555芯片的常用电路应用
555芯片内部原理及经典应用

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。
555定时器配以外部元件,可以构成多种实际应用电路。
广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。
2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。
555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。
双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。
2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。
2.2 555定时器的电路组成图2-2为555芯片的内部等效电路U31kBJT_NPN_VIRTUAL2-2 555定时器电路组成5G555定时器内部电路如图所示, 一般由分压器、比较器、触发器和开关。
及输出等四部分组成,这里我们主要介绍RS 触发器和电压比较器。
2.2.1基本RS 触发器原理如图2-3是由两个“与非”门构成的基本R-S 触发器, RD 、SD 是两个输入端,Q 及是两个输出端。
QQRDSD2-3 RS 触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。
555定时器的原理及三种应用电路

试验十 555定时器的原理及三种应用实验内容1.连接施密特触发器电路,分别输入正弦波、锯齿波信号,观察并记录输入输出波形。
电路如下图:输入正弦波时的波形:输入三角波时的波形:2.设计一个驱动发光二级管的定时器电路,要求每接收到负脉冲时,发光管持续点亮二秒后熄灭。
由电路要求知要用单稳态触发器电路,脉冲宽度为Tw=1.1RC,选取R=2KΩ,C=1.1μF,电路如下所示:波形图如下:3.连接多放谐振荡电路电路,取R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF观察、记录VCr、Vo的同步波形,测出Vo的周期并与估算值进行比较。
改变参数R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF用示波器观察并测量输出波形的频率。
与理论值比较,算出频率的相对误差值。
电路如图所示:R1=1KΩ,R2=10KΩ,C1=0.1μF,C2=0.2μF时的波形图:实验模拟结果:Vo周期To=1.5ms,VCr周期Tc=1.5ms,F=1/T=0.67KHz 理论计算值为:T=0.7*(R1+2R2)*C1=1.47ms,频率f=1/T=0.68KHz频率的相对误差为:ІF-fІ/f=1.47%R1=15KΩ,R2=5KΩ,C1=0.033μF,C2=0.1μF时的波形图:实验模拟结果:Vo周期To=0.6ms期Tc=0.6ms,频率F=1/T=1.67KHz理论计算值为:T=0.7*(R1+2R2)*C1=0.5775频率f=1/T=1.73KHz频率的相对误差为:ІF-fІ/f=3.47%4.用NE556时基电路功能实现救护车警铃电路,用555的两个时基电路构成低频对高频调制的救护车警铃电路。
555时基电路及其应用实验报告

555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。
二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。
按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。
注意检查接线是否正确,以确保电路能够正常工作。
2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。
通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。
记录下不同参数下的波形特征,并进行分析和比较。
3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。
通过改变电路的连接方式和参数设置,可以实现不同的应用功能。
例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。
四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。
在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。
通过改变电阻和电容的数值,可以调节频率的范围。
而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。
2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。
脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。
定时器电路可以在预设的时间段内控制其他电路的工作状态。
五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。
555芯片常用电路应用

555芯片引脚图555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为 555,用 CMOS 工艺制作的称为 7555,除单定时器外,还有对应的双定时器 556/7556。
555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在 3~18V 工作,输出驱动电流约为 200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555引脚图如下所示。
555引脚图555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.555属于cmos工艺制造.555引脚图介绍如下1地 GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc单稳类电路单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
555芯片定时电路

555芯片定时电路555芯片是一种广泛应用于定时电路的集成电路。
它具有可调节的稳定多谐振荡器和一个比较器,可以根据输入信号的频率和幅度来生成输出波形。
本文将介绍555芯片的工作原理、应用场景以及调节定时电路的方法。
一、555芯片的工作原理555芯片由电压比较器、RS触发器、RS锁存器、发生器和输出级组成。
当电源电压施加到芯片上时,发生器开始工作,产生一个方波信号。
根据输入引脚上的不同电平,比较器会判断方波信号的高低电平,从而改变输出引脚的电平状态。
通过调节外部电阻和电容,可以改变方波信号的频率和占空比,实现定时电路的功能。
二、555芯片的应用场景1. 脉冲发生器:555芯片可以产生各种各样的脉冲信号,如方波、正弦波、三角波等。
这些脉冲信号在实际应用中被广泛用于时钟信号、定时器、频率计等领域。
2. 延时器:通过调节外部电阻和电容,可以实现不同的延时功能。
这在需要控制设备启动或停止时间的场景中非常有用,如定时灯、定时开关等。
3. 调制解调器:555芯片可以实现调制解调器的功能,将模拟信号转换为数字信号,实现信息的传输和接收。
4. 脉冲宽度调制:通过调节电阻和电容的数值,可以改变输出方波信号的占空比,从而实现脉冲宽度的调制。
这在直流电机的速度控制、LED灯的亮度调节等方面有广泛的应用。
三、调节定时电路的方法1. 改变电阻值:通过改变电阻的数值,可以改变电荷和放电的速率,从而改变定时电路的周期和频率。
电阻值越大,周期越长,频率越低;电阻值越小,周期越短,频率越高。
2. 改变电容值:通过改变电容的数值,可以改变电荷和放电的时间常数,从而改变定时电路的周期和频率。
电容值越大,周期越长,频率越低;电容值越小,周期越短,频率越高。
3. 调节电源电压:改变电源电压的大小,可以改变芯片内部的电流流动速度,从而改变定时电路的周期和频率。
电压越高,周期越短,频率越高;电压越低,周期越长,频率越低。
总结:555芯片是一种功能强大的定时电路集成电路,具有广泛的应用场景。
555振荡电路芯片

555振荡电路芯片555振荡电路芯片是一种常见且广泛应用的集成电路芯片,通常用于产生稳定的方波信号或脉冲信号。
它是由美国电子工程师汉肯(Hans R. Camenzind)于1971年设计并推出的,由于其工作稳定性和多种应用场景,成为了电子工程师们常用的一种集成电路。
555振荡电路芯片内部结构简单,主要由比较器、RS触发器、放大器和电压稳定器组成。
它的输入引脚包括正常工作电压引脚Vcc和地引脚GND,以及外部引脚TRIGGER、THRESHOLD、RESET、OUT和DISCHARGE。
这些引脚通过外部元件的连接,可以实现不同类型的振荡和脉冲信号输出。
555振荡电路芯片常见的应用有以下几种:1.方波发生器:利用555振荡电路芯片的特性,可以很方便地实现稳定的方波信号输出。
通过调节电阻和电容的数值,可以控制方波的频率和占空比。
2.时钟电路:555振荡电路芯片可以产生稳定的脉冲信号,常用于数字系统的时钟电路。
通过调节电阻和电容的数值,可以控制脉冲信号的频率。
3.脉冲宽度调制(PWM):PWM是一种常见的调制技术,在电机控制、LED亮度调节等领域广泛应用。
通过调节电阻和电容的数值,可以控制PWM信号的频率和占空比,进而实现对输出信号的精确控制。
4.延时器:在某些场合,需要实现一定时间的延时操作。
555振荡电路芯片可以非常方便地实现延时功能,通过调节电阻和电容的数值,可以实现不同的延时时间。
5.触发器:通过改变输入引脚的电平状态,可以触发555振荡电路芯片的输出状态。
这种触发器在数字逻辑电路、传感器触发等应用中经常使用。
总的来说,555振荡电路芯片具有结构简单、使用方便、稳定性好的特点,被广泛应用于电子系统中。
无论是在实验室中的电子电路设计,还是在工业控制、通信设备、自动化系统等领域,都可以看到它的身影。
它不仅是电子工程师们的得力助手,也推动了电子技术的发展和应用的普及。
555芯片内部原理及经典应用

555芯片内部原理及经典应用首先,555芯片内部的电压比较器根据输入电压的大小决定输出信号的高低电平。
其次,双稳态多谐振荡器是555芯片的核心部件,它由两个电容器和三个电阻器组成。
其中,一个电容器负责充电,另一个负责放电,而电阻器则用于调节充、放电过程的时间。
当电容器充满电压时,输出信号为高电平;当电容器放电时,输出信号为低电平。
根据电容器的充放电时间及输出信号的高低电平,可以形成不同的波形。
这种双稳态多谐振荡器的特性使得555芯片可以用于多种应用中。
以下是其中几个经典的应用:1.时钟发生器:555芯片可通过调节电容器充放电的时间来产生稳定的方波信号,用作计时器或驱动时钟。
通过改变电阻器的数值,可以调节输出信号的频率,以满足不同应用的需要。
2.脉冲产生器:555芯片能够产生具有可调频率和占空比的脉冲信号。
通过调节电阻器和电容器的数值,可以控制输出脉冲的频率和持续时间。
3.延时器:555芯片能够以输入电平的上升沿或下降沿触发,产生一段可调的延时时间后,输出一个高电平或低电平信号。
这种特性可用于延时触发、时序控制等应用中。
4.频率测量器:在555芯片的稳定多谐振荡模式下,通过将待测信号输入到555芯片的电压比较器进行比较,然后测量输出脉冲的频率,可以实现对待测信号频率的测量。
5.环境亮度控制器:通过将555芯片与光敏电阻等光敏元件相连,测量环境亮度并调节输出信号的占空比,可以实现对环境亮度的自动控制。
除了以上应用外,555芯片还可以用于温度测量、声音闪光灯、警报器等其他领域。
总之,555芯片以其多功能、稳定性和易于调节的特点,在电子电路领域应用广泛。
不仅能够实现各种信号的产生、控制和测量,还能够适应不同的电气环境和需求。
555集成电路应用800例

555集成电路应用800例摘要:一、引言1.集成电路概述2.555集成电路简介二、555集成电路的应用领域1.信号处理2.控制器3.模拟电路4.数字电路三、555集成电路的基本原理1.内部结构2.工作原理四、555集成电路的关键参数1.电阻2.电容3.电感五、555集成电路的典型应用电路1.施密特触发器2.多谐振荡器3.脉冲发生器4.电压控制器六、555集成电路的选用与安装1.型号选择2.封装与引脚3.安装与测试七、555集成电路的故障诊断与维修1.故障诊断方法2.维修策略八、555集成电路的应用案例1.音频放大器2.频率计数器3.温度控制器4.无线通信模块九、总结与展望1.555集成电路的重要性2.发展趋势与应用前景正文:一、引言1.集成电路概述集成电路(Integrated Circuit,简称IC)是一种电子元器件,它将多个电子器件及其互连电路集成在同一半导体材料基片上,具有体积小、性能稳定、功能强大等特点。
集成电路在现代电子技术中有着广泛的应用,是电子设备的核心部分。
2.555集成电路简介555集成电路,又称555定时器,是一种常用的CMOS数字集成电路。
它具有两个输入端(INH和GND)、一个输出端(OUT)以及一个控制端(THRESHOLD和TRIGGER)。
555定时器广泛应用于信号处理、控制器、模拟电路和数字电路等领域。
二、555集成电路的应用领域1.信号处理555集成电路可用于信号处理,如滤波、放大、积分、微分等。
通过搭建不同类型的滤波器,可以实现对信号的降噪、放大等处理。
2.控制器555集成电路可作为控制器,对其他电子器件进行控制。
例如,它可以用于实现电机控制、灯光控制等功能。
3.模拟电路555集成电路可用于搭建各种模拟电路,如电压跟随器、电压调整器等。
通过合理设计电路,可以实现对模拟信号的处理和控制。
4.数字电路555集成电路可作为数字电路的核心器件,用于实现计数、定时、报警等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单稳类电路
单稳工作方式,它可分为3种。
见图示。
第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。
他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第3种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为
1
简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。
图中列出了2个常用电路。
双稳类电路
这里我们将对555双稳电路工作方式进行总结、归纳。
555双稳电路可分成2种。
第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。
单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6
端输入。
第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻
2
调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。
双稳电路的输入端的输入电压端一般没有定时电阻和定时电容。
这是双稳工作方式的结构特点。
2.2.2单元电路中的C1只起耦合作用,R1和R2起直流偏置作用。
无稳类电路
第三类是无稳工作方式。
无稳电路就是多谐振荡电路,是555电路中应用最广的一类。
电路的变化形式也最多。
为简单起见,也把它分为三种。
第一种(见图1)是直接反馈型,振荡电阻是连在输出端VO的。
第二种(见图2)是间接反馈型,振荡电阻是连在电源VCC上的。
其中第1个单
3。