循环队列学习解析以与C语言实现
循环队列操作实验报告

实验目的:通过本次实验,掌握循环队列的基本概念和操作方法,了解其在实际应用中的优势,并能够熟练运用循环队列解决实际问题。
实验环境:操作系统:Windows 10编程语言:C语言开发环境:Visual Studio实验内容:1. 循环队列的定义及初始化2. 循环队列的入队操作3. 循环队列的出队操作4. 循环队列的判空操作5. 循环队列的判满操作6. 循环队列的遍历操作7. 循环队列的应用实例实验步骤:一、循环队列的定义及初始化1. 定义循环队列的数据结构:```c#define MAX_SIZE 100 // 定义队列的最大容量typedef struct {int data[MAX_SIZE]; // 存储队列元素的数组int front; // 队头指针int rear; // 队尾指针} CircleQueue;```2. 初始化循环队列:```cvoid InitQueue(CircleQueue q) {q->front = q->rear = 0; // 初始化队头和队尾指针}```二、循环队列的入队操作1. 判断队列是否已满:```cint IsFull(CircleQueue q) {return (q->rear + 1) % MAX_SIZE == q->front;}```2. 入队操作:```cint EnQueue(CircleQueue q, int e) {if (IsFull(q)) {return 0; // 队列已满,无法入队}q->data[q->rear] = e; // 将元素e入队q->rear = (q->rear + 1) % MAX_SIZE; // 更新队尾指针return 1; // 入队成功}```三、循环队列的出队操作1. 判断队列是否为空:```cint IsEmpty(CircleQueue q) {return q->front == q->rear;}```2. 出队操作:```cint DeQueue(CircleQueue q, int e) {if (IsEmpty(q)) {return 0; // 队列为空,无法出队}e = q->data[q->front]; // 将队头元素出队q->front = (q->front + 1) % MAX_SIZE; // 更新队头指针 return 1; // 出队成功}```四、循环队列的判空操作1. 判断队列是否为空:```cint IsEmpty(CircleQueue q) {return q->front == q->rear;}```五、循环队列的判满操作1. 判断队列是否已满:```cint IsFull(CircleQueue q) {return (q->rear + 1) % MAX_SIZE == q->front; }```六、循环队列的遍历操作1. 遍历循环队列:```cvoid TraverseQueue(CircleQueue q) {if (IsEmpty(q)) {printf("队列为空,无法遍历。
数据结构c语言循环队列定义

数据结构c语言循环队列定义1. 引言在程序设计中,经常需要使用队列这种数据结构。
队列是一种先进先出(First In First Out, FIF)的数据结构,类似于排队买票或取快餐的过程,先到先服务。
相比于其他数据结构,队列的操作比较简单,也容易理解和实现。
本文将介绍一种常见的队列类型——循环队列,并使用c语言实现。
2. 循环队列的定义循环队列是一种特殊的队列类型,它在数组的基础上实现。
其实现方式是将数组的首尾相连,形成一个环状。
这样在操作队列时,当往队列中添加元素时,如果队列尾指针到达数组末尾,则在数组头部继续添加元素。
当从队列中删除元素时,如果队列头指针到达数组末尾,则在数组头部继续删除元素。
这样循环下去,队列就具有了循环的特性,即循环队列。
3. 循环队列c语言实现由于循环队列是在数组的基础上实现的,因此我们定义一个数组来存储队列元素,再定义队列头和队列尾指针来指向队列中的首尾元素。
具体c语言实现如下:```define MAXSIZE 100 // 队列最大容量typedef int ElemType; // 元素类型定义typedef struct {ElemType data[MAXSIZE]; // 存储元素的数组int front; // 队列头指针int rear; // 队列尾指针} CircleQueue;// 初始化循环队列void InitQueue(CircleQueue *q) {q->front = q->rear = 0; // 头尾指针初始化为0 }// 判断循环队列是否为空bool IsEmpty(CircleQueue *q) {return q->front == q->rear;}// 判断循环队列是否为满bool IsFull(CircleQueue *q) {return (q->rear + 1) % MAXSIZE == q->front;}// 入队操作bool EnQueue(CircleQueue *q, ElemType e) {// 队列已满,无法添加元素if (IsFull(q)) {return false;}q->data[q->rear] = e; // 将元素添加到队列尾部q->rear = (q->rear + 1) % MAXSIZE; // 队列尾指针后移一位return true;}// 出队操作bool DeQueue(CircleQueue *q, ElemType *e) {// 队列为空,无法删除元素if (IsEmpty(q)) {return false;}*e = q->data[q->front]; // 将队列头部元素取出q->front = (q->front + 1) % MAXSIZE; // 队列头指针后移一位return true;}```以上是循环队列的c语言实现,可以通过以上函数对循环队列进行初始化、判断队列是否为空或是否为满,入队和出队操作。
顺序循环队列实验报告

一、实验目的1. 理解顺序循环队列的概念和原理。
2. 掌握顺序循环队列的初始化、入队、出队等基本操作。
3. 通过编程实现顺序循环队列,并验证其功能。
二、实验原理顺序循环队列是一种利用一维数组实现队列的存储结构。
它将一维数组看作是首尾相连的循环结构,队列的头部和尾部在数组的两端。
顺序循环队列的特点是:队列满时,头指针和尾指针相差一个数组的长度;队列空时,头指针和尾指针相等。
顺序循环队列的基本操作如下:1. 初始化:创建一个顺序循环队列,并设置头指针和尾指针。
2. 入队:将元素插入队列尾部。
3. 出队:从队列头部删除元素。
4. 判断队列是否为空或满。
三、实验内容1. 创建顺序循环队列类。
2. 实现顺序循环队列的初始化、入队、出队等基本操作。
3. 编写测试代码,验证顺序循环队列的功能。
四、实验步骤1. 创建顺序循环队列类,定义队列长度、头指针、尾指针等属性。
2. 实现顺序循环队列的初始化方法,初始化头指针和尾指针。
3. 实现顺序循环队列的入队方法,判断队列是否已满,如果未满,将元素插入队列尾部,并更新尾指针;如果已满,则提示队列已满。
4. 实现顺序循环队列的出队方法,判断队列是否为空,如果为空,则提示队列已空;如果未空,则从队列头部删除元素,并更新头指针。
5. 编写测试代码,创建顺序循环队列实例,执行入队和出队操作,验证顺序循环队列的功能。
五、实验结果与分析1. 初始化顺序循环队列```pythonclass CircularQueue:def __init__(self, size):self.queue = [None] sizeself.head = 0self.tail = 0self.count = 0self.maxsize = size```2. 入队操作```pythondef enqueue(self, item):if self.count == self.maxsize:print("Queue is full")else:self.queue[self.tail] = itemself.tail = (self.tail + 1) % self.maxsizeself.count += 1```3. 出队操作```pythondef dequeue(self):if self.count == 0:print("Queue is empty")else:item = self.queue[self.head]self.queue[self.head] = Noneself.head = (self.head + 1) % self.maxsize self.count -= 1return item```4. 测试代码```pythondef test_circular_queue():queue = CircularQueue(5)print("Enqueue 1 to 5:")for i in range(1, 6):queue.enqueue(i)print(queue.queue)print("Dequeue 1 to 5:")for _ in range(5):print(queue.dequeue())print(queue.queue)test_circular_queue()```实验结果分析:通过测试代码,我们可以看到顺序循环队列在初始化、入队和出队操作时都能正确执行。
循环队列实验报告心得与体会

循环队列实验报告心得与体会循环队列是数据结构中一个非常经典的概念,相对于其他队列结构,循环队列可以优化存储空间的使用,减少空间的浪费。
循环队列的操作也比较高效,能够快速执行入队和出队操作。
本次实验,我们对循环队列结构进行了深入的了解与实践,更深刻地认识到了数据结构的重要性。
在实验中,我们首先对循环队列的基本概念进行了学习,通过查阅相关资料和教材,我们了解到循环队列是一种环形的特殊队列,其队尾指针在达到数组的末尾时,再从数组的第一个位置开始存储数据,如此循环下去。
这样一来,就可以充分利用数组中的元素,减少不必要的空间浪费,提高队列结构的空间利用率。
在深入了解循环队列的概念之后,我们开始实现循环队列的基本操作,包括入队、出队、判空、判满等。
通过实现这些基础操作,我们更加熟悉了循环队列的内部结构和操作流程,同时也掌握了程序设计中的一些基本思路和技巧。
在实验过程中,我们还注意到了循环队列一些常见的问题和局限性。
当队列元素数量达到数组大小时,会出现队列满的情况,此时需要进行特殊处理。
由于循环队列是基于数组实现的,所以其大小是固定的,不能动态调整,这也是循环队列的一个缺陷。
在实验结束后,我们对循环队列的性能进行了一些简单分析。
通过测试,我们发现循环队列在入队和出队操作的时间复杂度都是O(1),即不受元素数量的影响,具有较高的效率。
这进一步证明了循环队列是一种高效的数据结构。
本次实验让我们深入了解了循环队列的内部结构和基本操作,也发现了循环队列存在的问题和局限性。
通过这次实验的实践,我们进一步理解了数据结构的重要性,同时也锻炼了自己的程序设计能力和思维能力。
除了实现循环队列的基本操作,我们还对循环队列进行了扩展,添加了一些实用的操作,比如获取队列长度、获取队首和队尾元素等。
这些操作虽然不是必要的,但是在实际的应用中却非常实用,可以方便我们处理队列中的元素。
我们在实验中还掌握了一些编程技巧和调试工具,来提高程序的效率和可靠性。
c语言队列数据结构

c语言队列数据结构队列是一种常见的数据结构,它遵循先进先出(FIFO)的原则。
在C语言中,我们可以使用数组或链表来实现队列数据结构。
本文将介绍C语言中队列的实现方法及其应用。
一、数组实现队列数组是一种简单且常用的数据结构,可以用来实现队列。
在C语言中,我们可以使用数组来创建一个固定大小的队列。
下面是一个使用数组实现队列的示例代码:```c#include <stdio.h>#define MAX_SIZE 100int queue[MAX_SIZE];int front = -1;int rear = -1;void enqueue(int data) {if (rear == MAX_SIZE - 1) {printf("队列已满,无法插入元素。
\n");return;}if (front == -1) {front = 0;}rear++;queue[rear] = data;}void dequeue() {if (front == -1 || front > rear) {printf("队列为空,无法删除元素。
\n"); return;}front++;}int getFront() {if (front == -1 || front > rear) {printf("队列为空。
\n");return -1;}return queue[front];}int isEmpty() {if (front == -1 || front > rear) {return 1;}return 0;}int main() {enqueue(1);enqueue(2);enqueue(3);printf("队列的第一个元素:%d\n", getFront());dequeue();printf("队列的第一个元素:%d\n", getFront());return 0;}```在上述代码中,我们使用了一个数组`queue`来存储队列的元素。
c语言中循环结构

c语言中循环结构循环结构在C语言中是一种非常重要的控制结构,它能够让程序重复执行某段代码,实现代码的复用和效率的提高。
循环结构主要有三种形式:while循环、do-while循环和for循环。
1. while循环while循环是一种先判断条件再执行的循环结构。
它的语法形式如下:```while (条件) {循环体语句;}```在循环开始之前,先判断条件是否成立,如果条件成立,则执行循环体语句;否则,跳过循环体语句,继续执行后面的代码。
循环体执行完毕后,再次判断条件是否成立,如果成立,则继续执行循环体语句,直到条件不成立为止。
2. do-while循环do-while循环和while循环类似,不同之处在于它是先执行循环体,再判断条件是否成立。
它的语法形式如下:```do {循环体语句;} while (条件);```在循环开始时,先执行循环体语句,然后判断条件是否成立,如果条件成立,则继续执行循环体语句,否则跳出循环。
3. for循环for循环是一种常用的循环结构,它的语法形式如下:```for (初始化表达式; 条件表达式; 更新表达式) {循环体语句;}```for循环的执行顺序是先执行初始化表达式,然后判断条件是否成立,如果条件成立,则执行循环体语句;执行完循环体语句后,再执行更新表达式,再次判断条件是否成立,以此类推。
当条件不成立时,跳出循环。
循环结构的应用非常广泛,可以用于处理各种重复性任务,比如计算数列的和、输出九九乘法表等。
下面以计算数列的和为例,演示这三种循环结构的使用。
我们来看一下使用while循环计算数列的和的代码:```#include <stdio.h>int main() {int n = 10; // 数列的长度int sum = 0; // 数列的和int i = 1; // 循环变量while (i <= n) {sum += i;i++;}printf("数列的和为:%d\n", sum);return 0;}```在这段代码中,我们使用while循环从1开始累加到n,得到数列的和。
实验8 队列(循环队列)的表示和实现

浙江大学城市学院实验报告课程名称数据结构基础实验项目名称实验八队列(循环队列)的表示和实现实验成绩指导老师(签名)日期一.实验目的和要求1、掌握队列的存储结构及基本操作。
2、掌握循环队列的设置及循环队列的各种基本操作的实现。
3、通过具体的应用实例,进一步熟悉和掌握队列的实际应用。
二.实验内容1、建立头文件test8.h,定义顺序存储的循环队列存储结构,并编写循环队列的各种基本操作实现函数。
同时建立一个验证操作实现的主函数文件test8.cpp,编译并调试程序,直到正确运行。
说明:队列的基本操作可包括:①void InitQueue (Queue &Q); //构造一个空队列Q②int EmptyQueue (Queue Q);//判断队列Q是否为空,若空返回1,否则返回0③void EnQueue (Queue &Q, ElemType item); //元素item 进队列Q④ElemType OutQueue (Queue &Q); //队头元素出队列Q,并返回其值⑤ElemType PeekQueue (Queue Q); //返回队头元素值⑥void ClearQueue (Queue &Q); //清空队列2、应用(选做部分):编写程序,实现舞伴问题:假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队,跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴,若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求设计一个函数void partner(),模拟上述舞伴配对问题。
基本要求:1)由键盘输入数据,每对数据包括姓名和性别;2)输出结果包括配成舞伴的女士和男士的姓名,以及未配对者的队伍名称和队头者的姓名;3)要求利用test8.h中已实现的顺序循环队列的基本操作函数来实现。
函数void partner()添加到文件test8.cpp中,在主函数中进行调用测试。
实现循环队列的入队出队等基本操作

实现循环队列的入队出队等基本操作循环队列是一种特殊的队列数据结构,通过循环利用数组空间来实现入队和出队操作。
它的特点是队头和队尾可以在数组上循环移动,从而充分利用数组空间,提高队列的效率。
下面将详细介绍循环队列的实现。
1.定义循环队列的数据结构循环队列的数据结构由以下几个成员组成:-一个固定大小的数组,用于存储队列元素。
- 一个队头指针front,指向队列的第一个元素。
- 一个队尾指针rear,指向队列的最后一个元素的下一个位置。
2.初始化循环队列首先,我们需要在内存中分配一个固定大小的数组,并初始化队头和队尾指针为0。
```pythondef __init__(self, k: int):self.queue = [0] * kself.front = self.rear = 0```3.入队操作入队操作会在队尾插入一个新元素,并将队尾指针后移一位。
如果队列已满,则入队操作会失败。
```pythondef enqueue(self, value: int) -> bool:if self.isFull(:return Falseself.queue[self.rear] = valueself.rear = (self.rear + 1) % len(self.queue)return True```4.出队操作出队操作会删除队头元素,并将队头指针后移一位。
如果队列为空,则出队操作会失败。
```pythondef dequeue(self) -> bool:if self.isEmpty(:return Falseself.front = (self.front + 1) % len(self.queue)return True```5.判空操作判空操作会检查队头和队尾指针是否相等,如果相等则说明队列为空。
```pythondef isEmpty(self) -> bool:return self.front == self.rear```6.判满操作判满操作会检查队尾指针的下一位是否等于队头指针,如果相等则说明队列已满。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环队列的学习解析以及C语言实现
首先我们先来了解一下队列的概念:队列是一种先进先出的线性表只能在表头删除在表尾插入,操作系统的作业队列就是队列的一个很好的应用。
也有可以在两端均可进行插入和删除操作的队列,称为双端队列,但其用处并没有一般队列广泛。
ADT Queue {
数据对象:
D={ai | ai∈ElemSet, i=1,2,...,n, n≥0}
数据关系:
R1={ <a i-1,ai > | ai-1, ai ∈D, i=2,...,n}
(约定其中a1端为队列头,an端为队列尾)
基本操作:
InitQueue(&Q) 初始化队列
DestroyQueue(&Q) 销毁队列
QueueEmpty(Q) 判断队列空否
QueueLength(Q) 求取队长
GetHead(Q, &e) 取对头元素
ClearQueue(&Q) 清空对列
EnQueue(&Q, e) 入队一个元素
DeQueue(&Q, &e) 出队一个元素
QueueTravers(Q, visit())访问队列}ADT Queue
队列也有两种存储结构,分别是顺序存储和链式存储。
队列的顺序结构和顺序表以及顺序栈的存储结构类似,他们所运用的都是一组地址连续的存储。
其中队列需要附设两个整形变量front 和rear 分别指示队列头元素和队列的尾元素的位置。
(1)空队列 (2)a,b,,c 相继入队
由于顺序队列所分配的空间有限,根据队列入队和出队的特点可能发生“假溢出”现象,即队尾元素无法在前移。
解决的办法就是将队列抽象成为环状,即循环队列。
c b a 5 4 3 2 1 0 Q.rear →
Q.fron → Q.rea → Q.fron
→
循环队列
以下是循环队列的几种主要的操作以及C 语言实现:
/********循环队列的数据结构***********/
#define MAXQSIZE 10
typedef struct
{
QElemType *base;
int front;
int rear;
} SqQueue;
1、循环队列的初始化
Status InitQueue(SqQueue &Q)
{ 队空条件:Q.front=Q.rear
队满条件:(Q.rear+1)%MAXQSIZE
{ //构建一个空队列
Q.base = new QElemType[MAXQSIZE];
if( Q.base = NULL) //存储分配失败
exit(OVERFLOW) ;
Q.front = Q.rear = 0; //头尾指针置为零,队列为空return OK;
}
2、求循环队列长度
int QueueLength(Squeue Q)
{
return (Q.rear - Q.front + MAXQSIZE )%MAXQSIZE;
}
3、入队
Status EnQueue (SqQueue &Q , QElemType e) {
if((Q.rear+1)%MAXQSIZe == Q.front)
return ERROW;
Q.base[Q.rear] = e;
Q.rear = (Q.rear + 1) %MAXQSIZE;
return OK:
}
4、出队
Status DeQueue(SqQueue &Q,QElemType &e) {
if(Q.front==Q.rear)
return ERROW;
e=Q.base[Q.front];
Q.front = (Q.front + 1 )%MAXQSIZE; return OK;
}
5、取队头元素
SElemType GetHead(SqQueue Q) {
if(Q.front ! = Q.rear)
return Q.base[Q.front];
}
队列的链式表示和实现。
/********队列的链式存储结构********/ typedef struct QNonde
{
QElemType date;
struct QNode *next;
} QNode,QueuePtr;
typedef struct
{
QueuePtr front;
QueuePtr rear;
}LinkQueue;
1、初始化
Status InitQueue(LinkQueue &Q) {
Q.front = Q.rear = new QNode;
Q>front -> next = NULL;
return OK;
}
2、入队
Status EnQueue(LinkQueue &Q,QElemType e) {
p = new QNode ;
p -> date = e;
p -> next = NULL;
Q.rear -> next = p;
Q.rear = p;
return OK;
}
3、出队
Status Dequeue(LinkQueue &Q,QElemType &e) {
if(Q.front == Q.rear)
return ERROR;
e = p -> date;
Q.front -> next = p -> next;
if(Q.rear == p)
Q.rear = Q.front;
delete p;
return OK;
}
4、取队头元素
SElemType GetHead(LinkQueue Q)
{
if(Q.front != Q.rear)
return Q>front->next->date; }。