2015-2016年山东省济宁市微山二中八年级上学期期末数学试卷与答案

合集下载

山东省济宁市八年级上学期数学期末考试卷

山东省济宁市八年级上学期数学期末考试卷

山东省济宁市八年级上学期数学期末考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·港北期中) 有长度为1,2,3,4的四条线段,任选其中三条线段组成一个三角形,则最多能组成三角形的的个数为()A . 1个B . 2个C . 3个D . 4个2. (2分)若等腰三角形的一角为100°,则它的底角是()A . 20°B . 40°C . 60°D . 80°3. (2分) (2020八下·柯桥期末) 如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A . AB≠ACB . PB=PCC . ∠APB=∠APCD . ∠B≠∠C4. (2分) (2017八上·西湖期中) 给出下面个式子:① ;② ;③ ;④ ;⑤ ,其中不等式有().A . 个B . 个C . 个D . 个5. (2分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A . (﹣a,b﹣2)B . (﹣a,b+2)C . (﹣a+2,﹣b)D . (﹣a+2,b+2)6. (2分) (2020八下·南康月考) 如图,在□ABCD中,延长CD到E ,使DE=CD ,连接BE交AD于点F ,交AC于点G .下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF ,其中正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2018八上·临安期末) 在平面直角坐标系中,点 M(a2+1,-3)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2020九下·长春月考) 不等式的解集在数轴上表示正确的是()A .B .C .D .9. (2分) (2016八下·枝江期中) 如图,已知正方形B的面积为144,正方形C的面积为169时,那么正方形A的面积为()A . 313B . 144C . 169D . 2510. (2分) (2019八下·钦州期末) 如图,直线经过和两点,则不等式的解集为()A .B .C .D .二、填空题 (共5题;共7分)11. (1分)能够完全重合的两个图形叫做________.12. (2分) (2019七下·封开期末) 不等式x-3>-4的解集是________。

2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】

2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】

2015-2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( ) A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( ) A.x <2 B.x >2 C.x ≠2 D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A.1,2,3 B.1,5,5 C.3,3,6 D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+B.632a a a =•C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106 B.2.5×105 C.2.5×10-5 D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()。

A.50°B.80°C.50°或80°D.40°或65°9.把多项式x32分解因式结果正确的是()x+x-2A.2)12(2xx- D.)1x C.)xx(-xx B.2)1(+x-xx)(1(+10.多项式x()22中,一定含下列哪个因式()。

x+x--2A.2x+1B.x(x+1)2C.x(x2-2x)D.x(x-1)11.如图,在△ABC中,∠BAC=110°,MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20°B.40°C.50°D.60°12.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12B.10C.8D.614. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是()cm2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

【精品】2015-2016年山东省济宁市微山二中八年级(上)期末数学试卷带答案

【精品】2015-2016年山东省济宁市微山二中八年级(上)期末数学试卷带答案

2015-2016学年山东省济宁市微山二中八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.132.(3分)点(4,5)关于y轴对称的点的坐标为()A.(﹣4,5)B.(﹣4,﹣5)C.(4,﹣5)D.(3,5)3.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50°B.80°C.50°或80°D.20°或80°4.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2 D.3a+2a=5a25.(3分)如图,在△ABC中,BC=5,AD为BC边上的中线,∠ADB=60°,将△ABD沿线段AD翻折,点B翻折到点B′的位置,连接CB′,则CB′的长为()A.5 B.2.5 C.2 D.36.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.7.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤58.(3分)因式分解(x﹣1)2﹣9的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)9.(3分)如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4 B.5 C.6 D.710.(3分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5 B.4 C.3 D.2二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若(x2﹣x+3)(x﹣q)的乘积中不含x2项,则q=.12.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.13.(3分)若x2﹣kx+1是完全平方式,则k=.14.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.15.(3分)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.三、解答题(本大题共7小题,共55分)16.(6分)计算(1)(8x2y﹣4x4y3)÷(﹣2x2y)(2)(3x﹣2)(2x+3)﹣(x﹣1)2.17.(6分)因式分解(1)y3﹣6xy2+9x2y(2)(a+2)(a﹣2)+3.18.(7分)已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B两边的距离相等(尺规作图,保留作图痕迹).19.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.20.(8分)如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.21.(9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.(11分)四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系;(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是,线段EF与AF、BF的等量关系是;②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是;(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.2015-2016学年山东省济宁市微山二中八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.13【解答】解:设第三边长为x,则由三角形三边关系定理得9﹣4<x<9+4,即5<x<13.因此,本题的第三边应满足5<x<13,把各项代入不等式符合的即为答案.只有12符合不等式,故答案为12.故选C.2.(3分)点(4,5)关于y轴对称的点的坐标为()A.(﹣4,5)B.(﹣4,﹣5)C.(4,﹣5)D.(3,5)【解答】解:根据平面直角坐标系中关于y轴的对称点的坐标的特点,∴点(4,5)关于y轴对称的点的坐标为(﹣4,5).故选A.3.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当100°角是顶角和一底角的和,则另一个底角=180°﹣100°=80°,所以顶角=100°﹣80°=20°;②当100°角是两底角的和,则顶角=180°﹣100°=80°;故选D.4.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2 D.3a+2a=5a2【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.5.(3分)如图,在△ABC中,BC=5,AD为BC边上的中线,∠ADB=60°,将△ABD沿线段AD翻折,点B翻折到点B′的位置,连接CB′,则CB′的长为()A.5 B.2.5 C.2 D.3【解答】解:如图,由题意得:∠ADB′=∠ADB=60°;DB′=DB;∴∠B′DC=180°﹣120°=60°;∵BC=5,AD为BC边上的中线,∴DC=DB=2.5,DB′=DC=2.5,∴△B′DC为等边三角形,∴CB′=DC=2.5,故选B.6.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.【解答】解:9y=7即32y=7,则3x﹣2y=3x÷32y=.故选B.7.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5【解答】解:∠AOB的平分线上一点P到OA的距离为5则P到OB的距离为5因为Q是OB上任一点,则PQ≥5故选B.8.(3分)因式分解(x﹣1)2﹣9的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)【解答】解:(x﹣1)2﹣9,=(x﹣1+3)(x﹣1﹣3),=(x+2)(x﹣4).故选B.9.(3分)如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4 B.5 C.6 D.7【解答】解:∵∠A=∠P1P2A=16°∴∠P2P1P3=32°,∠P1P3P2=32°∴∠P1P2P3=116°∴∠P3P2P4=48°∴∠P3P2P4=48°∴∠P2P3P4=96°∴∠P4P3P5=52°∴∠P3P5P4=52°∴∠P3P4P5=52°∴∠P5P4P6=76°∴∠P4P6P5=76°∴∠P4P5P6=28°∴∠P6P5P7=86°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选B.10.(3分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5 B.4 C.3 D.2【解答】解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=10,∴在Rt△DEG中,DG=ED=×10=5,∴DF=DG=5.故选A.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若(x2﹣x+3)(x﹣q)的乘积中不含x2项,则q=﹣1.【解答】解:原式=x3﹣qx2﹣x2+qx+3x﹣3q=x3﹣(q+1)x2+(q+3)x﹣3q,∵乘积中不含x2项,∴﹣(q+1)=0,∴q=﹣1.故答案为:﹣1.12.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.13.(3分)若x2﹣kx+1是完全平方式,则k=2或﹣2.【解答】解:原式可化为知x2﹣kx+12,可见当k=2或k=﹣2时,原式可化为(x+1)2或(x﹣1)2,故答案为2或﹣2.14.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.15.(3分)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8个.【解答】解:如图所示,使得△AOP是等腰三角形的点P共有8个.故答案为:8.三、解答题(本大题共7小题,共55分)16.(6分)计算(1)(8x2y﹣4x4y3)÷(﹣2x2y)(2)(3x﹣2)(2x+3)﹣(x﹣1)2.【解答】解:(1)原式=8x2y÷(﹣2x2y)﹣4x4y3÷(﹣2x2y)=﹣4+2x2y2;(2)原式=6x2+5x﹣6﹣x2+2x﹣1=5x2+7x﹣7.17.(6分)因式分解(1)y3﹣6xy2+9x2y(2)(a+2)(a﹣2)+3.【解答】解:(1)原式=y(y2﹣6xy+9x2)=y(y﹣3x)2;(2)原式=a2﹣4+3=a2﹣1.18.(7分)已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B 两边的距离相等(尺规作图,保留作图痕迹).【解答】解:如图所示:①作∠B的角平分线;②作DE中垂线;③两直线的交点就是所求作的点P.19.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.【解答】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,=AB•DE+AC•DF=28,∴S△ABC即×20×DE+×8×DF=28,解得DE=2cm.20.(8分)如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.【解答】解:△BFC是等腰三角形.理由如下:在△ABE和△ACD中,,∴△ABE≌△ACD.∴AB=AC.∴∠ABC=∠ACB.∴∠ABC﹣∠ABE=∠ACB﹣∠ACD.即∠FBC=∠FCB.∴△BFC是等腰三角形.21.(9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.22.(11分)四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系EF=AF ﹣BF;(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是△ABF≌△DAE,线段EF与AF、BF的等量关系是EF=BF﹣AF;②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是EF=AF+BF;(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAE=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,∵在△ABF和△DAE中,∴△ABF≌△DAE(AAS);(2)解:线段EF与AF、BF的等量关系是EF=AF﹣BF,理由是:∵由(1)知:△ABF≌△DAE,∴BF=AE,∴EF=AF﹣AE=AF﹣BF,故答案为:EF=AF﹣BF;(3)①解:△ABF≌△DAE,EF=BF﹣AF,理由是:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAE=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,∵在△ABF和△DAE中,∴△ABF≌△DAE(AAS);∴AE=BF,∴EF=AE﹣AF=BF﹣AF,故答案为:△ABF≌△DAE,EF=BF﹣AF;②解:EF=AF+BF,理由是:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAF=180°﹣90°=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,∵在△ABF和△DAE中,∴△ABF≌△DAE(AAS);∴AE=BF,∴EF=AE+AF=AF+BF,故答案为:EF=AF+BF;(4)解:与以上证法类似:△ABF≌△DAE(AAS);∴AE=BF,∴EF=AE﹣AF=BF﹣AF;即EF=BF﹣AF.。

济宁市微山县2015-2016学年八年级上期中数学试卷含答案解析

济宁市微山县2015-2016学年八年级上期中数学试卷含答案解析

2015-2016学年山东省济宁市微山县八年级(上)期中数学试卷一、精心选一选(本大题共10个小题,共30分,在每题所给出的四个选项中,只有一项是符合题意的额,把所选项前的字母代号填在卷Ⅱ的答题栏内,相信你一定能选对!)1.如图所示,图中三角形的个数共有()A.1个B.2个C.3个D.4个2.已知△ABC≌△DEF,那么EF的对应边是()A.AB B.BC C.CA D.DE3.下面四省电视台标示图案中,属于轴对称图形的是()A.B.C.D.4.将一副三角板按图所示的摆放,那么∠1的度数等于()A.75° B.65° C.55° D.45°5.如果点P(a,2015)与点Q(2016,b)关于x轴对称,那么a+b的值等于()A.﹣4031 B.﹣1 C.1 D.40316.已知a,b,c是△ABC的三边长,其中a,b是二元一次方程组的解,那么c的值可能是下面四个数中的()A.2 B.6 C.10 D.187.如图,AD是△ABC的中线,DE是△ADC的高线,AB=3,AC=5,DE=2,那么点D到AB的距离是()A.B.C.D.28.将一个多边形按图所示减掉一个角,所得多边形的内角和为1800°,那么原多边形的边数是()A.10 B.11 C.12 D.139.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①② B.①④ C.②③ D.③④10.我们都有这样的生活经验,要想使多边形(三角形除外)木架不变形至少再钉上若干根木条,如图所示,四边形至少再钉上一根;五边形至少再钉上两根;六边形至少再钉上三根;…,按照此规律,十边形至少再钉上()A.9根B.8根C.7根D.6根二、细心填一填(本大题共有5小题,每小题3分,共15分,请把结果直接填在题中的横线上,只要你仔细运算,积极思考,相信你一定能填对!)11.在画三角形的三条重要线段(角平分线、中线和高线)时,不一定画在三角形内部的是.12.一个等腰三角形的两边分别为5和6,则这个等腰三角形的周长是.13.如图所示,BD是四边形ABCD的对角线,AD∥CB,请添加一个条件,使△ABD≌△CDB,这个添加的条件可以是.(只需填一个,不添加辅助线)14.如图,线段AB与线段CD关于直线L对称,点P是直线L上一动点,测得:点D与点A之间的距离为8cm,点B与点D之间的距离为5cm,那么PA+PB的最小值是.15.已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F,那么线段BE,CE,AF三者之间的数量关系是.三、认真答一答(本大题共7题,满分55分,只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程。

济宁市微山县2015-2016年八年级上第二次段考数学试卷含解析

济宁市微山县2015-2016年八年级上第二次段考数学试卷含解析

山东省济宁市微山县2015-2016学年八年级(上)第二次段考数学试卷一、选择题(每题3分,计30分,)1.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a22.因式分解x2y﹣4y的正确结果是()A.y(x+2)(x﹣2)B.y(x+4)(x﹣4)C.y(x2﹣4)D.y(x﹣2)23.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y24.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.15.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.7 D.7或﹣16.下列各式是完全平方式的是()A.a2+ab+b2B.1+4x2C.x2﹣x+D.x2+2x﹣17.下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)8.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+99.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm10.已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xy B.2x2y2﹣2y+3xy C.2x2y3+2y﹣3xy D.2x2y3+y﹣3xy二、填空题(每题3分,计15分)11.若(﹣7m+A)(4n+B)=16n2﹣49m2,则A=,B=.12.若实数a满足a2+a=1,则﹣2a2﹣2a+2015=.13.如果x2+mx+6=(x﹣3)(x﹣n),则m+n的值为.14.观察下列各式,找规律:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5,第n个等式是.(n是正整数)15.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.三、解答题(共55分)16.把下列多项式分解因式(1)x3﹣9x(2)4a3﹣12a2+9a(3)6x(a﹣b)+4y(b﹣a)(4)9(a+b)2﹣25(a﹣b)2.17.解方程或不等式(1)(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;(2)(x+1)(x﹣1)+8>(x+5)(x﹣1).18.计算(1)20152﹣2014×2016(2)(15x2y﹣10xy2)÷(﹣5xy)(3)(﹣0.25)11×(﹣4)12(4)1002﹣992+982﹣972+…22﹣1.19.若3x=,3y=,求9x﹣y的值.20.已知a=,b=,则(a+b)2﹣(a﹣b)2的值.21.若|a+2|+a2﹣4ab+4b2=0,求a、b的值.22.微山县鹿鸣小区内有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,物业部门计划将这块空地进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当a=8,b=7时的绿化面积.2015-2016学年山东省济宁市微山县八年级(上)第二次段考数学试卷参考答案与试题解析一、选择题(每题3分,计30分,)1.下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键.2.因式分解x2y﹣4y的正确结果是()A.y(x+2)(x﹣2)B.y(x+4)(x﹣4)C.y(x2﹣4)D.y(x﹣2)2【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再根据平方差公式进行二次分解即可求得答案.【解答】解:x2y﹣4y=y(x2﹣4)=y(x2﹣22)=y(x+2)(x﹣2).故选A.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.3.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y2【考点】幂的乘方与积的乘方.【分析】根据积的乘方的知识求解即可求得答案.【解答】解:(2x3y)2=4x6y2.故选:A.【点评】本题考查了积的乘方,一定要记准法则才能做题.4.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.1【考点】因式分解-提公因式法.【分析】首先提取公因式ab,进而分解因式将已知代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故选:B.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5.若x2+2(m﹣3)x+16是完全平方式,则m的值等于()A.3 B.﹣5 C.7 D.7或﹣1【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可.【解答】解:∵x2+2(m﹣3)x+16是完全平方式,∴m﹣3=±4,解得:m=7或﹣1,故选D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.下列各式是完全平方式的是()A.a2+ab+b2B.1+4x2C.x2﹣x+D.x2+2x﹣1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.【解答】解:根据完全平方公式:(a±b)2=a2±2ab+b2.A,B,D不是完全平方公式,C正确;故选:C.【点评】本题是完全平方公式的应用,熟记公式结构:两数的平方和,再加上或减去它们积的2倍,是解题的关键.7.下列变形正确的是()A.a+b﹣c=a﹣(b﹣c)B.a+b+c=a﹣(b+c)C.a﹣b+c﹣d=a﹣(b﹣c+d)D.a﹣b+c﹣d=(a﹣b)﹣(c﹣d)【考点】去括号与添括号.【分析】分别利用去括号以及添括号法则分析得出即可.【解答】解;A、a+b﹣c=a+(b﹣c),故此选项错误;B、a+b+c=a+(b+c),故此选项错误;C、a﹣b+c﹣d=a﹣(b﹣c+d),此选项正确;D、a﹣b+c﹣d=(a﹣b)+(c﹣d),故此选项错误;故选:C.【点评】此题主要考查了去括号以及添括号法则,正确掌握法则是解题关键.8.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【考点】因式分解-运用公式法.【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.9.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.6cm B.5cm C.8cm D.7cm【考点】一元一次方程的应用.【专题】几何图形问题.【分析】根据正方形的面积公式找出本题中的等量关系,列出方程求解.【解答】解:设这个正方形的边长为x,正方形的边长如果增加2cm,则是x+2,根据题意列出方程得x2+32=(x+2)2解得x=7.则这个正方形的边长为7cm.故选D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.已知长方形的面积为18x3y4+9xy2﹣27x2y2,长为9xy,则宽为()A.2x2y3+y+3xy B.2x2y2﹣2y+3xy C.2x2y3+2y﹣3xy D.2x2y3+y﹣3xy【考点】整式的除法.【分析】由长方形面积公式知,求长方形的宽,则由面积除以它的长即得.【解答】解:由题意得:长方形的宽=(18x3y4+9xy2﹣27x2y2)÷9xy=9xy(2x2y3+y﹣3xy)÷9xy=2x2y3+y﹣3xy.故选:D.【点评】本题考查了整式的除法,从长方形的面积公式到整式除法,关键要从整式的提取公因式进行计算.二、填空题(每题3分,计15分)11.若(﹣7m+A)(4n+B)=16n2﹣49m2,则A=4n,B=7m.【考点】因式分解-运用公式法.【分析】直接利用平方差公式因式分解,进而得出A,B的值.【解答】解:∵(﹣7m+A)(4n+B)=16n2﹣49m2,∴16n2﹣49m2=(4n+7m)(4n﹣7m),∴A=4n,B=7m,故答案为:4n,7m.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式的形式是解题关键.12.若实数a满足a2+a=1,则﹣2a2﹣2a+2015=2013.【考点】代数式求值.【分析】首先化简所给代数式﹣2a2﹣2a+2015,然后把a2+a=1代入算式﹣2a2﹣2a+2015,求出算式的值是多少即可.【解答】解:∵a2+a=1,∴﹣2a2﹣2a+2015=﹣2(a2+a)+2015=﹣2×1+2015=﹣2+2015=2013故答案为:2013.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.13.如果x2+mx+6=(x﹣3)(x﹣n),则m+n的值为﹣3.【考点】多项式乘多项式.【专题】计算题.【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m与n的值,即可得出m+n的值.【解答】解:∵x2+mx+6=(x﹣3)(x﹣n)=x2﹣nx﹣3x+3n=x2﹣(n+3)x+3n,∴m=﹣(n+3),3n=6,解得:m=﹣5,n=2,则m+n=﹣5+2=﹣3.故答案为:﹣3【点评】此题考查了多项式乘以多项式,以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解本题的关键.14.观察下列各式,找规律:①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5,第n个等式是(n+2)2﹣n2=4(n+1).(n是正整数)【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,一个数与比它小2的两个数的平方差等于比这个数小1的数的4倍.【解答】解:∵①32﹣12=4×2;②42﹣22=4×3;③52﹣32=4×4;④62﹣42=4×5,…,∴第n个等式为(n+2)2﹣n2=4(n+1).故答案为:(n+2)2﹣n2=4(n+1).【点评】本题是对数字变化规律的考查,比较简单,难点在于要注意底数与等式序号的关系.15.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证③(填写序号).①(a+b)2=a2+2ab+b2②(a﹣b)2=a2﹣2ab+b2③a2﹣b2=(a+b)(a﹣b)④(a+2b)(a﹣b)=a2+ab﹣2b2.【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故可以验证③.故答案为:③.【点评】本题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.三、解答题(共55分)16.把下列多项式分解因式(1)x3﹣9x(2)4a3﹣12a2+9a(3)6x(a﹣b)+4y(b﹣a)(4)9(a+b)2﹣25(a﹣b)2.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】(1)原式提取x,再利用平方差公式分解即可;(2)原式提取a,再利用完全平方公式分解即可;(3)原式变形后,提取公因式即可得到结果;(4)原式平方差公式分解即可.【解答】解:(1)原式=x(x2﹣9)=x(x+3)(x﹣3);(2)原式=a(4a2﹣12a+9)=a(2a﹣3)2;(3)原式=6x(a﹣b)﹣4y(a﹣b)=2(a﹣b)(3x﹣2y);(4)原式=[3(a+b)+5(a﹣b)][3(a+b)﹣5(a﹣b)]=4(4a﹣b)(﹣a+4b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.17.解方程或不等式(1)(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;(2)(x+1)(x﹣1)+8>(x+5)(x﹣1).【考点】多项式乘多项式;解一元一次方程;解一元一次不等式.【分析】(1)先利用多项式乘以多项式,再解方程,即可解答;(2)先利用多项式乘以多项式,再解不等式,即可解答.【解答】解:(1)(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0,x2﹣3x+2x﹣6﹣x2+7x﹣6=0,6x﹣12=0,6x=12,x=2.(2)(x+1)(x﹣1)+8>(x+5)(x﹣1),x2﹣1+8>x2+4x﹣5,﹣4x>﹣12,x<3.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式的法则.18.计算(1)20152﹣2014×2016(2)(15x2y﹣10xy2)÷(﹣5xy)(3)(﹣0.25)11×(﹣4)12(4)1002﹣992+982﹣972+…22﹣1.【考点】整式的混合运算.【分析】(1)先变形,再根据平方差公式进行计算,最后求出即可;(2)根据多项式除以单项式法则进行计算即可;(3)先根据幂的乘方进行变形,再求出结果即可;(4)先根据平方差公式进行计算,最后求出即可.【解答】解:(1)20152﹣2014×2016=20152﹣(2015﹣1)×(2015+1)=20152﹣20152+1=1;(2)(15x2y﹣10xy2)÷(﹣5xy)=﹣3x+2y;(3)(﹣0.25)11×(﹣4)12=[(﹣0.25)×(﹣4)]11×(﹣4)=1×(﹣4)=﹣4;(4)1002﹣992+982﹣972+…22﹣1=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(2+1)×(2﹣1)=100+99+98+97+…+2+1=5050.【点评】此题主要考查了平方差公式,整式的混合运算的应用,正确利用平方差公式进行计算是解题关键.19.若3x=,3y=,求9x﹣y的值.【考点】同底数幂的除法.【分析】根据幂的成方,可得同底数幂的除法,根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:9x=(3x)2=,9y=(3y)2=,9x﹣y=9x÷9y=÷=×=.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.20.已知a=,b=,则(a+b)2﹣(a﹣b)2的值.【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用平方差公式分解化简后,将a与b的值代入计算即可求出值.【解答】解:原式=(a+b+a﹣b)(a+b﹣a+b)=4ab,当a=,b=时,原式=1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.21.若|a+2|+a2﹣4ab+4b2=0,求a、b的值.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;因式分解.【分析】已知等式利用完全平方公式化简后,再利用非负数的性质求出a与b的值即可.【解答】解:已知等式整理得:|a+2|+(a﹣2b)2=0,可得a+2=0,a﹣2b=0,解得:a=﹣2,b=﹣1.【点评】此题考查了因式分解﹣运用公式法,以及非负数的性质,熟练掌握因式分解的方法是解本题的关键.22.微山县鹿鸣小区内有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,物业部门计划将这块空地进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当a=8,b=7时的绿化面积.【考点】整式的混合运算;代数式求值.【分析】先根据题意列出算式,把算式进行化简,最后代入求出即可.【解答】解:根据题意得:绿化面积为:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣ab﹣b2=5a2+4ab,当a=8,b=7时,原式=5×82+4×8×7═544,知识像烛光,能照亮一个人,也能照亮无数的人。

2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案

2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案

2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。

根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

2015-2016年山东省济宁市微山县八年级(上)期末数学试卷和解析答案

2015-2016年山东省济宁市微山县八年级(上)期末数学试卷和解析答案

2015-2016学年山东省济宁市微山县八年级(上)期末数学试卷一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出地四个选项中,只有一项是符合题意地,把所选项前地字母代号填在卷Ⅱ地答题栏内.相信你一定能选对!)1.(3分)下列图形具有稳定性地是()A.三角形B.四边形C.五边形D.六边形2.(3分)已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°3.(3分)把分式中地x、y都扩大3倍,那么分式地值是()A.扩大3倍B.缩小3倍C.不变D.缩小原来地4.(3分)下列各式正确地是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a5.(3分)如图,点A和点D都在线段BC地垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°6.(3分)下列分式中,是最简分式地是()A.B.C.D.7.(3分)一个多边形地外角和与它地内角和地比为1:3,这个多边形地边数是()A.9 B.8 C.7 D.68.(3分)如果9a2﹣ka+4是完全平方式,那么k地值是()A.﹣12 B.6 C.±12 D.±69.(3分)已知分式,下列分式中与其相等地是()A.B.C. D.10.(3分)在一次数学课上,李老师出示一道题目:明明作法:分别作∠ACD和∠BCD地平分线,交AB于点P,Q.点P,Q就是所求作地点.晓晓作法:分别作AC和BC地垂直平分线,交AB于点P,Q.点P,Q就是所求作地点.你认为明明和晓晓作法正确地是()A.明明B.晓晓C.两人都正确D.两人都错误二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中地横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)一个三角形地三边长分别是3,6,x.那么整数x可能是.(填一种情况即可)12.(3分)齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域地研究.纤毛虫作为原生动物中特化程度最高且最为复杂地一个门,是单细胞真核生物,具有高度地形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为.13.(3分)一个等腰三角形地一个角为80°,则它地顶角地度数是.14.(3分)若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点地坐标是.15.(3分)如果地解为正数,那么m地取值范围是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(6分)计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.17.(8分)(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个你喜欢地a值,代入求值.18.(8分)如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE地度数;(2)如果AD=6,BE=5.求△ABC地面积.19.(7分)作图与证明:(1)读下列语句,作出符合题意地图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;②分别以A,B为圆心,以AB长为半径作弧,两弧在线段AB地同侧交于点C;③连接AC,以点C为圆心,以AB长为半径作弧,交AC延长线于点D;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.20.(8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好地前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量地笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量地笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(1)填空:班长所列方程中x地实际意义是;团支部书记所列方程中y 地实际意义是.(2)你认为刘老师能买到相同数量地笔记本和钢笔吗?请说明理由.21.(8分)先阅读下面地内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n地值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面地问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016地值;(2)已知a,b,c为△ABC地三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC地形状,并证明.22.(10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB地中点,点E 是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD地延长线于点M(如图2).那么图中是否存在与AM相等地线段?若存在,请写出来并证明;若不存在,请说明理由.2015-2016学年山东省济宁市微山县八年级(上)期末数学试卷参考答案与试题解析一.精心选一选(本大题共10小题,每题3分,共30分.在每题所给出地四个选项中,只有一项是符合题意地,把所选项前地字母代号填在卷Ⅱ地答题栏内.相信你一定能选对!)1.(3分)下列图形具有稳定性地是()A.三角形B.四边形C.五边形D.六边形【解答】解:具有稳定性地图形是三角形.故选A.2.(3分)已知△ABC≌△DEF,∠A=50°,∠E=60°.那么∠C等于()A.30°B.50°C.60°D.70°【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∴∠C=180°﹣∠A﹣∠B=70°,故选:D.3.(3分)把分式中地x、y都扩大3倍,那么分式地值是()A.扩大3倍B.缩小3倍C.不变D.缩小原来地【解答】解:分式中地x、y都扩大3倍,那么分式地值不变.故选:C.4.(3分)下列各式正确地是()A.b•b5=b5B.(a2b)2=a2b2C.a6÷a3=a2D.a+2a=3a【解答】解:A、同底数幂地乘法底数不变指数相加,故A错误;B、积地乘方等于乘方地积,故B错误;C、同底数幂地除法底数不变指数相减,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.5.(3分)如图,点A和点D都在线段BC地垂直平分线上.连接AB,AC,DB,DC.如果∠1=20°,∠2=50°.那么∠BAC比∠BDC()A.大40°B.小40°C.大30°D.小30°【解答】解:∵点A和点D都在线段BC地垂直平分线上,∴AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠2=50°,∴∠ABC=∠ACB=∠1+∠DBC=70°,∴∠BAC=40°,∠BDC=80°,∴∠BAC比∠BDC小40°,故选B.6.(3分)下列分式中,是最简分式地是()A.B.C.D.【解答】解:A、=;B、=;C、=;D、地分子、分母都不能再分解,且不能约分,是最简分式;故选D.7.(3分)一个多边形地外角和与它地内角和地比为1:3,这个多边形地边数是()A.9 B.8 C.7 D.6【解答】解:内角和是3×360=1080°.设多边形地边数是n,根据题意得到:(n﹣2)•180=1080.解得n=8.故选:B.8.(3分)如果9a2﹣ka+4是完全平方式,那么k地值是()A.﹣12 B.6 C.±12 D.±6【解答】解:∵9a2﹣ka+4=(3a)2±12a+22=(3a±2)2,∴k=±12.故选C.9.(3分)已知分式,下列分式中与其相等地是()A.B.C. D.【解答】解:=﹣=,故A正确.故选:A.10.(3分)在一次数学课上,李老师出示一道题目:明明作法:分别作∠ACD和∠BCD地平分线,交AB于点P,Q.点P,Q就是所求作地点.晓晓作法:分别作AC和BC地垂直平分线,交AB于点P,Q.点P,Q就是所求作地点.你认为明明和晓晓作法正确地是()A.明明B.晓晓C.两人都正确D.两人都错误【解答】解:∵AC=BC,AD=BD,∴∠B=∠A=30°,CD⊥AB,∴∠ACD=∠BCD=60°,明明作法:如图1,∵CP平分∠ACD,CQ平分∠BCD,∴∠ACP=∠BCQ=30°,∴∠A=∠ACP,∠B=∠BCQ,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ;∴明明作法正确;晓晓作法:如图2,∵分别作AC和BC地垂直平分线,交AB于点P,Q,∴AP=PC,BQ=CQ,在△ACP与△BCQ中,,∴△APC≌△BCQ,∴AP=BQ,∴AP=CP=CQ=BQ,∴晓晓作法正确,故选C.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中地横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.(3分)一个三角形地三边长分别是3,6,x.那么整数x可能是5.(填一种情况即可)【解答】解:根据三角形地三边关系可得:6﹣3<x<6+3,即3<x<9,∵x为整数,∴x=5.故答案为:5.12.(3分)齐鲁网2015年12月7日讯,中国科学院和中国工程院院士增选名单正式出炉,中国海洋大学山东微山县籍宋微波教授,当选中国科学院生命科学和医学学部院士,他主要从事海洋纤毛虫领域地研究.纤毛虫作为原生动物中特化程度最高且最为复杂地一个门,是单细胞真核生物,具有高度地形态和功能多样性,其最小个体大约有0.00002米.那么其中数据0.00002用科学记数法表示为2×10﹣5.【解答】解:0.00002=2×10﹣5,故答案为:2×10﹣5.13.(3分)一个等腰三角形地一个角为80°,则它地顶角地度数是80°或20°.【解答】解:(1)当80°角为顶角,顶角度数即为80°;(2)当80°为底角时,顶角=180°﹣2×80°=20°.故答案为:80°或20°.14.(3分)若x2+bx+c=(x+5)(x﹣3),则点P(b,c)关于y轴对称点地坐标是(﹣2,﹣15).【解答】解:∵(x+5)(x﹣3)=x2+2x﹣15,∴b=2,c=﹣15,∴点P地坐标为(2,﹣15),∴点P(2,﹣15)关于y轴对称点地坐标是(﹣2,﹣15).故答案为:(﹣2,﹣15).15.(3分)如果地解为正数,那么m地取值范围是m<1且m≠﹣3.【解答】解:去分母得,1+x﹣2=﹣m﹣x,∴x=,∵方程地解是正数∴1﹣m>0即m<1,又因为x﹣2≠0,∴≠2,∴m≠﹣3,则m地取值范围是m<1且m≠﹣3,故答案为m<1且m≠﹣3.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程.)16.(6分)计算:(1);(2);(3)(π﹣3.14)0﹣2﹣2.【解答】解:(1)原式==1;(2)原式==;(3)原式=1﹣=.17.(8分)(1)化简:3(x﹣y)2﹣(2x+y)(x﹣2y);(2)先化简分式:,然后在0,1,2,3中选择一个【解答】解:(1)原式=3(x2﹣2xy+y2)﹣(2x2﹣4xy+xy﹣2y2)=3x2﹣6xy+3y2﹣2x2+4xy﹣xy+2y2=x2﹣3xy+5y2;(2)原式=•+=a﹣(﹣a)=2a,当a=2时,原式=2×2=4.18.(8分)如图,在△ABC中,AD,CE是高线,AF是角平分线,∠BAC=∠AFD=80°.(1)求∠BCE地度数;(2)如果AD=6,BE=5.求△ABC地面积.【解答】解:(1)∵AD,CE是高线,∴∠BEC=∠ADB=∠ADC=90°.∴∠DAF=90°﹣∠AFD=90°﹣80°=10°.∵AF平分∠BAC,∴∠BAF=∠BAC=×80°=40°.∴∠BAD=∠BAF﹣∠DAF=40°﹣10°=30°.∵∠BAD+∠B=90°,∠BCE+∠B=90°,∴∠BCE=∠BAD=30°.(2)在Rt△BCE中,∵∠BCE=30°,∴BC=2BE=2×5=10.∴S=BC•AD=×10×6=30.△ABC19.(7分)作图与证明:(1)读下列语句,作出符合题意地图形(要求:使用直尺和圆规作图,保留作图痕迹).①作线段AB;④连接BD,得△ABD.(2)求证:△ABD是直角三角形.【解答】(1)解:如图,△ABD为所作;(2)证明:连接BC,如图,由作图可得AB=AC=BC=CD,∴点B在以AD为直径地圆上,∴∠ABD=90°,∴△ABD是直角三角形.20.(8分)本学期马上就要结束了,班主任刘老师打算花50元买笔记本,花150元买钢笔,用来奖励本学期综合表现较好地前若干名同学.已知钢笔每只比笔记本每本贵16元,刘老师能买到相同数量地笔记本和钢笔吗?班委会上,班长和团支部书记都帮助刘老师进行了计算,他们假设刘老师能买到相同数量地笔记本和钢笔,分别设未知数并列出了方程:班长:;团支部书记:.(2)你认为刘老师能买到相同数量地笔记本和钢笔吗?请说明理由.【解答】解:(1)班长所列方程中x地实际意义是:钢笔地单价;团支部书记所列方程中y地实际意义是:所买笔记本地本数;(2)假设刘老师能买到相同数量地笔记本和钢笔.设笔记本每本z元,则钢笔每只(z+16)元.根据题意,得.解这个方程,得z=8,经检验z=8是所列方程地解.∴,而笔记本地本数必须为整数,∴z=8不符合实际题意.∴刘老师不能买到相同数量地笔记本和钢笔.21.(8分)先阅读下面地内容,然后再解答问题.例:已知m2+2mn+2n2﹣2n+1=0.求m和n地值.解:∵m2+2mn+2n2﹣2n+1=0,∴m2+2mn+n2+n2﹣2n+1=0.∴(m+n)2+(n﹣1)2=0.∴.解这个方程组,得:.解答下面地问题:(1)如果x2+y2﹣8x+10y+41=0成立.求(x+y)2016地值;(2)已知a,b,c为△ABC地三边长,若a2+b2+c2=ab+bc+ca,试判断△ABC地形状,并证明.【解答】解:(1)∵x2+y2﹣8x+10y+41=0,∴x2﹣8x+16+y2+10y+25=0.∴(x﹣4)2+(y+5)2=0.∴x﹣4=0且y+5=0.∴x=4,y=﹣5.∴2a2+2b2+2c2=2ab+2bc+2ca.∴a2﹣2ab+b2+b2﹣2bc+c2+c2﹣2ca+a2=0.∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0.∴a﹣b=0且b﹣c=0且c﹣a=0.∴a=b=c.∴△ABC是等边三角形.22.(10分)已知:在△ABC中,∠ACB=90°,AC=BC,点D是AB地中点,点E 是AB边上一点.(1)直线BF垂直于CE于点F,交CD于点G(如图1).求证:AE=CG;(2)直线AH垂直于CE,垂足为H,交CD地延长线于点M(如图2).那么图中是否存在与AM相等地线段?若存在,请写出来并证明;若不存在,请说明理由.【解答】解:(1)∵点D是AB地中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∠CAD=∠CBD=45°.∴∠CAE=∠BCG.∵BF⊥CE,∴∠CBG+∠BCF=90°.∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG.在△AEC和△CGB中,,∴△AEC≌△CGB(ASA).证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°.∴∠CMA=∠BEC.∵AC=BC,∠ACM=∠CBE=45°,在△CAM和△BCE中,,∴△CAM≌△BCE(AAS).∴AM=CE.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

2015秋期末八年级上册数学期末试卷含答案

2015秋期末八年级上册数学期末试卷含答案

2015年秋期义务教育阶段教学质量监测八年级 数学(考试时间:120分钟,总分:120分)本试题卷共4页。

考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效.考试结束,将本试题卷和答题卡一并交回。

注意事项:1.答题前,考生在答题卷上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码。

请认真核准条形码上的考号、姓名和科目。

2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.解答填空题、解答题时,请在答题卷上各题的答题区域内作答。

一、选择题(本大题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一个正确选项. (注意:在试题卷上作答无效) 1.9的平方根是( )A . 3B .3-C .3±D .9 2.下列计算正确的是( )A .532x x =)( B .232a a a =+ C .2235n m mn mn =-÷-)()( D .1243a a a =⋅ 3.下列每一组数据中的三个数值分别为三角形的三边长,能构成直角三角形的是( )A .3、4、5B .7、8、9C .1、2、3D .6、12、134.如图,在ABC ∆中,︒=∠==60,B DC AD AB ,则C ∠的度数为( )A .︒60B .︒30C .︒35D .︒405.已知甲、乙两班男、女生人数的扇形统计图如图,则下列说法正确的是( )A .甲班男生比乙班男生多B .乙班女生比甲班女生多C .乙班女生与乙班男生一样多D .甲、乙两班人数一样多 6.下列四个结论中正确的是( ) A .3762<<B .C .D .7.有下列命题:①两直线平行,同旁内角相等;②面积相等的两个三角形全等;③有一个角为45°的等腰三角形必为直角三角形;④直角三角形的两条边长分别为3和4,则斜边长为5或7.其中真命题的个数是( )A .0B .1C .2D .3 8.如图,在Rt △ABC 中,2,30,90=︒=∠︒=∠BC A ACB , 将ABC ∆绕点C 逆时针方向旋转n 度后得到EDC ∆,此时, 点D 在边AB 上,斜边DE 交边AC 于点F ,则n 的大小 和图中阴影部分的面积分别为( )A .30,2B . 60,2C .60,3D .60,23 二、填空题(本大题共8个小题,每小题3分,共24分).请把答案直接填在答题卡对应题中横线上.(注意: 在试题卷上作答无效) 9.计算:327- = .10.若m x x +-62是一个完全平方式,则m 的值是 .11.若04)3(2=-++b a ,则ab = .12.在一次调查中,出现A 种情况的频率为6.0,其余情况出现的频数之和为24,则这次数据调查的总数为 .13.如图:阴影部分(阴影部分为正方形)的面积 .14.如图,在Rt △ABC 中,∠B =90°,CD 平分∠ACB ,过点D 作DE ⊥AC 于点E ,若AE =4,AB =10,则△ADE 的周长为 .15.现有A ,B ,C 三种型号地砖,其规格如图所示,用这三种地砖铺设一个6723<<6273<<2673<<长为y x +,宽为y x 23+的长方形地面,则需要A 种地砖 块. 16.如图,M 为等边△ABC 内部的一点,且MA =8,MB =10,MC =6,将△BMC 绕点C 顺时针旋转得到△ANC .下列说法中:①MC =NC ;②AM =AN ;③S 四边形AMCN =ABM ABC S S ∆∆-;④︒=∠120AMC ,正确的有 .(请填上番号) 三、解答题(本大题共8个题,共72分)解答应写出文字说明,证明过程或演算步骤. (注意: 在试题卷上作答无效) 17.计算(每小题5分,共15分)(1)计算:34a a a ÷⋅ (2)计算:23)2(2816---+-(3)因式分解:)(4)(2y x y x a ---18.(6分)先化简,再求值:)3()2)(2()2(2m n n n m n m n m -⋅++--+,其中1,2-==n m . 19.(6分)已知:如图,点O 为AC 、BD 的交点,且D A DC AB ∠=∠=, 求证:OCB OBC ∠=∠20.(6分)如图,在ABC ∆中,︒=∠90C ,分别以B A ,为圆心,以相等长度(大于AB 21的长度)为半径画弧,得到两个交点N M 、,作直线MN 分别交AB AC 、于D E 、两点,连结EB ,若︒=∠28EBC ,求A ∠的度数.21.(8分)雾霾天气是一种大气污染状态,雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,尤其是PM2.5(空气动力学当量直径小于等于2.5微米的颗粒物)被认为是造成雾霾天气的“元凶”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

DBC2015-2016学年山东省济宁市微山二中八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.132.(3分)点(4,5)关于y轴对称的点的坐标为()A.(﹣4,5)B.(﹣4,﹣5)C.(4,﹣5)D.(3,5)3.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50°B.80°C.50°或80°D.20°或80°4.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2 D.3a+2a=5a25.(3分)如图,在△ABC中,BC=5,AD为BC边上的中线,∠ADB=60°,将△ABD沿线段AD翻折,点B翻折到点B′的位置,连接CB′,则CB′的长为()A.5 B.2.5 C.2 D.36.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.7.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤58.(3分)因式分解(x﹣1)2﹣9的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)9.(3分)如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4 B.5 C.6 D.710.(3分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5 B.4 C.3 D.2二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若(x2﹣x+3)(x﹣q)的乘积中不含x2项,则q=.12.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.13.(3分)若x2﹣kx+1是完全平方式,则k=.14.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.15.(3分)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.三、解答题(本大题共7小题,共55分)16.(6分)计算(1)(8x2y﹣4x4y3)÷(﹣2x2y)(2)(3x﹣2)(2x+3)﹣(x﹣1)2.17.(6分)因式分解(1)y3﹣6xy2+9x2y(2)(a+2)(a﹣2)+3.18.(7分)已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B 两边的距离相等(尺规作图,保留作图痕迹).19.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.20.(8分)如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.21.(9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.(11分)四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系;(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是,线段EF与AF、BF的等量关系是;②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是;(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.2015-2016学年山东省济宁市微山二中八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.13【解答】解:设第三边长为x,则由三角形三边关系定理得9﹣4<x<9+4,即5<x<13.因此,本题的第三边应满足5<x<13,把各项代入不等式符合的即为答案.只有12符合不等式,故答案为12.故选C.2.(3分)点(4,5)关于y轴对称的点的坐标为()A.(﹣4,5)B.(﹣4,﹣5)C.(4,﹣5)D.(3,5)【解答】解:根据平面直角坐标系中关于y轴的对称点的坐标的特点,∴点(4,5)关于y轴对称的点的坐标为(﹣4,5).故选A.3.(3分)一个等腰三角形的两个内角和为100°,则它的顶角度数为()A.50°B.80°C.50°或80°D.20°或80°【解答】解:①当100°角是顶角和一底角的和,则另一个底角=180°﹣100°=80°,所以顶角=100°﹣80°=20°;②当100°角是两底角的和,则顶角=180°﹣100°=80°;故选D.4.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2 D.3a+2a=5a2【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.5.(3分)如图,在△ABC中,BC=5,AD为BC边上的中线,∠ADB=60°,将△ABD沿线段AD翻折,点B翻折到点B′的位置,连接CB′,则CB′的长为()A.5 B.2.5 C.2 D.3【解答】解:如图,由题意得:∠ADB′=∠ADB=60°;DB′=DB;∴∠B′DC=180°﹣120°=60°;∵BC=5,AD为BC边上的中线,∴DC=DB=2.5,DB′=DC=2.5,∴△B′DC为等边三角形,∴CB′=DC=2.5,故选B.6.(3分)若3x=4,9y=7,则3x﹣2y=()A.B.C.D.【解答】解:9y=7即32y=7,则3x﹣2y=3x÷32y=.故选B.7.(3分)∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5【解答】解:∠AOB的平分线上一点P到OA的距离为5则P到OB的距离为5因为Q是OB上任一点,则PQ≥5故选B.8.(3分)因式分解(x﹣1)2﹣9的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)【解答】解:(x﹣1)2﹣9,=(x﹣1+3)(x﹣1﹣3),=(x+2)(x﹣4).故选B.9.(3分)如图,钢架中∠A=16°,焊上等长的钢条P1P2,P2P3,P3P4…来加固钢架,若AP1=P1P2,则这样的钢条至多需要()根.A.4 B.5 C.6 D.7【解答】解:∵∠A=∠P1P2A=16°∴∠P2P1P3=32°,∠P1P3P2=32°∴∠P1P2P3=116°∴∠P3P2P4=48°∴∠P3P2P4=48°∴∠P2P3P4=96°∴∠P4P3P5=52°∴∠P3P5P4=52°∴∠P3P4P5=52°∴∠P5P4P6=76°∴∠P4P6P5=76°∴∠P4P5P6=28°∴∠P6P5P7=86°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选B.10.(3分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5 B.4 C.3 D.2【解答】解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=10,∴在Rt△DEG中,DG=ED=×10=5,∴DF=DG=5.故选A.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)若(x2﹣x+3)(x﹣q)的乘积中不含x2项,则q=﹣1.【解答】解:原式=x3﹣qx2﹣x2+qx+3x﹣3q=x3﹣(q+1)x2+(q+3)x﹣3q,∵乘积中不含x2项,∴﹣(q+1)=0,∴q=﹣1.故答案为:﹣1.12.(3分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=40°.【解答】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.13.(3分)若x2﹣kx+1是完全平方式,则k=2或﹣2.【解答】解:原式可化为知x2﹣kx+12,可见当k=2或k=﹣2时,原式可化为(x+1)2或(x﹣1)2,故答案为2或﹣2.14.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.15.(3分)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8个.【解答】解:如图所示,使得△AOP是等腰三角形的点P共有8个.故答案为:8.三、解答题(本大题共7小题,共55分)16.(6分)计算(1)(8x2y﹣4x4y3)÷(﹣2x2y)(2)(3x﹣2)(2x+3)﹣(x﹣1)2.【解答】解:(1)原式=8x2y÷(﹣2x2y)﹣4x4y3÷(﹣2x2y)=﹣4+2x2y2;(2)原式=6x2+5x﹣6﹣x2+2x﹣1=5x2+7x﹣7.17.(6分)因式分解(1)y3﹣6xy2+9x2y(2)(a+2)(a﹣2)+3.【解答】解:(1)原式=y(y2﹣6xy+9x2)=y(y﹣3x)2;(2)原式=a2﹣4+3=a2﹣1.18.(7分)已知D、E两点在△ABC内,求作一点P,使PE=PD,且点P到∠B 两边的距离相等(尺规作图,保留作图痕迹).【解答】解:如图所示:①作∠B的角平分线;②作DE中垂线;③两直线的交点就是所求作的点P.19.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC 于F,△ABC面积是28cm2,AB=20cm,AC=8cm,求DE的长.【解答】解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵△ABC面积是28cm2,AB=20cm,AC=8cm,=AB•DE+AC•DF=28,∴S△ABC即×20×DE+×8×DF=28,解得DE=2cm.20.(8分)如图,已知在△ABC中,点D、E分别是AB、AC上一点,且AD=AE,∠ABE=∠ACD,BE与CD相交于点F.试判断△BCF的形状,并说明理由.【解答】解:△BFC是等腰三角形.理由如下:在△ABE和△ACD中,,∴△ABE≌△ACD.∴AB=AC.∴∠ABC=∠ACB.∴∠ABC﹣∠ABE=∠ACB﹣∠ACD.即∠FBC=∠FCB.∴△BFC是等腰三角形.21.(9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.∠BAE=∠DAC=90°+∠CAE,在△BAE和△DAC中∴△BAE≌△CAD(SAS).(2)由(1)得△BAE≌△CAD.∴∠DCA=∠B=45°.∵∠BCA=45°,∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.22.(11分)四边形ABCD是正方形(提示:正方形四边相等,四个角都是90°)(1)如图1,点G是BC边上任意一点(不与点B、C重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;(2)直接写出(1)中,线段EF与AF、BF的等量关系EF=AF ﹣BF;(3)①如图2,若点G是CD边上任意一点(不与点C、D重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E,则图中全等三角形是△ABF≌△DAE,线段EF与AF、BF的等量关系是EF=BF﹣AF;②如图3,若点G是CD延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,线段EF与AF、BF的等量关系是EF=AF+BF;(4)若点G是BC延长线上任意一点,连接AG,作BF⊥AG于点F,DE⊥AG于点E,请画图、探究线段EF与AF、BF的等量关系.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAE=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,∵在△ABF和△DAE中,∴△ABF≌△DAE(AAS);(2)解:线段EF与AF、BF的等量关系是EF=AF﹣BF,理由是:∵由(1)知:△ABF≌△DAE,∴BF=AE,∴EF=AF﹣AE=AF﹣BF,故答案为:EF=AF﹣BF;(3)①解:△ABF≌△DAE,EF=BF﹣AF,理由是:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAE=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,∵在△ABF和△DAE中,∴△ABF≌△DAE(AAS);∴AE=BF,∴EF=AE﹣AF=BF﹣AF,故答案为:△ABF≌△DAE,EF=BF﹣AF;②解:EF=AF+BF,理由是:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAF=180°﹣90°=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠AFB=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,∵在△ABF和△DAE中,∴△ABF≌△DAE(AAS);∴AE=BF,∴EF=AE+AF=AF+BF,故答案为:EF=AF+BF;(4)解:与以上证法类似:△ABF≌△DAE(AAS);∴AE=BF,∴EF=AE﹣AF=BF﹣AF;即EF=BF﹣AF.。

相关文档
最新文档