运动模糊图像复原技术及其应用

合集下载

运动图像模糊

运动图像模糊

一、运动模糊的定义数字图像处理研究有很大部分是在图像恢复方面进行的,包括对算法的研究和针对特定问题的图像处理程序的编写。

数字图像处理中很多值得注意的成就就是在这个方面取得的。

在图像成像的过程中,图像系统中存在着许多退化源。

一些退化因素只影响一幅图像中某些个别点的灰度;而另外一些退化因素则可以使一幅图像中的一个空间区域变得模糊起来。

前者称为点退化,后者称为空间退化。

此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。

总之,使图像发生退化的原因很多,但这些退化现象都可用卷积来描述,图像的复原过程就可以看成是一个反卷积的问题。

反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。

因此,由于采集图像受噪声的影响,最后对于图像的复原结果可能偏离真实图像非常远。

由于以上的这些特性,图像复原的过程无论是理论分析或是数值计算都有特定的困难。

但由于图像复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。

在拍摄期间, 如果相机与景物之间存在足够大的相对运动, 就会造成照片的模糊, 称之为运动模糊。

运动模糊是成像过程中普遍存在的问题, 在飞机或宇宙飞行器上拍下来的照片,用照相机拍摄高速运动物体的照片, 在突发事件的场合(通常用于侦破), 以及战场上飞行中的导弹均可能存在这种现象。

运动模糊图像的复原是图像复原中的重要课题之一, 可广泛用于天文、军事、道路交通、医学图像、工业控制及侦破领域, 具有重要的现实意义。

运动模糊初期研究的主要原因是为了对卫星所拍摄的图像进行复原, 因为卫星相对地球是运动的, 所以拍出的图像是模糊的(当然, 卫星所拍摄图像的模糊原因不仅仅是相对运动而造成的, 还有其他原因如大气湍流所造成的模糊等等)。

1965 年徘徊者8 号发回37137 张照片, 这些照片由于飞行器的高速运动都带有运动模糊。

运动模糊图像复原算法实现及应用

运动模糊图像复原算法实现及应用

运动模糊图像复原算法实现及应⽤任务书1、课程设计⽬的:1)提⾼分析问题、解决问题的能⼒,进⼀步巩固数字图像处理系统中的基本原理与⽅法。

2)熟悉掌握⼀门计算机语⾔,可以进⾏数字图像应⽤处理的开发设计。

2、课程设计的题⽬:运动模糊图像复原算法实现及应⽤1)创建⼀个仿真运动模糊PSF来模糊⼀幅图像(图像选择原理)。

2)针对退化设计出复原滤波器,对退化图像进⾏复原(复原的⽅法⾃定)。

3)对退化图像进⾏复原,显⽰复原前后图像,对复原结果进⾏分析,并评价复原算法。

3、课程设计⽅案制定:1)程序运⾏环境是Windows 平台。

2)开发⼯具选⽤matlab、VC++、VB、C#等,建议选⽤matlab作为编程开发⼯具,可以达到事半功倍的效果、并降低编程难度。

3)以组件化的思想构建整个软件系统,具体的功能模块根据选定的不同题⽬做合理的划分。

4、课程设计的⼀般步骤:1)选题与搜集资料:选择课题,进⾏系统调查,搜集资料。

2)分析与设计:根据搜集的资料,进⾏功能分析,并对系统功能与模块划分等设计。

3)程序设计:掌握的语⾔,编写程序,实现所设计的功能。

4)调试与测试:⾃⾏调试程序,同学之间交叉测试程序,并记录测试情况。

5)验收与评分:指导教师对每个成员开发对的程序进⾏综合验收,综合设计报告,根据课程设计成绩的判定⽅法,评出成绩。

5、要求1)理解各种图像处理⽅法确切意义。

2)独⽴进⾏⽅案的制定,系统结构设计合理。

3)程序开发时,则必须清楚主要实现函数的⽬的和作⽤,需要在程序书写时做适当的注释。

⽬录摘要 (2)⼀、概述 (3)1.1选题背景 (3)1.2课程设计⽬的 (4)1.3设计内容 (5)⼆、图像退化与复原 (6)2.1图像退化与复原的定义 (6)2.2图像退化模型 (7)2.3运动模糊图像复原的⽅法 (7)2.3.1逆滤波复原法 (8)2.3.2维纳滤波的原理 (9)三、运动模糊图象复原的matlab实现 (10)3.1维纳滤波复原 (10)3.2约束最⼩⼆乘滤波复原 (10)3.3 运动模糊图像复原实例 (11)四、课程设计总结与体会 (14)参考⽂献 (16)摘要随着计算机技术的发展,计算机的运⾏速度和运算精度得到进⼀步提⾼,其在图像处理领域的应⽤⽇见⼴泛。

运动模糊图像的复原-课程设计报告

运动模糊图像的复原-课程设计报告

目录一、概述 (1)1.1课程设计目的 (1)1.2设计容 (2)二、图像退化与复原 (3)2.1 图像退化的数学模型 (4)2.2匀速直线运动模糊的退化模型 (5)2.3点扩散函数PSF (7)三、运动模糊图象的复原方法及原理 (8)3.1逆滤波复原原理 (8)3.2维纳滤波复原原理 (9)3.3 有约束最小二乘复原原理 (11)四、运动模糊图像复原的实现与比较 (12)4.1 运动模糊图像复原的MATLAB实现 (12)4.2 复原结果比较 (16)实验小结 (17)参考文献 (17)一概述1.1课程设计目的图像复原是在假定模糊或噪声的模型时,试图估计原图像的一种技术,它是图像处理中的重要容。

它的主要目的就是改善图像质量,研究如从所得的变质图像中复原出真实图像,或说是研究如何从获得的信息中反演出有关真实目标的信息。

图像复原的目的是将退化的以及模糊的图像的原有信息进展恢复,以到达清晰化的目的。

图像退化是指图像经过长时间的保存之后,因发生化学反响而使画面的颜色以及比照度发生退化改变的现象,或者是因噪声污染等导致图画退化的现象,或者是因为现场的亮暗围太大,导致暗区或者高光区信息退化的现象。

图像模糊那么常常是因为运动以及摄像时镜头的散焦等原因所导致的。

无论是图像的退化还是图像的模糊,本质上都是原始信息局部丧失,或者原始信息与外来信息的相互混叠所造成的。

因此,需根据退化模糊产生原因的不同,采用不同的图像恢复方法到达图像清晰化目的近年来,在数字图像处理领域,关于运动模糊图像的复原处理成为了国外研究的热点问题之一,也出现了一些行之有效的算法和方法。

但是这些算法和方法在不同的情况下,具有不同的复原效果。

因为这些算法都是其作者在假定的前提条件下提出的,而实际上的模糊图像,并不一定能够满足这些算法前提,或者只满足其局部前提。

作为一个实用的图像复原系统,就得提供多种复原算法,使用户可以根据情况来选择最适当的算法以得到最好的复原效果。

如何处理图像中的运动模糊问题

如何处理图像中的运动模糊问题

如何处理图像中的运动模糊问题图像是由很多个小的像素点组成的。

当一个物体在图像中移动时,快门打开的时间会导致物体的模糊效果。

这种现象被称为图像的运动模糊。

运动模糊对于图像的清晰度和质量产生了负面影响,因此我们需要找到方法来处理和减少图像中的运动模糊问题。

如何处理图像中的运动模糊问题呢?下面将介绍几种主要的方法:1. 增加快门速度:通过增加快门速度,可以减少运动模糊。

快门速度越快,图像中运动物体的模糊效果就越小。

但是增加快门速度可能会导致图像过暗,因此需要在光线条件允许的情况下尽量选择更快的快门速度。

2. 使用稳定器设备:稳定器设备可以减少手持拍摄时的抖动,从而减少图像中的运动模糊。

稳定器设备可以是手持稳定器、三脚架或者是图像稳定软件等。

3. 图像复原算法:图像复原算法可以通过分析图像中的模糊信息来恢复清晰的图像。

其中一种常用的算法是逆滤波算法。

逆滤波算法使用图像的模糊核和退化函数来估计原始图像。

然后通过这些估计值进行逆滤波处理,最终得到清晰的图像。

还有一些其他的图像复原算法,如盲复原算法和最小二乘复原算法,可以根据具体情况选择。

4. 多图像融合:多图像融合是通过将多张图像综合在一起来减少运动模糊。

比如,在拍摄过程中,连续拍摄多张照片,并将它们进行融合,可以减少运动物体的模糊效果。

多图像融合可以使用算法来自动对齐和融合图像。

5. 图像后期处理:图像后期处理软件可以通过一些滤镜和工具来修复运动模糊。

例如,通过运动模糊滤镜可以减少模糊效果,或者通过锐化工具可以增加图像的清晰度。

还可以通过图像编辑软件中的其他工具来进一步修复和改善图像的质量。

总结起来,处理图像中的运动模糊问题有多种方法可供选择。

可以通过增加快门速度、使用稳定器设备、应用图像复原算法、多图像融合以及图像后期处理来改善图像的质量。

具体使用哪种方法取决于实际情况和需求。

无论选择哪种方法,都需要在拍摄前或者图像后期处理时进行一定的实验和调整,以达到最佳的效果。

数学建模运动模糊图像的复原

数学建模运动模糊图像的复原

数学建模运动模糊图像的复原在我们的日常生活和各种科学研究、工程应用中,图像是一种非常重要的信息载体。

然而,由于多种原因,我们获取的图像有时会出现模糊的情况,其中运动模糊就是较为常见的一种。

运动模糊图像的复原是图像处理领域中的一个重要课题,它对于提高图像质量、获取更准确的信息具有重要意义。

想象一下,当你用手机拍摄一张快速移动的物体,比如飞驰的汽车,或者在不太稳定的情况下按下快门,得到的照片往往就会出现运动模糊。

这种模糊使得图像中的细节变得模糊不清,给我们的观察和分析带来了很大的困难。

那么,如何才能让这些模糊的图像恢复清晰,重新展现出原本的细节呢?这就需要运用数学建模的方法。

数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题。

在运动模糊图像的复原中,我们首先需要对运动模糊的形成过程进行数学描述。

运动模糊的产生是因为在曝光时间内,成像物体与相机之间存在相对运动,使得像点在成像平面上形成了一条轨迹,从而导致图像的模糊。

为了建立运动模糊的数学模型,我们需要考虑多个因素。

其中,最重要的是运动的速度和方向。

假设物体在成像平面上沿着水平方向以匀速 v 运动,曝光时间为 T,那么在这段时间内物体移动的距离就是vT。

在成像过程中,像点在水平方向上就会被拉伸,形成一个模糊核。

这个模糊核可以用一个函数来表示,通常称为点扩散函数(Point Spread Function,PSF)。

有了点扩散函数,我们就可以建立运动模糊图像的数学模型。

假设原始清晰图像为 f(x,y),经过运动模糊后的图像为 g(x,y),那么它们之间的关系可以表示为卷积运算:g(x,y) = f(x,y) h(x,y) + n(x,y) ,其中h(x,y) 就是点扩散函数,n(x,y) 表示噪声。

接下来,就是要根据这个数学模型来复原图像。

图像复原的方法有很多种,常见的有逆滤波、维纳滤波和 LucyRichardson 算法等。

逆滤波是一种简单直观的方法。

二维运动模糊图像的处理

二维运动模糊图像的处理

二维运动模糊图像的处理
二维运动模糊是指物体在二维平面上的运动导致图像模糊。

具体而言,当相机快门打开的时间足够长时,物体的运动轨迹会在感光元件上留下痕迹,导致图像产生模糊效果。

这种模糊效果可能会在拍摄快速移动的物体、摄像机晃动或者低光条件下产生。

为了消除二维运动模糊,通常采用图像处理算法来对图像进行复原。

下面将介绍一些常用的方法。

1. 基于逆滤波的复原方法:逆滤波是恢复原始图像的一种基本技术。

假设原始图像可以表示为一个线性系统的输出,那么通过找到该线性系统的逆滤波器,从模糊图像中提取出原始图像。

在实际应用中,逆滤波方法容易受到噪声的干扰,可能导致结果不理想。

2. 统计方法:统计方法是另一种常用的复原方法。

通过统计模糊图像中像素值的分布情况,可以推测出原始图像的分布,并在此基础上进行复原。

统计方法在处理噪声比较多的情况下效果较好,但对于噪声较少的情况效果可能不佳。

3. 图像增强方法:图像增强方法是一种通过增大图像的对比度或者锐化效果来减弱图像模糊的方法。

通过增强图像的边缘信息或者恢复图像的高频细节,可以使图像看起来更加清晰。

4. 基于最小二乘法的复原方法:最小二乘法是一种优化算法,能够找到使得模糊图像与原始图像的差异最小的复原结果。

通过建立一个优化问题,并找到使得问题的目标函数最小的参数值,可以得到最佳的复原结果。

二维运动模糊图像的处理方法有很多种,每种方法都有其适用的场景和局限性。

在实际应用中,需要根据具体情况选择合适的方法来进行处理。

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术

基于MATLAB的运动模糊图像恢复技术王洪珏(温州医学院,浙江,温州)摘要:MATLAB是当今流行的科学计算软件,它具有很强的数据处理能力。

在其图像处理工具箱中有四个图像复原函数,本文就这些函数的算法原理、运用和恢复处理效果结合实力效果作简要对比讨论。

0前言图像复原时图像处理中一个重要的研究课题。

图像在形成、传输和记录的过程中,由于传感器的噪声、摄像机未对好焦、摄像机与物体相对运动、系统误差、畸变、噪声等因素的影响,使图像往往不是真实景物的完善影像。

这种图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像质量下降的过程称为图像的退化。

图像复原就是通过计算机处理,对质量下降的图像加以重建或恢复的过程。

图像复原过程一般为:找退化原因→建立退化模型→反向推演→图像复原1算法产生概述开发算法时,首先要创建图像退化的线性数学模型,接着选择准则函数,并以适当的数学形式表达,然后进行数学推演。

推演过程中通常要进行表达形式(即空域形式、频域形式、矩阵-矢量形式或变换域形式)的相互转换,最后得到图像复原算式。

退化数学模型的空域、频域、矢量-矩阵表达形式分别是:g(x,y)=d(x,y)*f(x,y)+n(x,y)G(u,v)=D(u,v)·F(u,v)+N(u,v)g=HF+n其中:g(x,y)、d(x,y)、f(x,y)、n(x,y)分别为观测的退化图像、模糊函数、原图像、加性噪声,*为卷积运算符,(x=0,1,2,…,M-1),(y=0,1,2,…,N-1)。

2运动模糊的产生景物与相机之间的相对运动通常会使相机所成的像存在运动模糊。

对于线性移不变模糊,退化图像u0可以写成,u0=h*u+n,其中h为模糊核,*表示卷积,n为加性噪声。

由du/dt=0,文献[5]将这种运动模糊过程描述为波动方程:аu/аt+V xаu/аx+ V yаu/аy=0其中,V x=dx/dt, V y=dy/dt为x,y方向上的速度分量并且通过分析该方程的达朗贝尔解得出结论:vаu0/аx=u(x)-u(x-L)其中即退化图像沿运动方向的导数等于原始图像和其移位L后图像的差,这里L也可以认为是模糊长度。

利用运动模糊创造动感效果

利用运动模糊创造动感效果

利用运动模糊创造动感效果运动模糊是一种在摄影和电影制作中常用的技术手段,它可以通过捕捉物体在快速移动过程中的模糊轨迹,来给观众营造出一种动感效果。

而在图像处理领域,我们也可以利用运动模糊的方法来创造出与众不同的动态效果。

本文将介绍运动模糊的原理、应用场景,并提供一些实际操作的技巧与方法。

一、运动模糊的原理在摄影术中,当拍摄对象或拍摄设备在照片曝光过程中发生移动时,会产生物体模糊的效果。

这是由于光在相机快门打开的时间内,记录了物体相对于感光元件的位置变化。

而运动模糊就是通过调整快门速度或移动物体的速度,使得图像的一部分或整体产生模糊效果。

二、运动模糊的应用场景1. 表现速度与动态感:运动模糊可以表现物体的快速运动,增加照片或视频的动感效果。

比如在体育赛事中,通过运动模糊来表现运动员奔跑或球拍挥动的瞬间,能够增强观众的身临其境感。

2. 突出静止物体:在拍摄风景或建筑物时,可以利用运动模糊使静止的物体与背景产生对比,突出主体物体。

比如在拍摄瀑布时,通过运动模糊可以使瀑布的流水更加柔和,从而突出瀑布。

3. 创造抽象效果:在一些艺术摄影中,可以利用运动模糊来创造出一些抽象的效果,营造出艺术的氛围。

通过调整快门速度和拍摄角度,比如在夜晚拍摄的城市灯光、交通流动等场景,可以创造出丰富多彩的光影效果。

三、运动模糊的实际操作技巧与方法1. 快门速度:通过调整快门速度可以控制运动模糊的程度。

快速的快门速度能够冻结运动物体的细节,而较慢的快门速度则可以增加模糊效果。

根据具体场景和所期望的效果,合理选择快门速度是非常重要的。

2. 使用三脚架:在使用较慢的快门速度进行拍摄时,摄影师通常需要使用三脚架来保持相机的稳定。

这样可以避免相机的抖动,得到清晰的背景和更加突出的模糊物体。

3. 运动方向:运动模糊的效果还与运动物体的移动方向有关。

根据实际需求,可以尝试水平方向、垂直方向或其他角度的运动,来创造不同的模糊效果。

4. 结合其他摄影技巧:在运动模糊的基础上,结合其他摄影技巧可以进一步增强照片的表现力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7/93
逆滤波法 维纳滤波法 频域法 约束最小平方 滤波法 小波变换法 无约束复原法 有约束复原法 频谱外推法 伪逆滤波法 奇异值矩阵分解 SVD法 非线性代数 复原法
凸集投影法 最大熵复原法 贝叶斯复原法 遗传进化法 神经网络法
哈里斯外推法 长球波函数 外推法 能量连续降减法
线性代数 复原法
8/93
4/93
图像复原与图像增强的关系:
图像复原与图像增强存在密切的联系,它们都是为了 改善图像的视觉效果,得到某种意义上的改进图像,也就 是希望改进输入图像的视觉质量,便于后续处理。 图像增强技术:更偏向主观判断,即要突出所关心的信息, 满足人的视觉系统,具有好的视觉结果。 图像复原技术:根据图像畸变或退化的原因,进行模型化 处理,将质量退化的图像重建或恢复到原始图像,即恢复 退化图像的本来面目,忠实于原图像。因此必须根据一定 的图像退化模型来进行图像复原。
10/93
光学式像移补偿法
光学式像移补偿法的原理是按照与相机焦面上像移速度 一致的原则旋转或移动光路元件以改变光线方向达到抑制运 动模糊的目的。 目前常用旋转物镜前方的回转反射镜补偿前向像移。 优点:光学式像移补偿法的反射镜体积小、重量轻且易控制, 除补偿前向像移外还能补偿俯仰和偏航引起的像移,主要用 在长焦距全景式相机上。 KA-112A相机和美国芝加哥航空工业公司八十年代初研 制的KS-146航空侦察相机都用了该补偿法,它目前用得较多。
23/93
n(x,y) f(x,y) g(x,y)
H
图像降质过程模型
图像的降质公式:
g ( x, y ) = ∫

−∞
∫ f (α , β )h(x − α , y − β )dαdβ + n(x, y )
24/93
以后讨论中对降质模型H作以下假设:
H是线性的
H [k 1 f 1 ( x , y ) + k 2 f 2 ( x , y )] = k 1 Hf 1 ( x , y ) + k 2 Hf 2 ( x , y )
9/93
机械式补偿法:
利用机械结构及其组件在曝光时移动光感应介质,使剩余 像移量尽可能小,从而达到抑制运动模糊的目的。 该补偿法适用于飞行器横滚、俯仰和相机扫描引起的运动 模糊,主要用在胶片式垂直照相相机上,实现时是用拉动型量 片机构移动胶片并精确控制卷片机构以保证必要的补偿精度。 美国的KA-112A航空侦察相机用移动胶片法消除扫描和横滚造 成的像移。 优点:感光面上各点的补偿速度一样且没有附加光学系统。 缺点:它对结构的运行及制作精度要求高、需大功率传动装置, 限制了它在航空相机特别是广角镜头相机上的应用;感光材料 逐渐在由胶片往CCD 转变,其相应的像移补偿方法也在发生改 变。
由于引起退化的因素众多,而且性质不同,而目前又没有统一的 恢复方法,许多人根据不同的物理模型,采用不同的退化模型、 处理技巧和估计准则,从而导出了多种恢复方法。 有效方法:针对特定条件,用特定模型处理。
2/93
7.1 图像复原技术概述
什么是图像复原技术?
图像复原技术也常被称为图像恢复技术,是当今图像 处理研究领域的重要分支。 图像复原技术能够去除或减轻在获取数字图像过程中 发生的图像质量下降(退化)问题,从而使图像尽可能地 接近于真实场景。
什么是图像退化?
景物形成过程中可能出现畸变、模糊、失真或混入噪 声,使所成图像降质,称为图像“退化”。
f (x, y) ,则产生的退化图像 g(x, y) 可以用下式表示:
g ( x, y ) = h ( x, y ) ∗ f ( x, y ) + n ( x, y )
因此,图像复原是在已知 g(x, y) ,n(x, y),h( x, y ) 等一些先 验知识的条件下,求得 f (x, y) 的过程。 由于空间域的卷积等同于频率域的乘积,所以上式的频率域 描述为:
5/93
图像复原方法的分类:
图像复原大致可以分为两种方法: 一种方法适用于缺乏图像先验知识的情况,此时可对退化过 程建立模型进行描述,进而寻找一种去除或消弱其影响的过 程,是一种估计方法; 另一种方法是针对原始图像有足够的先验知识的情况,对原 始图像建立一个数学模型并根据它对退化图像进行拟合,能 够获得更好的复原效果。 两种方法各有优缺点,第一种方法不需要先验知识,但其缺 点是速度较慢,效果也不如第二种好;而第二种方法只要有 正确的模型,就可在相对较短的时间内得到较好的效果,其 缺点是建立准确的模型通常是十分困难的。
22/93
7.2.2 运动模糊图像的退化模型
模糊图像的一般退化模型:
在实际降质过程中,降质的另一个复杂因素是随机噪声, 考虑有噪声的图象恢复,必须知道噪声统计特性以及噪声和图 像信号的相关情况,这是非常复杂的。 实际中假设是白噪声---频谱密度为常数,且与图像不相 关,(一般只要噪声带宽比图像带宽大得多时,此假设成立), 由此得出图像退化模型。 可以将图像退化过程描述成一个退化系统,这里原图像 f ( x, y ) 是通过一个系统 H 并与加性噪声n( x, y ) 相加退化成图像 g ( x, y ) 的,其过程如下图所示:
12/93
集成像移补偿法
集成像移补偿法是最新的像移补偿技术,它是将像移补 偿同芯片集成为一体,目前加拿大Dalsa公司为美国海军实 验室做成了5kByte× 5kByte带像移补偿功能的芯片,帧频 为2.5HZ,为超高分辨率CCD探测器。
13/93
图像式像移补偿法
图像式像移补偿又称软件补偿法。模糊图像是由清晰 图像与点扩散函数PSF卷积而得。根据这个原理,由退化图 像进行图像复原(Image Restoration,IR)来完成像移补 偿。图像式像移补偿法是对已有数字图像的后期处理,是 一种被动式的补偿方法且必须用在CCD相机上,通常是对事 后图像进行复原和分析。 优点:图像式像移补偿的成本低、软件算法相对比较成熟、 应用灵活等特点现已经引起广泛关注,随着DSP等快速高效 器件的推广使用,这种方法将很快用于准实时的像移补偿。
20/93
举例:以航空侦察相机为例讲述运动模糊的基本原理
当飞机以速度V在空中飞行时,如图所示,地 面景物A点相对飞机向后移动到A’。通过光学系统 成像于a’点,在CCD靶面上像移速度为:
a a' v
V ' V = f max H
'
V:飞机飞行速度; H:飞行高度; ' f max :光学系统最大焦距。 在CCD摄像机每场积分时间内像移量为:
消除运动模糊的几种补偿方法
运动模糊的实质是由于相机与景物之间相对运动而造成 曝光瞬间感光介质相对被照物影像相对运动,也就是说存在 着像移。如果能减小或者消除这种像移就可以抑制运动模糊 的产生。目前常用的消除像移的方法有以下几种: 机械式像移补偿法 光学式像移补偿法 电子式像移补偿法 集成像移补偿法 图像式像移补偿法
G (u , v) = H (u , v) F (u , v) + N (u , v)
26/93
讨论恢复问题:
G F= 若略去噪音N,得: H
反变换,可求 F→ f
若H有零点,G也有零点出现,0/0的不定值,这样模型不保证所 有逆过程都有解?
H 通常, (u, v ) 在离频率平面原点较远的地方数值较小或为零,因此, 必须限制图像复原在原点周围的有限区域进行,即将退化图像的 傅里叶谱限制在 没有出现零点而且数值又不是太小的有限 H (u , v ) 范围内。
11/93
电子式像移补偿法
电子式像移补偿方法主要是针对CCD相机,利用一系列 CCD电荷转移驱动技术来控制CCD曝光以同步像移速度的补偿 法。目前国内外采用的电子式像移补偿法有针对TDI CCD (Time Delay and Integrate Charge Coupled Device) 的真角度像移补偿法和对面阵CCD的阶梯式像移补偿法。 它已应用到美国的CA-260、CA-270、CA-290 等电光分 幅式航空侦察相机上,带有这种阶梯式像移补偿技术的面 阵CCD器件目前属于军事禁售品。
运动模糊图像复原技术 及其应用
赵丹培 宇航学院图像处理中心D座407 E-mail: zhaodanpei@ 2010年5月

7.1 图像复原技术概述

7.2 运动模糊图像复原的基本原理 7.3 典型的运动模糊图像复原方法 7.4 几种恢复方法的性能比较 7.5 图像复原质量评价 7.6 运动图像复原方法的应用
3/93
引起图像退化的原因:
造成图像退化的原因有很多,典型原因表现为: • 成像系统的象差、畸变、带宽有限等造成的图像失真; • 由于成像器件拍摄姿态和扫描非线性引起的图像几何失真; • 运动模糊,成像传感器与被拍摄景物之间存在相对运动,引起 所成图像的运动模糊; • 灰度失真,光学系统或成像传感器本身特性不均匀,造成同样 亮度景物成像灰度不同; • 辐射失真,由于场景能量传输通道中的介质特性如大气湍流效 应,大气成分变化引起图像失真; • 图像在成像、数字化、采集和处理过程中引入的噪声。
16/93
7.2 运动模糊图像复原的基本原理
运动模糊的基本原理 运动模糊图像的退化模型 运动模糊图像的点扩散函数 匀速直线运动模糊点扩散函数的参数确定 运动模糊点扩散函数的离散化
17/93
7.2.1 运动模糊的基本原理
在用摄像机获取景物图像时,如果在相机曝光期间景 物和摄像机之间存在相对运动,例如用照相机拍摄快速运 动的物体,或者从行驶中的汽车上拍摄外面静止不动的景 物时,拍得的照片都可能存在模糊的现象,这种由于相对 运动造成图像模糊现象就是运动模糊。 下图为实验室实际拍摄的含有噪声干扰的运动模糊图像。
由于高速运动产生的运动模糊图像
Hale Waihona Puke 18/93以拍摄快速运动的汽车为例来分析运动模糊图像的形 成过程。
相关文档
最新文档