A=100°,∴∠ABC=∠C=40°,∵BC 平分∠ABD ,∴∠1=∠ABC=21∠ ABD.∴∠1=∠C=40°.【要点归纳】 三线合一例2 证明:∵AB=AC ,AD 是BC 边上的中线,∴AD 平分∠BAC ,即∠BAE=∠CAE.在△ABE 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=,,AE AE CAE BAE AC AB ,∴△ABE ≌△ACE (SAS ).∴BE=CE.例3 证明:作AF ⊥BC 于点F ,∵AD =AE ,AB =AC ,∴BF =CF ,DF =EF , ∴BF ﹣DF =CF ﹣EF ,∴BD =EC. 探究点2【要点归纳】三个 60°例4 解:∵△ABC 是等边三角形,∴∠ACB=∠ABC=60°,AB=BC.∵D 为AC 的中点,∴∠DBC=21∠ABC=21×60°=30°.∵DC=CE ,∴∠E=∠CDE .∵∠ACB=∠E+∠EDC=60°,∴∠E=∠CDE=30°.∴∠BDE=180°-30°-30°=120°.二、课堂小结当堂检测1.D 【变式题】D2.C3.108°4.7.55.证明:∵AB=AC,∴∠ABC=∠ACB.∵BD=CD.∴∠1=∠2.∴∠ABC﹣∠1=∠ACB ﹣∠2.即∠ABD=∠ACD.6.解:∵△ABC是等边三角形,∴∠C=∠BAC=60°.∵AD⊥BC于点D,∴∠DAC=30°.∵DE⊥AC,∴∠DEA=90°.∴∠ADE=60°.~。

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

华东师大初中数学八年级上册《全等三角形》全章复习与巩固(提高)巩固练习

【巩固练习】一.选择题1.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=().A.150° B.210° C.105° D.75°2.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF3. 下列四个命题中,属于真命题的是().A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(). A. 1 B. 2 C. 5 D. 无法确定5. 如图,在△ABC中,分别以点A和点B为圆心,大于的12AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为().A.7B.14C.17D.206. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则BD的长为().A.1 B.1.5 C.2 D.2.57.如图,在△ABC中,∠B=36°,∠C=72°,AD平分∠BAC交BC于点D.下列结论中错误的是()A.图中共有三个等腰三角形 B.点D在AB的垂直平分线上C.AC+CD=AB D.BD=2CD8. 用尺规作图“已知底边和底边上的高线,作等腰三角形”,有下列作法:①作线段BC=a;②作线段BC的垂直平分线m,交BC于点D;③在直线m上截取DA=h,连接AB、AC.这样作法的根据是().A.等腰三角形三线合一 B.等腰三角形两底角相等C.等腰三角形两腰相等 D.等腰三角形的轴对称性二.填空题9. 如图,△ABC中,AM平分∠CAB,CM=20cm,那么M到AB的距离是_________cm.10. 如图,△ABC中,H是高AD、BE的交点,且BH=AC,则∠ABC=________.11.如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.12.如图所示,在△ABC中,AB=AC,点O在△ABC内,•且∠OBC=∠OCA,∠BOC=110°,则∠A的度数为________.13.如图,Rt△ABC中,∠B=90°,若点O到三角形三边的距离相等,则∠AOC=_________.14.一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是 .15.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.16. (2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD 时,点P的坐标为.三.解答题17.如图所示,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CD=AC.18.已知:如图,在△ABC中,AB=AC,∠BAC=30°.点D为△ABC内一点,且DB=DC,∠DCB=30°.点E为BD延长线上一点,且AE=AB.(1)求∠ADE的度数;(2)若点M在DE上,且DM=DA,求证:ME=DC.19.阅读下面材料:学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,小聪继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.小聪将命题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.小聪想:要想解决问题,应该对∠B进行分类研究.∠B可分为“直角、钝角、锐角”三种情况进行探究.第一种情况:当∠B是直角时,如图1,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据“HL”定理,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是锐角时,如图2,BC=EF,∠B=∠E<90°,在射线EM上有点D,使DF=AC,画出符合条件的点D,则△ABC和△DEF的关系是;A.全等 B.不全等 C.不一定全等第三种情况:当∠B是钝角时,如图3,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E>90°,求证:△ABC≌△DEF.20.已知:△ABC中,AD平分∠BAC交BC于点D,且∠ADC=60°.问题1:如图1,若∠ACB=90°,AC=m AB,BD=n DC,则m的值为_________,n的值为__________.问题2:如图2,若∠ACB为钝角,且AB>AC,BD>DC.(1)求证:BD-DC<AB-AC;(2)若点E在AD上,且DE=DB,延长CE交AB于点F,求∠BFC的度数.【答案与解析】一.选择题1. 【答案】A;【解析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°-75°=105°,∴∠1+∠2=360°-2×105°=150°.2. 【答案】D;【解析】(1)△ABC≌△DEF(SAS);故A正确;(2)△ABC≌△DEF(SSS);故B正确;(3)△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误.3. 【答案】C;【解析】答案A是假命题,因为互补的两角不一定有一条公共边;答案B是假命题,同旁内角不一定互补,在两直线平行的前提下,同旁内角互补;答案C是真命题;答案B是假命题,一个角的补角不一定大于这个角,也可能小于或等于这个角.4. 【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可.5. 【答案】C;【解析】首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.6. 【答案】A;【解析】延长BD交AC于E,由题意,BC=CE=3,AE=BE=5-3=2,且BD=DE=12BE=1.7. 【答案】D;【解析】解:A、在△ABC中,∠B=36°,∠C=72°,∴∠BAC=180°﹣36°﹣72°=72°,∵AD平分∠BAC,∴∠DAC=∠DAB=36°,即∠DAB=∠B,∠BAC=∠C,∠ADC=36°+36°=72°=∠C,∴△ADB、△ADC、△ABC都是等腰三角形,故本选项错误;B、∵∠DAB=∠B,∴AD=BD,∴D在AB的垂直平分线上,故本选项错误;C、在AB上截取AE=AC,连接DE,在△EAD和△CAD中∴△EAD≌△CAD,∴DE=DC,∠C=∠AED=72°,∵∠B=36°,∴∠EDB=72°﹣36°=36°=∠B,∴DE=BE,即AB=AE+BE=AC+CD,故本选项错误;D、∵CD=DE=BE,DE+BE>BD,∴BD<2DC,故本选项正确;故选D.8. 【答案】A;解析】易证∴△EFA≌△ABG得AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,故S=12(6+4)×16-3×4-6×3=50.二.填空题9. 【答案】20;【解析】过M作MD⊥AB于D,可证△ACM≌△ADM,所以DM=CM=20cm.10.【答案】45°;【解析】Rt△BDH≌Rt△ADC,BD=AD.11.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.【答案】40°;【解析】∵AB=AC,所以∠ABC=∠ACB,又∵∠OBC=∠OCA,∴∠ABC+∠ACB=2(∠OBC+∠OCB),∵∠BOC=110°,∴∠OBC+∠OCB=70°,∴∠ABC+∠ACB=140°,∴∠A=180°-(∠ABC+∠ACB)=40°.13.【答案】135°;【解析】点O 为角平分线的交点,∠AOC =180°-12(∠BAC +∠BCA )=135°. 14. 【答案】30°或75°或15°;【解析】根据不同边的高分类讨论.15.【答案】15;【解析】因为六边形ABCDEF 的六个内角都相等为120°,每个外角都为60°,向外作三个三角形,进而得到四个等边三角形,如图,设AF =x ,EF =y ,则有x +1+3=x +y +2=3+3+2=8所以x =4,y =2,六边形ABCDEF 的周长=1+3+3+2+2+4=15.16.【答案】(2,4)或(4,2);【解析】①当点P 在正方形的边AB 上时,Rt △OCD ≌Rt △OAP ,∴OD=AP ,∵点D 是OA 中点,∴OD=AD=OA ,∴AP=AB=2,∴P (4,2),②当点P 在正方形的边BC 上时,同①的方法,得出CP=BC=2,∴P (2,4).三.解答题17.【解析】证明:如图所示,在AC 上取点F ,使AF =AE ,连接OF ,在△AEO 和△AFO 中,,12,AE AF AO AO =⎧⎪∠=∠⎨⎪=⎩∴ △AEO ≌△AFO (SAS ).∴ ∠EOA =∠FOA .∵ ∠B =60°,∴ ∠AOC =180°-(∠OAC +∠OCA)=180°-12(∠BAC +∠BCA) =180°-12(180°-60°) =120°.∴ ∠AOE =∠AOF =∠COF =∠DOC =60°.在△COD 和△COF 中,,,,COD COF OC OC OCD OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △COD ≌△COF (ASA ).∴ CD =CF .∴ AE +CD =AF +CF =AC .18.【解析】解:(1)如图.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =(18030)2-÷=75°.∵DB =DC ,∠DCB =30°,∴∠DBC =∠DCB =30°.∴∠1=∠ABC -∠DBC =75°-30°=45°.∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC .∴AD 平分∠BAC .∴∠2=21∠BAC = 3021⨯=15°. ∴∠ADE =∠1+∠2 =45°+15°=60°.(2)证明:连接AM ,取BE 的中点N ,连接AN .∵△ADM 中,DM =DA ,∠ADE =60°,∴△ADM 为等边三角形.∵△ABE 中,AB =AE ,N 为BE 的中点,∴BN =NE ,且AN ⊥BE .∴DN =NM .∴BN -DN =NE -NM ,即 BD =ME .∵DB =DC ,∴ME =DC .19.【解析】解:第二种情况:如图1所示:以F 为圆心,AC 长为半径画弧,交射线EM 于D 、D′;则DF=D′F=AC,△DEF≌△ABC,△D′EF 和△ABC 不全等; 故选:C ;第三种情况:证明:如图2所示:过点C 作CG⊥AB 交AB 的延长线于点G ,过点F 作DH⊥DE 交DE 的延长线于点H ,∵∠B=∠E,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS ),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL ),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS ).20.【解析】证明:问题1:21,2 ; 问题2:(1)在AB 上截取AG ,使AG =AC ,连接GD .(如图) ∵AD 平分∠BAC ,∴∠1=∠2.在△AGD 和△ACD 中,AG AC 12 A D AD⎧⎪∠∠⎨⎪⎩===∴△AGD ≌△ACD .∴DG =DC .∵△BGD 中,BD -DG <BG ,∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC .(2)∵由(1)知△AGD ≌△ACD ,∴GD =CD ,∠4 =∠3=60°.∴∠5 =180°-∠3-∠4=180°-60°-60°=60°. ∴∠5 =∠3.在△BGD 和△ECD 中,53DB DE DG DC =⎧⎪∠∠⎨⎪=⎩=,∴△BGD ≌△ECD .∴∠B =∠6.∵△BFC 中,∠BFC =180°-∠B -∠7 =180°-∠6-∠7 =∠3, ∴∠BFC =60°.。

华师大版初中数学八年级上册《13.3 等腰三角形》同步练习卷(含答案解析

华师大版初中数学八年级上册《13.3  等腰三角形》同步练习卷(含答案解析

华师大新版八年级上学期《13.3 等腰三角形》同步练习卷一.选择题(共17小题)1.如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°2.如图,△ABC中,AB=AC,∠BAC、∠ABC的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.20°B.25°C.30°D.35°3.若等腰三角形的两边长分别是6cm和4cm,则等腰三角形的周长是()A.16cm B.14cm C.16cm或14cm D.无法确定4.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36°B.54°C.72°或36°D.54°或126°5.等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20B.22C.20或22D.不确定6.某等腰三角形的周长为25,其中一边长为9,则等腰三角形底边长为()A.9B.7C.9或7D.以上均不对7.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论正确的是()A.EF=ED B.FD=BC C.EC=MF D.EC=AG8.等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠DBC等于()A.75°B.60°C.45°D.30°10.如图,在第一个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的底角的度数为()A.5°B.10°C.175°D.170°11.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个12.已知A(0,﹣1)、B(1,0)是平面直角坐标系中的两点,且点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C有()A.4个B.5个C.7个D.8个13.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有()A.1个B.3个C.5个D.无数多个14.如图,在△ABC中,BC=4,BD平分∠ABC,过点A作AD⊥BD于点D,过点D作DE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为()A.4B.6C.8D.1015.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°16.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状17.下面给出几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的三角形;(4)有一个角为60°的等腰三角形,其中是等边三角形的个数是()A.4个B.3个C.2个D.1个二.解答题(共22小题)18.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.19.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,求BF的长.20.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=,∠CDE=;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.21.如图,AB∥CD,点E、N在AB上,点F在CD上,∠EFD的平分线FM交AB 于点G,且GM=GN,若∠EFC=112°,求∠M的度数.22.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE=∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.23.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE 的数量关系,并说明理由.24.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.25.如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.(1)试猜想线段AR与AQ的长度之间存在怎样的数量关系?并证明你的猜想.(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?(直接写“成立”或“不成立”即可,不需证明)26.在△ABC中,AB=AC=a,AB边上的高CD=h,点P是直线BC上任意一点,过P作PE⊥AB于E,PF⊥AC于F,且PE=h1,PF=h2.(1)若点P在边BC上时,h,h1,h2三者关系如何?请予以证明;(2)若点P在BC或CB的延长线上时,h,h1,h2三者关系又如何(直接写出结论,不需证明)(3)若点P是直线BC上的点,h1=5,h=8,求h2的值.27.如图1,已知△ABC中,AB=AC,点D是△ABC外的一点(与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD 交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.28.操作发现将一副直角三角板如图(1)摆放,能够发现等腰直角三角板ABC的斜边BC与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图1中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上.AC与BD交于点O,连接CD,如图2.(1)若DF=4,求BF的长;(2)求证:△CDO是等腰三角形.29.如图,在△ABC中,∠ABD=∠ACD=60°,∠ADB=90°﹣∠BDC.求证:△ABC是等腰三角形.30.如图,已知CD平分∠ACB,DE∥BC,说明△EDC是等腰三角形的理由.根据解题的要求,填写适当的内容或理由.解:∵DE∥BC (已知)∴(两直线平行,内错角相等)又(已知)∴∠ACD=∠BCD ()∴∠EDC=∠ACB∴DE=EC()∴△EDC是等腰三角形.31.如图,已知在△ABC中,AB=AC,∠MAC和∠ABC的平分线AD、BD相交于点D,试说明△ABD是等腰三角形的理由.32.如图,在△ABC中,AB=AC,D在边AC上,且BD=DA=BC.(1)如图1,填空∠A=°,∠C=°.(2)如图2,若M为线段AC上的点,过M作直线MH⊥BD于H,分别交直线AB、BC与点N、E.①求证:△BNE是等腰三角形;②试写出线段AN、CE、CD之间的数量关系,并加以证明.33.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.34.如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF;(3)求△BDE的面积.35.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).36.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD ②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)37.如图,已知等边△ABC,点D是AB的中点,过点D作DF⊥AC,垂足为点F,过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求BH的长.38.(1)如图①,在△ABC中,BD平分∠ABC,过点D作ED∥BC.指出图中的等腰三角形,并说明理由.(2)如图②,在△ABC中,∠ABC、∠ACB的平分线交于点O,过点O作EF∥BC.证明:EF=BE+CF.39.已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于的所有三角形.三.填空题(共3小题)40.如图,由九个等边三角形组成的一个六边形ABCDEF,当图中最小的等边三角形的边长为1cm时,这个六边形ABCDEF的周长为cm.41.如图,把面积为1的正三角形ABC的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF;对新三角形重复上述过程,经过2017次操作后,所得正三角形的面积是.42.如图,在△ABC中,AB=AC=10cm,∠B=15°,CD是AB边上的高,则CD=.华师大新版八年级上学期《13.3 等腰三角形》同步练习卷参考答案与试题解析一.选择题(共17小题)1.如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°【分析】根据三角形外角的性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=36°,AB=AD=DC,∴∠ABD=∠ADB=72°,又∵AD=DC,∴∠C=∠CAD=∠ADB=36°.故选:A.【点评】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.此类题目考查学生分析各角之间关系的能力,运用所学的三角形知识点求解.2.如图,△ABC中,AB=AC,∠BAC、∠ABC的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.20°B.25°C.30°D.35°【分析】设∠BAC=x,根据已知可以分别表示出∠ABD和∠BAD,再根据三角形内角和定理即可求得∠BAC的度数.【解答】解:设∠BAC=x,∵在△ABC中,AB=AC,∴∠ABC=∠C=(180°﹣x),∵BD是∠ABC的角平分线,AD是∠BAC的角平分线,∴∠ABD=(180°﹣x),∠DAB=x,∵∠ABD+∠DAB+∠ADB=180°,∴(180°﹣x)+x+130°=180°,∴x=20°.故选:A.【点评】此题主要考查等腰三角形的性质、角平分线的性质、三角形内角和定理:三角形内角和是180°.3.若等腰三角形的两边长分别是6cm和4cm,则等腰三角形的周长是()A.16cm B.14cm C.16cm或14cm D.无法确定【分析】根据等腰三角形的性质,分两种情况:①当腰长为6cm时,②当腰长为4cm时,解答出即可;【解答】解:根据题意,①当腰长为6cm时,周长=6+6+4=16(cm);②当腰长为4cm时,周长=4+4+6=14(cm).故选:C.【点评】本题主要考查了等腰三角形的性质定理,本题重点是要分两种情况解答.4.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36°B.54°C.72°或36°D.54°或126°【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【解答】解:①如图1,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=36°,∴∠A=54°,即顶角的度数为54°.②如图2,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=36°,∴∠BAD=54°,∴∠BAC=126°.故选:D.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.5.等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20B.22C.20或22D.不确定【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为6时,周长=6+6+8=20;②当腰长为8时,周长=8+8+6=22.故选:C.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.6.某等腰三角形的周长为25,其中一边长为9,则等腰三角形底边长为()A.9B.7C.9或7D.以上均不对【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是9时,则另两边是9,7.当底边是9时,另两边长是8,8,则该等腰三角形的底边为9或7,故选:C.【点评】本题考查了等腰三角形性质和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.7.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论正确的是()A.EF=ED B.FD=BC C.EC=MF D.EC=AG【分析】想办法证明BF=EC,BF=FM即可解决问题;【解答】解:∵AB=AC,∴∠ABC=∠C,∵DM∥BC,∴∠AFE=∠ABC,∠AEF=∠C,∴∠AFE=∠AEF,∴AF=AE,∴BF=EC,∵∠D=∠DBC=∠FBD,∴DF=BF,同法可证:BF=FM,∴EC=FM,故选:C.【点评】该题主要考查了等腰三角形的判定及其性质,平行线的性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°【分析】分这个外角为顶角的外角和底角的外角,分别求解即可.【解答】解:当140°为顶角的外角时,则其顶角为:40°,则其底角为:=70°,当140°为底角的外角时,则其底角为:180°﹣140°=40°.故选:B.【点评】本题主要考查等腰三角形的性质和三角形内角和定理的应用,掌握等腰三角形的两底角相等和三角形三个内角的和为180°是解题的关键.9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠DBC等于()A.75°B.60°C.45°D.30°【分析】根据等腰三角形的性质得出∠C=∠BDC,∠C=∠ABC,根据三角形内角和定理求出∠C=∠BDC=75°,根据三角形内角和定理求出即可.【解答】解:∵从作图可知:BD=BC,∴∠C=∠BDC,∵在△ABC中,∠A=30°,AB=AC,∴∠C=∠ABC=(180°﹣∠A)=75°,∴∠BDC=∠C=75°,∴∠DBC=180°﹣∠C﹣∠BDC=30°,故选:D.【点评】本题考查了等腰三角形的性质和三角形内角和定理,能求出∠C和∠BDC 的度数是解此题的关键.10.如图,在第一个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的底角的度数为()A.5°B.10°C.175°D.170°【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A6的度数.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;A同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠A n=,以点A4为顶点的底角为∠A5.∵∠A5==5°,故选:A.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.11.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【解答】解:如图,①AB的垂直平分线交AC一点P1(PA=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).2+(3﹣1)+(3﹣1)=6,∴符合条件的点有六个.故选:C.【点评】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.12.已知A(0,﹣1)、B(1,0)是平面直角坐标系中的两点,且点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C有()A.4个B.5个C.7个D.8个【分析】若线段AB为腰,以点A为圆心,AB为半径的圆与坐标轴有三个交点,以点B为圆心,AB为半径的圆与坐标轴有三个交点;若线段AB为底边,作线段AB的垂直平分线与坐标轴有一个交点,所有与坐标轴的交点都是满足条件的C点.【解答】解:根据题意画出图形如下所示;①若等腰三角形以线段AB为腰,以点A为圆心,AB为半径的圆与坐标轴有三个交点,以点B为圆心,AB为半径的圆与坐标轴有三个交点;②若等腰三角形以线段AB为底边,作线段AB的垂直平分线与坐标轴有一个交点;故满足条件的C点有7个.故选:C.【点评】本题考查了等腰三角形的判定及坐标与图形的性质,分类别寻找是正确解答本题的关键,有一定难度.13.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有()A.1个B.3个C.5个D.无数多个【分析】利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.【解答】解:如图,作AB或DC的垂直平分线交l于P,如图,在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB,如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC,故选:C.【点评】本题考查了等腰三角形的判定;解题中利用等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.14.如图,在△ABC中,BC=4,BD平分∠ABC,过点A作AD⊥BD于点D,过点D作DE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为()A.4B.6C.8D.10【分析】延长AD,BC交于点G,根据BD平分∠ABC,AD⊥BD于点D,可得AB=BG,D是AG的中点,依据DE∥BG,即可得出DE是△ABG的中位线,EF是△ABC 的中位线,求得BG=2DE=6,即可得到AB=6.【解答】解:如图,延长AD,BC交于点G,∵BD平分∠ABC,AD⊥BD于点D,∴∠BAD=∠G,∴AB=BG,∴D是AG的中点,又∵DE∥BG,∴E是AB的中点,F是AC的中点,∴DE是△ABG的中位线,EF是△ABC的中位线,∴EF=BC=2,又∵EF=2DF,∴DF=1,∴DE=3,∴BG=2DE=6,∴AB=6,故选:B.【点评】本题主要考查了三角形中位线定理以及等腰三角形的性质的运用,解决问题的关键是作辅助线构造等腰三角形,利用三角形中位线定理进行推算.15.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.16.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE 是等边三角形.【解答】解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B.【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.17.下面给出几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的三角形;(4)有一个角为60°的等腰三角形,其中是等边三角形的个数是()A.4个B.3个C.2个D.1个【分析】根据等边三角形的判定:有三角都是60°,或有三边相等的三角形是等边三角形,分析并作答.【解答】解:有三角都是60°,或有三边相等的三角形是等边三角形,那么可由(1),(4)推出等边三角形,(2)若每个角各取一个外角时,该结论成立.而(3)只能得出这个三角形是等腰三角形.故选:C.【点评】本题主要考查等边三角形的判定,利用三角都是60°,或有三边相等的三角形是等边三角形这一知识点.二.解答题(共22小题)18.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.【分析】(1)根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形的面积公式求出即可.【解答】解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,=S三角形ADB+S三角形ADC,∵S三角形ABC∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.19.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,求BF的长.=2S△ABD=2×AB•DE=AB•DE=3AB,【分析】先得出AD是△ABC的中线,得出S△ABC又S=AC•BF,将AC=AB代入即可求出BF.△ABC【解答】解:∵△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∴S=2S△ABD=2×AB•DE=AB•DE=3AB,△ABC=AC•BF,∵S△ABC∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.20.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=64°,∠CDE=32°;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.【分析】(1)如图①,将∠BAC=100°,∠DAC=36°代入∠BAD=∠BAC﹣∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=104°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=72°,那么∠CDE=∠ADC﹣∠ADE=32°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB﹣∠AED=,再由∠BAD=∠BAC﹣∠DAC得到∠BAD=n﹣100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD﹣∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵∠DAC=36°,∠ADE=∠AED,∴∠ADE=∠AED=72°,∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.故答案为64°,32°;(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB﹣∠AED=40°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°,∴∠BAD=2∠CDE;(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.21.如图,AB∥CD,点E、N在AB上,点F在CD上,∠EFD的平分线FM交AB 于点G,且GM=GN,若∠EFC=112°,求∠M的度数.【分析】求出∠EFD,根据角平分线定义求出∠GFD,根据平行线的性质求出∠MGN,根据等腰三角形的性质和三角形内角和定理求出即可.【解答】解:∵∠EFC=112°,∴∠EFD=180°﹣112°=68°,∵FG平分∠EFD,∴∠GFD=∠EFD=34°,∵AB∥CD,∴∠MGN=∠GFD=34°,∵GM=GN,∴∠M=∠MNG=×(180°﹣∠MGN)=73°.【点评】本题考查了平行线的性质、等腰三角形的性质、三角形内角和定理、角平分线定义等知识点,能根据知识点求出∠MGN的度数是解此题的关键.22.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE=∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.【分析】(1)根据三角形的外角性质和等腰三角形的性质解答即可;(2)根据三角形的外角性质和等腰三角形的性质解答即可.【解答】(1)证明:∵∠AED是△CDE的外角∴∠AED=∠ACB+∠CDE,∵∠ADC是△ABD的外角∴∠ADC=∠ADE+∠CDE=∠BAD+∠ABC,∵∠ADE=∠AED∴∠ACB+∠CDE+∠CDE=∠BAD+∠ABC,∵∠ABC=∠ACB,∴∠BAD=2∠CDE;(2)(1)中的结论仍然成立,理由如下:∵∠ACB是△CDE的外角∴∠ACB=∠AED+∠CDE,∵∠ABC是△ABD的外角∴∠ABC=∠ADB+∠BAD,∵∠ABC=∠ACB,∴∠AED+∠CDE=∠ADB+∠BAD,∵∠AED=∠ADE=∠CDE+∠ADB∴∠CDE+∠ADB+∠CDE=∠ADB+∠BAD∴∠BAD=2∠CDE.【点评】此题考查等腰三角形的性质,关键是根据三角形的外角性质和等腰三角形的性质解答即可.23.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC 上,且∠ADE=∠AED,连接DE.(1)如图①,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE 的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=120°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=70°﹣15°=55°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α②如图2,当点D在线段BC上时,∠ADC=x°+α③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=30°,∴∠BAC=120°,∵∠BAD=70°,∴∠DAE=50°,∴∠ADE=∠AED=65°,∴∠CDE=180°﹣50°﹣30°﹣65°=35°;(2)∵∠ACB=70°,∠CDE=15°,∴∠E=70°﹣15°=55°,∴∠ADE=∠AED=55°,∴∠ADC=40°,∵∠ABC=∠ADB+∠DAB=70°,∴∠BAD=30°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴,(1)﹣(2)得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α∴,∴2α=β,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α∴,(2)﹣(1)得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点评】本题考查了等腰三角形的性质,三角形的外角的性质,三角形的内角和,正确的识别图形是解题的关键.24.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.(1)根据SAS证明△ADE≌△BDF,再根据全等三角形的性质可得DE=DF;【分析】(2)过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.可证明DM=DN.再分一、当M与E重合时,N就一定与F重合.二、当M落在C、E之间时,N 就一定落在B、F之间.三、当M落在A、E之间时,N就一定落在C、F之间.三种情况讨论即可求解.【解答】解:(1)∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一、当M与E重合时,N就一定与F重合.此时:DM=DE、DN=DF,结合证得的DM=DN,得:DE=DF,但EF∥AB,不合题意.二、当M落在C、E之间时,N就一定落在B、F之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN,∴△DEM≌△DFN(ASA),∴DE=DF.三、当M落在A、E之间时,N就一定落在C、F之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN,∴△DEM≌△DFN(ASA),∴DE=DF.综上一、二、三所述,得:DE=DF.【点评】考查了等腰三角形的性质和全等三角形的判定与性质,注意第(2)题分三种情况讨论求解,有一定的难度.25.如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.(1)试猜想线段AR与AQ的长度之间存在怎样的数量关系?并证明你的猜想.(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?(直接写“成立”或“不成立”即可,不需证明)【分析】(1)根据等腰三角形的性质求出∠B=∠C,根据等角的余角相等求出∠BQP=∠PRC,再根据对顶角相等可得∠BQP=∠AQR,从而得到∠AQR=∠PRC,然后根据等角对等边证明即可;(2)根据等腰三角形的性质求出∠ABC=∠C,再根据对顶角相等可得∠ABC=∠PBQ,从而得到∠C=∠PBQ,然后根据等角的余角相等求出∠Q=∠R,最后根据等角对等边证明即可.【解答】(1)解:AR=AQ.理由如下:∵△ABC是等腰三角形,∴AB=AC,∴∠B=∠C,∵PR⊥BC,∴∠B+∠BQP=90°,∠C+∠PRC=90°,∴∠BQP=∠PRC,∵∠BQP=∠AQR(对顶角相等),∴∠AQR=∠PRC,∴AR=AQ;。

华师版八年级上册数学13.3.1 等腰三角形的性质有答案

华师版八年级上册数学13.3.1  等腰三角形的性质有答案
Ä'(%&' '&%)$%( ( Æ'& & ) z ` ?($
<#4 %& ' %'$R ) U &' . VR$ 5 '&%)' ''%)%J ¬ Ä ) &! 4 '(%&' '&%)$ 5 '(%&' ''%)! \ 4%('%*$%&'%'$ 5 $%&(& $%'*%!"#"!"&! 5&(''*!
GH>?ABEJK
"&!!"$@$%&' >$%&'%'$? ) %&' &>?$? ( @ %) A!#%$&$%&)&$%')(%+&&(''(!
%4 $& 5 &
!!!
%4 $- 5 &
="+F'(),GH<*+'()
,qr "%!!"$@$%&' >$%&'%'$? ) %&' (&>?$
%4 . 5 &
&!!"PQ%! "$@ $%&' >$%&'%'$'%' ,36$( x&' &)zA.?$'%&' -'%'( &¶ #zÆ`? )$*') &px% &

八年级数学上册第十三章全等三角形13-3等腰三角形13-3-1等腰三角形的性质作业新版华东师大版

八年级数学上册第十三章全等三角形13-3等腰三角形13-3-1等腰三角形的性质作业新版华东师大版

13.3.1等腰三角形的性质1.等腰三角形的对称轴是()A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是()A .17cmB .22cmC .17cm 或22cmD .18cm3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()A .40° B.50° C.60° D.30°4.等腰三角形的一个外角是80°,则其底角是()A .100° B.100°或40° C .40° D.80°5.如图,C.E 和B.D.F 分别在∠GAH 的两边上,且AB =BC =CD =DE =EF ,若∠A =18°, 则∠GEF 的度数是()ED CA B HF GA .80° B.90° C.100° D.108°6.等腰△ABC 的底角是60°,则顶角是________度.7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________.9.如图,△ABC 中AB =AC ,EB =BD =DC =CF ,∠A =40°,则∠EDF 的度数是___________.E D C AB F10.已知△ABC 中AB =AC ,AD ⊥BC 于D ,若△ABC.△ABD 的周长分别是20cm 和16cm ,求AD 的长.11.如图,在四边形ABCD 中,AB =AD ,CB =CD ,求证:∠ABC =∠ADC .DCAB 12.如图,CD 是△ABC 的中线,且CD = 12AB ,你知道∠ACB 的度数是多少吗?由此你能得到一个什么结论?请叙述出来与你的同伴交流.DCAB参考答案:1.D2.B3.A4.C5.B6.60 7.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合8.(90+ 12n)°9.70°10.6cm11.证明:连接BD,∵AB=AD,∴∠ABD=∠ADB.∵CB=CD,∴∠CBD=∠CDB.∴∠ABC=∠ADC12.∠ACB=90°.结论:若一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。

华师版八年级数学上册第13章1 等腰三角形的性质

华师版八年级数学上册第13章1 等腰三角形的性质

即∠BCD=∠ACE.
∴△BCD≌△ACE(S.A.S.).∴∠B=∠EAC.
又∵∠B=∠ACB,∴∠EAC=∠ACB.∴AE∥BC.
等腰三角形的性质
都具有
等边三角形 特殊
等腰 性质 三角形
特性
三边相等,三个内角相等
两边相等 等边对等角 三线合一
2. 相关概念 等腰三角形中,相等的两边都叫做腰, 另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹
角叫做底角.
知1-讲
特别提醒 1. 确定等腰三角形的两条腰时,应找三角形中相等的两边,
腰与三角形本身的位置无关. 2. 等腰三角形的顶角可以是锐角、直角或钝角,但底角只
能是锐角.
知1-练
例 1 若某个等腰三角形的两边长分别为4和6,求这个等 腰三角形的周长. 解题秘方:根据等腰三角形的定义确定腰和底边的 长,再利用三角形三边关系进行判断并计算.
证明:方法一 ∵ AB=AC,AD=AE,
知2-练
∴∠B=∠C,∠ADE=∠AED. ∴∠BAD=∠CAE.
∴△ABD≌△ACE(A.S.A.). ∴ BD=CE.
方法二 如图13.3 - 4,过点A作AF⊥DE,垂足
为F. ∵AD=AE,∴ DF=EF.
又∵ AB=AC,∴ BF=Fra bibliotekF.∴ BF-DF=CF-EF,即BD=CE.
知3-练
知3-练
如 图 13.3-6 , 过 点 C 作 CF⊥DE 于 点 F , 易 证 △ CDF≌ △CEF,∴ CD=CE. ∵ 等边三角形ABC的边长为3, ∴ CE=CD=12AC=32.
知3-练
5-1. [中考·益阳] 如图,△ABC为等边三角形,AD⊥BC, AE=AD,则∠ADE=___7_5___°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】
一.选择题
1.如图,在△ABC 中,若AB =AC ,BC =BD ,AD =DE =EB ,则∠A 等于( ). A .30° B .36° C .45° D .54°
2. 等腰三角形两边a 、b 满足|2a b -+|+()2
2311a b +-=0,则此三角形的周长是( ) A .7 B .5 C .8 D .7或5 3. 如图,ΔABC 中,AB =AC ,BE =CD ,BD =CF ,则∠EDF = ( )
A .2∠A
B .90°-2∠A
C .90°-∠A
D .1
902
A ︒-

4. 等腰三角形一腰上的高与底边所成的角等于( )
A .顶角的一半
B .底角的一半
C .90°减去顶角的一半
D .90°减去底角的一半 5.(2016春•乳山市期中)如图,网格中的每个小正方形的边长为1,A 、B 是格点,以A 、B 、C 为等腰三角形顶点的所有格点C 的个数为( )
A .7个
B .8个
C .9个
D .10个
6. 若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( ) A .32.5° B .5
7.5° C .65°或57.5° D .32.5°或57.5° 二.填空题
7.已知一个等腰三角形的顶角为x 度,则其一腰上的高线与底边的夹角___________度(用
含x 的式子表示).
8.(2016•淮安一模)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE 的周长为.
9. 等腰三角形的周长为22cm,其中一边的长是8cm,则其余两边长分别为________.
10. 如图,在ΔABC中,高AD、BE交于H点,若BH=AC,则∠ABC=______°.
11.如图,钝角三角形纸片ABC中,∠BAC=110°,D为AC边的中点.现将纸片沿过点D 的直线折叠,折痕与BC交于点E,点C的落点记为F.若点F恰好在BA的延长线上,则∠ADF =_________°.
12.如图,已知AB=A1B,在AA1的延长线上依次取A2、A3、A4、…、A n,并依次在三角形的外
部作等腰三角形,使A1C1=A1A2,A2C2=A2A3,A3C3=A3A4,…,A n﹣1C n﹣1=A n﹣1A n,若∠B=30°,则∠A n= °.
三.解答题
13. 已知,如图,在△ABC中,BE是角平分线,AD⊥BE垂足为D,
求证:∠BAD=∠DAE+∠C
14.已知,如图,△ABC 中,D 是BC 中点,DE⊥DF,
试判断BE +CF 与EF 的大小关系,并证明你的结论.
15.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .
(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠=_________; (2)设BAC α∠=,BCE β∠=.
①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系?请说明理由; ②当点D 在直线
BC 上移动,则αβ,之间有怎样的数量关系?请直接写出你的结论.
16.数学课上,同学们探究下面命题的正确性:
(1)顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形,为此,请你解答:如图,已知在△ABC 中,AB=AC ,∠A=36°,射线BD 平分∠ABC 交AC 于点D .求证:△DAB 与△BCD 都是等腰三角形;
(2)在证明了该命题后,有同学发现:下面两个等腰三角形如图2也具有这种特性.请你在图2中分别画出一条线段,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数.
【答案与解析】 一.选择题
1. 【答案】C ;
【解析】设∠A =x ,则由题意∠ADE =180°-2x ,∠EDB =
2x ,∠BDC =∠BCD =90°-2
x ,因为∠ADE +∠EDB +∠BDC =180°,所以x =45°.
2. 【答案】A ;
【解析】a -b +2=0且2a +3b -11=0,解得a =1,b =3,选A ;B 选项不满足两边
之和大于第三边,构不成三角形.
3. 【答案】D ;
【解析】证△BDE ≌△CFD ,∠FDC =∠BED ,所以∠EDF =108°-∠EDB -∠BED =
∠B =A o
∠-
2
1
90. 4. 【答案】A ;
.
5. 【答案】B ;
【解析】解:如图所示,分别以A 、B 为圆心,AB 长为半径画弧,则圆弧经过的格点
C 1、C 2、C 3、C 4、C 5、C 7即为点C 的位置,
作线段AB 的垂直平分线,垂直平分线所经过的格点C 6、C 8即为点C 的位置. 故以A 、B 、C 为等腰三角形顶点的所有格点C 的个数为8个.
6. 【答案】D ; 【解析】当高在三角形内部时底角是5
7.5°,当高在三角形外部时底角是32.5
度,故选D.
二.填空题 7. 【答案】
2
x ; 【解析】无论等腰三角形的顶角是锐角还是钝角,一腰上的高线与底边的夹角都是2
x . 8.【答案】14cm ;
【解析】解:∵DE ∥BC ∴∠DOB=∠OBC ,又∵BO 是∠ABC 的角平分线,
∴∠DBO=∠OBC ,∴∠DBO=∠DOB ,∴BD=OD ,同理:OE=EC , ∴△ADE 的周长=AD +OD +OE +EC=AD +BD +AE +EC=AB +AC=14cm .
9. 【答案】7cm ,7cm 或8cm ,6cm ;
【解析】边长为8cm 的可能是底边,也可能是腰. 10.【答案】45;
【解析】△ADC ≌△BDH ,AD =BD ,所以∠ABC =45°. 11.【答案】40;
【解析】AD =FD ,∠FAD =∠AFD =70°,所以∠ADF =40°. 12.【答案】

【解析】解:∵在△ABA 1中,∠B=30°,AB=A 1B ,
∴∠BA 1A=
=
=75°,
∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角, ∴∠CA 2A 1=
=
=37.5°;
∴∠C 1A 3A 2=18,75°,∠C 2A 4A 3=9.375°,…, ∴∠A n =,
故答案为:

三.解答题 13.【解析】
证明:延长AD 交BC 于F,
∵BE 平分∠ABC, ∴∠ABE=∠CBE
F
E D
C
A
∵AD⊥BD
∴∠ADB=∠BDF=90º 在△ABD 与△FBD 中
⎪⎩

⎨⎧∠=∠=∠=∠BDF ADB BD
BD CBE ABE , ∴△ABD≌△FBD (ASA ). ∴BA=BF.
∴∠BAD=∠BFA ,
∴∠BFA=∠DAE+∠C , ∴∠BAD=∠DAE+∠C .
14.【解析】BE +CF >EF
证明:延长FD 到G ,使DG =DF,连结BG 、EG
∵D 是BC 中点 ∴BD=CD 又∵DE⊥DF ∴EG=EF
在△FDC 与△GDB 中
⎪⎩

⎨⎧=∠=∠=DG DF BD CD 21 ∴△FDC≌△GDB(SAS) ∴BG=CF ∵BG+BE >EG ∴BE+CF >EF. 15.【解析】(1)90°;
(2)①α+β=180°. 证明:①∵∠BAC =∠DAE ,
∴∠BAC -∠DAC =∠DAE -∠DAC . 即∠BAD =∠CAE . 在△ABD 与△ACE 中,
AB AC BAD CAE AD AE =⎧⎪
∠=∠⎨⎪=⎩
∴△ABD ≌△ACE , ∴∠B =∠ACE .
∴∠B +∠ACB =∠ACE +∠ACB . ∴∠B +∠ACB =β,
∵α+∠B +∠ACB =180°, ∴α+β=180°;
②如图:当点D 在射线BC 上时,α+β=180°;
当点D在射线BC的反向延长线上时,α=β.
16. 【解析】
(1)证明:在△ABC中,
∵AB=AC,
∴∠ABC=∠C,
∵∠A=36°,
∴∠ABC=∠C=(180°﹣∠A)=72°,
∵BD平分∠ABC,
∴∠1=∠2=36°
∴∠3=∠1+∠A=72°,
∴∠1=∠A,∠3=∠C,
∴AD=BD,BD=BC,
∴△ABD与△BDC都是等腰三角形.
(2)解:如下图所示:。

相关文档
最新文档