一元一次方程方案设计问题

合集下载

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案1.两人共同完成一份文件,小李独立完成需要6小时,小王独立完成需要8小时。

求他们两人一起完成需要多长时间。

2.甲单独完成一项工程需要10天,乙单独完成需要15天。

两人合作4天后,剩下的部分由乙单独完成,问还需要几天才能完成整个工程。

3.加工一批机器零件,甲单独完成需要4天,乙单独完成需要6天。

现在乙先做1天,然后两人合作完成,共付给报酬600元。

如果按个人完成的工作量付给报酬,应该如何分配?4.机械厂加工车间有27名工人,平均每人每天可以加工12个小齿轮或10个大齿轮。

2个大齿轮和3个小齿轮配成一套,问需要分别安排多少名工人加工大齿轮和小齿轮,才能使每天加工的大小齿轮刚好配套?5.整理一批图书,一个人单独完成需要60小时。

现在先由一部分人用1小时整理,随后增加15人和他们一起又做了2小时,恰好完成整理工作。

假设每个人的工作效率相同,那么先安排整理的人员有多少人?6.某工厂原计划用26小时生产一批零件,结果每小时多生产5件,用24小时就完成了任务,而且还比原计划多生产了60件。

问原计划生产多少零件?7.某地为了打造风光带,将一段长为360米的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天。

已知甲工程队每天整治24米,乙工程队每天整治16米。

求甲、乙两个工程队分别整治了多长的河道。

8.政府准备修建一条公路,如果由甲工程队单独修建需要3个月完成,每月耗资12万元;如果由乙工程队单独修建需要6个月完成,每月耗资5万元。

现在甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务。

这样安排一共耗资多少万元?(时间按整月计算)9.某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售。

该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨。

1)问能否在14天以内完成加工任务?说明理由。

2)现计划用20天正好完成加工任务,则该公司应该安排多少天进行精加工,多少天进行粗加工?10.某工程交由甲、乙两个工程队来完成。

一元一次方程(四)(通用版)(含答案)

一元一次方程(四)(通用版)(含答案)

一元一次方程(四)(通用版)试卷简介:方案设计问题一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米,则每立方米按a元收费;若超过15立方米,则超过部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.该居民在一个月内用水35立方米,应交水费为15×a+(35-15)×2a=55a,答案选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题2.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费;超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33.6元,则小明家六月份实际用水( )A.14立方米B.19立方米C.20立方米D.21立方米答案:B解题思路:小明家六月份交水费33.6元,其中包括15立方米的水费和超过15立方米的水费,设小明家六月份实际用水x立方米,根据题意得:15×1.6+(x-15)×2.4=33.6,解得x=19,答案为B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题3.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,则超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.60元B.66元C.75元D.78元答案:B解题思路:4月份的煤气费平均每立方米0.88元,那么煤气一定超过60立方米,等量关系为:60立方米的煤气费+超过60立方米的煤气费=所交煤气费,设4月份用了煤气x立方米,根据题意得60×0.8+(x-60)×1.2=0.88x,解得x=75,4月份应交煤气费为75×0.88=66元,故选B.试题难度:三颗星知识点:一元一次方程应用——方案类应用题4.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同,若要使到甲、乙两电脑商处购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:若购买的电脑不多于10台,则在甲电脑商处购买没有优惠,因此到甲、乙两电脑商购买电脑花钱不一样,因此要使花钱一样,必然购买多于10台.设购买电脑x台,在甲处购买需要花钱数目为元,在乙处购买需要花钱数目为元,根据题意可列方程为,解得x=20,即应该买电脑20台.试题难度:三颗星知识点:一元一次方程应用——方案类应用题5.九年级某班师生30人准备在中考后到某地旅游,班主任李老师了解到当地甲、乙两旅行社的服务项目和服务质量相同,且甲旅行社平时收费为每人300元,暑期对教师实行八折优惠,对学生实行五折优惠;乙旅行社平时收费为每人280元,暑期对教师和学生均实行六折优惠.若在甲、乙两家旅行社所需费用相同,则这个班师生中教师为( )A.4人B.5人C.6人D.7人答案:C解题思路:设这个班师生中教师有x人,学生有(30-x)人,由题可知甲旅行社收费为元,乙旅行社收费为元,若两家旅行社所需费用相同,可得,解得x=6,故选C试题难度:三颗星知识点:一元一次方程应用——方案类应用题6.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.你认为获利最多的方案和对应的利润是( )A.方案三,600 000元B.方案二,435 000元C.方案三,562 500元D.方案一,500 000元答案:C解题思路:方案一:全部粗加工所需时间为天,因此10内100吨可全部加工完毕,对应的利润为:5 000×100=500 000元;方案二:10天内(含10天)可以精加工10×5=50吨,剩余100-50=50吨直接销售,因此对应的利润:7 500×5×10+1 200×(100-5×10)=435 000元;方案三,设精加工的有x天,则粗加工的有(10-x)天,根据题意可列方程为,解得x=5,即5天精加工,5天粗加工,也即精加工5×5=25吨,粗加工15×5=75吨,因此方案三对应的利润为:562 500元.综上可知,方案三的利润最高,为562 500元.答案为C.试题难度:三颗星知识点:一元一次方程应用——方案类应用题。

一元一次方程应用----方案题

一元一次方程应用----方案题

一元一次方程应用----方案题1.“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨.根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利 ______ 元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利 ______ 元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.2.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒10元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班需买球拍6副,乒乓球若干盒(不小于6盒)(1)当购买乒乓球多少盒时两种优惠办法付款一样?(2)当购买20盒乒乓球时,请你去办这件事,你打算去哪家商店购买为什么?(3)当购买40盒乒乓球时,请你去办这件事,你打算去哪家商店购买为什么?3.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a(元) 200≤a<400 400≤a<500 500≤a<700 700≤a<900 …获奖券金额(元) 30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1-80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?4.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,共有哪几种进货方案?5.《中华人民共和国个人所得税法》规定,公民月工资所得不超过1600元(人民币)的部分不必纳税,超过1600元的部分为各月应纳税所得额,超过部分的税款按下表分段累加计算.例如,你月工资是2000元,2000-1600=400,那么就对400元进行纳税,400×5%=20,即你应交纳的税款为20元.若某人1月份应交纳此项税款92元,则她当月的工资是多少?6.市政府根据社会需要,对自来水价格举行了听证会,决定从今年4月份起对自来水价格进行调整.调整后生活用水价格的部分信息如下表:已知5月份小晶家和小磊家分别交水费19元、31元,且小磊家的用水量是小晶家的用水量的1.5倍.(1)用含x的式子填空:∵19>5×2,∴小晶家的用水量超过5m3,则超过部分应交水费(19-5×2元),用水量5m3以上的部分是 ______ ,小晶家的总用水量为 ______ .(2)请你仿照上述进行分析,再求出表中的x.7.随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A、B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店 ______ 箱,乙店 ______ 箱;B种水果甲店 ______ 箱,乙店 ______ 箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元?(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?8.如图,在长方形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当t为何值时,△QAP为等腰直角三角形?(2)如图2,当t为何值时,△QAB的面积等于长方形面积的?(3)如图3,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半?9.根据下面的两种移动电话计费方式表,考虑下列问题.方式一方式二月租费20元/月50元/月本地通话费0.3元/分钟0.2元/分钟(1)一个月本地通话时间200分钟和400分钟,计算按两种移动电话计费方式各需要交费多少元?(2)会出现两种移动电话计费方式收费一样吗?如果会,请计算出此时的通话时间?如果不会,请说明理由;(3)请你说明在怎样选择计费方式下更省钱?10.七年级上册数学书本中,第二章的数学活动课带领我们感受许多有趣的日历问题.请你仔细观察日历表,探究以下日历的有关问题.如图就是某年10月份的一张日历.(1)若今天是某年10月28日,星期一,再过7天,是星期 ______ ;(2)若用阴影部分在表中随意框住2×2个数字,这4个数字的关系 ______ ,并求出这四个数的和的最大值是 ______ ;(3)圈出日历中相邻的2×2个数字,已知四个数的和为48,求这四个数;(4)圈出日历中相邻的2×2个数字,能否求出这四个数的和为64?若能,请求出;若不能,能否在下个月中找到?若找到,请求出下个月中这四个数的最小数是星期几?11.某酒店客房部有三人间、双人间客房,收费数据如下表:为吸引游客,实行团体入住五折优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通客房和双人普通客房,每间客房正好住满.(1)设入住的三人普通客房为x间,则入住的双人普通客房为 ______ 间;(用x的代数式表示)(2)若一天共花去住宿费1510元,则旅游团住了三人普通客房和双人普通间客房各多少间?12.某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.13.某超市以每千克a元的统一进价购进600千克苹果.若将这批苹果按某种标准分为甲乙两类,乙类苹果的重量是甲类的一半.(1)求甲乙两类苹果的重量各是多少千克?(2)现有以下三种销售方案:方案一:甲类苹果以进价的2倍价格直接销售,乙类苹果以高于进价20%直接销售;方案二:将两类苹果精加工后销售,两类苹果的售价比方案一中的售价每千克均提高2元;方案三:所有苹果不分类精加工后按同一价格销售,其价格按方案一中的甲类苹果和乙类苹果售价的平均数定价.无论用哪种方案均能确保苹果全部销完,解决以下问题:①用含a的式子表示三种方案的利润;②若方案一的利润比方案三的利润高m元,方案二的利润比方案三的利润高n元,且m:n=2:5,试确定a的值.14.某班的一次数学小测验中,共出了20道选择、填空题,每题5分,总分为100分.现从中抽出5份试卷进行分析,如下表:试卷正确个数错误个数得分A 19 1 94B 18 2 88C 17 3 82D 14 6 64E 10 10 40(1)某同学得70分,他答对了多少道题?(2)刘婧婧同学告诉老师:她和同桌张欣都考到了及格(60分以上),而且比张欣的分数高,她俩的平均分是76分,通过你的计算她们俩各考了多少分?15.某校组织七年级学生参加社会实践活动,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)该校参加社会实践活动有多少人?(2)已知45座客车的日租金为每辆1000元,60座客车的日租金为每辆1200元,该校租用哪种车更合算?16.为了加强公民的节约意识,我市出台阶梯电价计算方案:居民生活用电将月用电量分为三档,第一档为月用电量200度(含)以内,第二档为月用电量200~320度(含),第三档为月用电量320度以上.这三个档次的电价分别为:第一档0.52元/度,第二档0.57元/度,第三档0.82元/度.若某户居民1月份用电250度,则应收电费:0.52×200+0.57×(250-200)=132.5元.(1)若某户居民10月份电费78元,则该户居民10月份用电 ______ 度;(2)若该户居民2月份用电340度,则应缴电费 ______ 元;(3)用x(度)来表示月用电量,请根据x的不同取值范围,用含x的代数式表示出月用电费用.17.列方程解应用题(1)表中是“深圳市路边临时停车位使用费收费标准”,上周六上午9:00,小亮妈妈把车停在深圳中心书城路边临时停车位(属一类区域).离开时,她发现共需要缴纳停车费30元,则她停车的时间是多少小时? 深圳市路边临时停车车位使用费收费标准(2)“旺旺”商场计划销售某品牌的衣服,每件若以原定价的3折销售,则亏20元,每件若以原定价的3.5折销售,则赚10元. ①该种品牌的衣服原定价是多少元?②“元旦”期间,“旺旺”商场对该品牌衣服举办“1换2倍”的优惠促销活动,共售出了80件该品牌衣服,那么“旺旺”商场在“元旦”期间销售该品牌衣服共获利多少元?18.为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家1-5月份用水量和缴费情况: 根据表格中提供的信息,回答以下问题: (1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费100元,则7月份用水多少吨?19.某旅游景点门票价格规定如下:每张票的价格90元80元70元某校七年级组织甲、乙两个班共92人去该景点游玩,其中甲班人数多余乙班人数且甲班人数不够90人,如果两个班单独购买门票,一共应付7760元.(1)如果甲、乙两个班联合起来购买门票,那么比各自购买门票可以节省多少钱?(2)甲、乙两个班各有多少学生?(3)如果甲班有10名学生因学校有任务不能参加这次旅游,请你作为两个班设计出购买门票的方案,并指出最省钱的方案.20.春节期间,七(1)班的明明、丽丽等同学随家长一同到某公园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?(2)请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七(2)班的张小涛等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.一元一次方程应用----方案题答案和解析1.52500;787502.解:(1)设购买x盒乒乓球时,两家优惠办法付款一样.由题意得:40×6+10(x-6)=(40×6+10x)×90%,解得:x=36,答:购买36盒乒乓球时两种优惠办法付款一样;(2)当购买20盒乒乓球时,甲店需付款:40×6+10(20-6)=380(元),乙店需付款:(40×6+10×20)×0.9=396(元),∴380<396,答:去甲店合算;(3)当购买40盒乒乓球时,甲店需付款:40×6+10(40-6)=580(元),乙店需付款:(40×6+10×40)×0.9=576(元), 580>576.答:去乙店合算.3.解:(1)优惠额:1000×(1-80%)+130=330(元) 优惠率:×100%=33%;(1分) (2)设购买标价为x元的商品可以得到的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与640元之间.①当400≤a<500时,500≤x<625由题意,得:0.2x+60=x解得:x=450 但450<500,不合题意,故舍去;②当500≤a≤640时,625≤x≤800 由题意,得:0.2x+100=x解得:x=750而625≤750<800,符合题意.答:购买标价为750元的商品可以得到的优惠率.4.解:(1)设今年三月份甲种电脑每台售价为m元,=m=4000 检验:m=4000时,m(1000+m)≠0,m=4000是原分式方程的解.今年三月份的售价为4000元.(2)设购进甲x台,购进乙为(15-x)台,6≤x≤10.方案:甲6台,乙9台.甲7台,乙8台.甲8台,乙7台.甲9台,乙6台.甲10台,乙5台.故5种方案.5.解:∵0<当月的工资≤1600时,应交纳的税款为0;1600<当月的工资≤2100时,0<应交纳的税款≤25;2100<当月的工资≤3600时,25<应交纳的税款≤175.∴若某人1月份应交纳此项税款92元,则她当月的工资超过2100元小于3600元.设她当月的工资是x元,由题意得500×0.5+0.1(x-1600-500)=92,解得x=2770.答:若某人1月份应交纳此项税款92元,则她当月的工资是2770元.6.9元;5+7.2;8;6;48.解:(1)由题可知:DQ=tcm,AQ=(6-t)cm,AP=2tcm,使△QAP为等腰三角形,∴AQ=AP,⇒6-t=2t解得t=2;(2)由题可知:DQ=tcm,AQ=(6-t)cm,∵△QAB的面积=(6-t)×12,依题意得:(6-t)×12=×6×12,解得:t=3;(3)由题可知:AQ=(t-6)cm,CP=(18-2t)cm,依题意使线段AQ的长等于线段CP 的长的一半,∴t-6=(18-2t),解得:t=7.5.9.解:(1)一个月本地通话时间200分钟时,方式一需交费:20+0.3×200=80元,方式二需交费:50+0.2×200=90元;一个月本地通话400分钟时,方式一需交费:20+0.3×400=140元,方式二需交费:50+0.2×400=130元;(2)设此时的通话时间为x分钟,根据题意有: 20+0.3x=50+0.2x,解得:x=300,即当本地通话时间为300分钟时,两种计费方式的收费一样;(4)由20+0.3x>50+0.2x,解得:x>300,即当本地通话时间大于300分时,用方式二更合算;由20+0.3x=50+0.2x,解得:x=300,即当本地通话时间等于300分时,用方式一与方式二没有区别;由20+0.3x<50+0.2x,解得:x<300,即当本地通话时间少于300分时,用方式一更合算.10.一;对角线上的数字之和相等;10811.12.解:(1)设这个公司要加工x件新产品,由题意得:-=20,解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.13.解:(1)设乙类苹果的重量是x,则甲类苹果的重量是2x千克,根据题意得x+2x=600,解得x=200.答:甲乙两类苹果的重量各是400千克、200千克;(2)①用方案一所获利润:400a+0.2a×200=440a(元);用方案二所获利润:400(a+2)+(0.2a+2)×200=440a+1200(元);用方案三所获利润:(-a)×600=360a(元);②(440a-360a):(440a+1200-360a)=2:5,解得a=10.14.解:(1)先设答错一道得x分,由题意,得5×19+x=94,解得:x=-1.设某同学得70分,他答对了y道题,由题意,得5y-(20-y)=70,解得:y=15.答:某同学得70分,他答对了15道题;(2)设刘婧婧同学答对a道题,张欣同学答对b道题,由题意,得,由①,得a+b=32,a=32-b由②、③,得a>,b>,∵a>b,∴32-b>,∴b<.∵a、b为整数,∴b=14,15,16,17,18,∴a=18,17,16,15,14.∵a>b,∴a=18,17.∴b=14,15,∴刘婧婧的得分为:88,82,张欣的得分为:64,70答:当刘婧婧考88分时,张欣考64分,当刘婧婧考82分时,张欣考70分.15.解:(1)设该校参加社会实践活动有x人,根据题意,得-=1,解得:x=225.答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆),需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×1000=5000(元),租用60座客车需:4×1200=4800(元),∵5000>4800,∴该校租用60座客车更合算.16.150;188.817.解:(1)周六是非工作日.设她停车的时间是x小时,则2+(x -)×8=30,解得x=4.答:她停车的时间是4小时.(2)①设该种商品每件的原定价为x元.x×35%-10=x×30%+20,解得x=600,答:该种品牌的衣服原定价是600元;②该种品牌的衣服进价为:600×30%+20=200(元).利润=80×(×600-200)=8000(元).答:“旺旺”商场在“元旦”期间销售该品牌衣服共获利8000元.18.解:(1)从表中可以看出规定吨数位不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元,(2)小明家6月份的水费是:10×2+(20-10)×3=50(元);(3)设小明家7月份用水x吨,100>10×2,所以x>10.所以,10×2+(x-10)×3=100,解得:x =.小明家7月份用水吨.19.解:(1)如果甲、乙两班联合起来购买门票需70×92=6440(元),比各自购买门票共可以节省:7760-6440=1320(元);(2)设甲班有学生x人(依题意46<x<90),则乙班有学生(92-x)人.依题意得:80x+90×(92-x)=7760,解得:x=52.则92-52=40(人).故甲班有52人,乙班有40人;(3)方案一:各自购买门票需42×90+40×90=6860(元);方案二:联合购买门票需(42+40)×80=6560(元);方案三:联合购买91张门票需91×70=6370(元);∵6860>6560>6370,∴应该甲乙两班联合起来选择按70元一次购买91张门票最省钱.20.解:(1)设成人人数为x人,则学生人数为(12-x)人,则:由题中所给的票价单可得:35x +(12-x)=350 解得:x=8故:学生人数为12-8=4人,成人人数为8人.(2)如果买团体票,按16人计算,共需费用:35×0.6×16=336元336<350 所以,购团体票更省钱.(3)最省的购票方案为:买16人的团体票,再买4张学生票.此时的购票费用为:16×35×0.6+4×17.5=406元.第11页。

《7.2一元一次方程》作业设计方案-初中数学青岛版12七年级上册

《7.2一元一次方程》作业设计方案-初中数学青岛版12七年级上册

《一元一次方程》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《一元一次方程》的学习,使学生掌握一元一次方程的基本概念、解题方法及实际运用。

通过作业的练习,加深学生对一元一次方程的理解,提高学生的运算能力和解决实际问题的能力。

二、作业内容1. 基础概念练习:要求学生掌握一元一次方程的定义、基本形式以及等式的基本性质。

通过填空题、选择题等形式,让学生识别和判断一元一次方程的样式。

2. 方程解法实践:通过练习题,让学生熟练掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等基本步骤。

设计不同难度层次的题目,让学生逐步掌握。

3. 实际问题应用:结合生活中的实际问题,如购物找零、速度与时间的关系等,将实际问题转化为一元一次方程进行求解。

培养学生运用数学知识解决实际问题的能力。

4. 错题分析与纠正:选取一些常见错误类型的题目,让学生在解题后进行自我检查和纠正,提高学生的解题准确率。

三、作业要求1. 按时完成:学生需在规定时间内完成作业,培养良好的时间管理习惯。

2. 独立完成:作业应独立完成,不得抄袭他人答案。

3. 认真审题:审清题目要求,明确解题方向。

4. 规范书写:解题过程应规范、清晰,便于检查和纠正错误。

5. 反思总结:完成作业后,学生应进行反思总结,找出自己的不足之处,以便后续改进。

四、作业评价1. 评价标准:根据学生的解题过程和结果,评价其掌握一元一次方程的程度和解题能力。

2. 评价方式:采用教师评价、同学互评和自我评价相结合的方式,全面了解学生的作业情况。

3. 反馈与指导:针对学生的作业情况,给出具体的反馈和指导,帮助学生改正错误,提高解题能力。

五、作业反馈1. 教师反馈:教师根据学生的作业情况,给出总体评价和具体指导建议。

2. 同学互评:鼓励学生之间互相评价作业,互相学习、互相进步。

3. 自我反思:学生应认真反思自己的作业过程和结果,找出自己的不足之处,制定改进措施。

通过以上的作业设计方案,学生将能够全面掌握一元一次方程的基本概念、解题方法及实际运用,提高其运算能力和解决实际问题的能力。

一元一次方程方案问题

一元一次方程方案问题

一元一次方程方案问题1为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5450元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套每套服装的价格60元46套至90套50元91套及以上40元如果两校分别单独购买服装,一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.某校组织初一师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数;(2)已知租用45座的客车日租金为每辆车250元, 60座的客车日租金为每辆300元,问租用哪种客车更合算?2某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.某地电话拨号入网有两种收费方式,用户可以任选其一.(Ⅰ)计时制:0.05元/分;(Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通费0.02元/分.(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?某牛奶加工厂有鲜9奶吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶3烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.春节将至,某移动公司计划推出两种新的计费方式,如下表所示:月租费本地通话费方式130元/月0.20元/分钟方式20.40元/分钟请解决以下两个问题:(通话时间为正整数)(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?某同学在安德利、家乐福超市发现他看中的随身听单价相同,书包的单价也相同,已知随身听和书包的单价之和为470元,且随身听的单价比书包单价的7倍少10元.(1)随身听和书包的单价各是多少元?(2)某天该同学上街,恰好两家超市都进促销活动,安德利超市所有商品八折销售;家乐福超市全场购满100元返30元(不足100元不返回),这个同学想买这两件商品,请你帮他设计出最佳购买方案,并求出他所付的费用.4为了开展阳光体育活动,某班需要购买一批羽毛球拍和羽毛球,现了解情况如下:甲、乙两家商店出售同样品牌的羽毛球拍和羽毛球.羽毛球拍每副定价30元,羽毛球每盒定价5元,且两家都有优惠:甲店每买一副球拍赠一盒羽毛球;乙店全部按定价的9折优惠.若该班需购买羽毛球拍5副,购买羽毛球x盒(x不小于5盒).(1)在甲商店购买则需付元;在乙商店购买需付元.(用含x的代数式表示并化简,请直接填写答案)(2)当购买多少盒羽毛球时,在两家商店购买所花的钱相等?电公司推出两种移动电话计费方法:方法A:免收月租费,按每分钟0.5元收通话费;方法B:每月收取月租费30元,再按每分钟0.2元收通话费.现在设通话时间是x分钟.(1)请分别用含x的代数式表示计费方法A、B的通话费用.(2)用计费方法A的用户一个月累计通话150分钟所需的话费,若改用计费方法B,则可通话多少分钟?(3)请你分析,当通话时间超过多少分钟时采用计费方法B合算?为了丰富学生的课外活动,学校决定购买一批体育活动用品,经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每幅球拍多50元,两个篮球与三幅球拍的费用相等,经洽谈,甲商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球超过80个,则购买羽毛球拍打八折.(1)求每个篮球和每副羽毛球拍的价格是多少?(2)若学校购买100个篮球和a副羽毛球拍,请用含a 的式子分别表示出到甲商店和乙商店购买体育活动用品所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商店购买比较合算?5其它目前节能灯在城市已基本普及,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如表:甲型乙型进价(元/只)2545售价(元/只)3060(1)如何进货,进货款恰好为元?。

《7.2一元一次方程》作业设计方案-初中数学青岛版12七年级上册

《7.2一元一次方程》作业设计方案-初中数学青岛版12七年级上册

《一元一次方程》作业设计方案(第一课时)一、作业目标本作业旨在通过一元一次方程的基本知识学习,使学生掌握一元一次方程的建立、解法及其应用,并能够运用所学知识解决实际问题,培养学生的逻辑思维能力和数学应用能力。

二、作业内容1. 预习内容复习:学生需复习一元一次方程的基本概念,如未知数、等式、解等,并完成相关概念的巩固练习。

2. 方程建立练习:选择生活中的实际问题,如购物找零、速度与时间的关系等,让学生尝试建立一元一次方程模型。

3. 解法掌握:学生需熟练掌握一元一次方程的解法,包括移项、合并同类项、系数化为1等步骤,并能够正确求解一元一次方程。

4. 实例应用:提供几个一元一次方程的实际应用问题,要求学生分析问题,建立方程,并求解。

5. 拓展延伸:引导学生探索一元一次方程与其他数学知识的联系,如与不等式、函数等的关系,培养学生的数学思维广度。

三、作业要求1. 认真完成预习内容的复习,确保对一元一次方程的基本概念有清晰的理解。

2. 在建立方程时,要注重实际问题的分析,确保方程能够准确反映问题的实际情况。

3. 在解方程过程中,要严格按照解法步骤进行,确保每一步的运算都准确无误。

4. 对于实例应用问题,要认真分析问题,明确解题思路,并详细记录解题过程。

5. 拓展延伸部分,要积极思考,尝试将一元一次方程与其他数学知识相联系,提出自己的见解。

四、作业评价1. 评价学生是否掌握了一元一次方程的基本概念和解法。

2. 评价学生在实际问题中建立一元一次方程的能力。

3. 评价学生解一元一次方程的准确性和解题过程的规范性。

4. 评价学生实例应用问题的分析能力和解题思路的清晰度。

5. 评价学生在拓展延伸部分的表现,是否能够积极思考并提出自己的见解。

五、作业反馈1. 教师需认真批改作业,对学生的错误进行记录和归纳,以便进行针对性的辅导。

2. 对于普遍存在的问题,教师需在课堂上进行讲解和示范,帮助学生改正错误。

3. 对学生的优秀作业进行展示和表扬,激励学生积极参与数学学习。

七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

七年级数学一元一次方程应用题(方案设计问题)(人教版)(专题)(含答案)

一元一次方程应用题(方案设计问题)(人教版)(专题)一、单选题(共6道,每道16分)1.某市为鼓励市民节约用水,对自来水用户按如下标准收费:若每月用户用水不超过15立方米时,按每立方米a元收费;超过15立方米时,不超过的部分每立方米扔按a元收费,超过的部分每立方米按2a元收费.如果某居民在一个月内用水35立方米,那么他该月应缴纳的水费是( )A.35a元B.55a元C.52.5a元D.70a元答案:B解题思路:根据题意,用水超过15立方米时,居民所交水费应分为两部分:15立方米的水费和超过15立方米部分的水费.因此该居民在一个月内用水35立方米时,应交水费:(元).故选B.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题2.某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米时,按每立方米0.8元收费;超过60立方米时,不超过部分仍按每立方米0.8元收费,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么这位用户4月份应交煤气费( )A.66元B.60元C.78元D.75元答案:A解题思路:4月份的煤气费平均每立方米0.88元,那么所用煤气一定超过60立方米.交煤气费包括60立方米的煤气费和超过60立方米的煤气费,设4月份用了煤气x立方米,根据题意得,解得x=75,4月份应交煤气费:75×0.88=66(元).故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题3.某单位要购置一批某型号的电脑,该型号的电脑市场价为每台5800元.现有甲、乙两电脑商进行竞标,甲电脑商提出的优惠条件是购买10台以上,则从第11台开始每台按七折计价;乙电脑商提出的优惠条件是每台均按八五折计价.假设这两家电脑商在品牌、质量、售后服务等方面都相同.设购买电脑x台(x>10),用含x的代数式分别表示在甲、乙两电脑商购买时付的钱数,下列正确的是( )A.B.C.D.答案:D解题思路:由题意得,在甲处购买需要花钱数:在乙处购买需要花钱数:故选D.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题4.(上接第3题)若要使得在甲、乙两电脑商购买电脑花钱一样多,则应该买电脑( )A.18台B.19台C.20台D.21台答案:C解题思路:根据第3题,要使得在甲、乙两电脑商购买电脑花钱一样多,则,解得x=20.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题5.某种海产品,若直接销售,每吨可获利1 200元;若粗加工后销售,每吨可获利5 000元;若精加工后销售,每吨可获利7 500元.某公司现有这种海产品100吨,该公司的生产能力是:如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨,但两种加工方式不能同时进行.受各种条件限制,公司必须在10天内(含10天)将这批海产品全部销售或加工完毕,为此该公司设计了三种方案:方案一:全部进行粗加工;方案二:尽可能多地进行精加工,没来得及进行精加工的直接销售;方案三:将一部分进行精加工,其余的进行粗加工,并恰好10天完成.若采用方案三,则需要精加工( )A.3天B.4天C.5天D.6天答案:C解题思路:设精加工的有x天,则粗加工的有(10x)天,根据题意可列方程为,解得x=5,即需要精加工5天,粗加工5天.故选C.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题6.(上接第5题)5题的三种方案中,获利最多的方案和对应的利润分别为( )A.方案三,562 500元B.方案二,435 000元C.方案三,600 000元D.方案一,500 000元答案:A解题思路:根据题意,列表梳理信息如下:由题意和第5题的计算结果得方案一:,所以利润为5000×100=500 000(元);方案二:利润为7 500×5×10+1 200×(100-5×10)=435000(元);方案三:利润为7 500×5×5+5 000×5×15=562 500(元).综上可知,方案三的利润最高,为562 500元.故选A.试题难度:三颗星知识点:一元一次方程的应用—方案设计问题。

中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法

中考题中“方案设计型”问题的解法2001年各地中考试题中出现了许多高质量的方案设计型题目,以激励学生运用数学知识和思想方法去解决现实生活中的问题,现介绍这类中考题的几种解法,供同学们毕业复习时参考。

一、用一元一次方程来解例1:我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元。

当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售加工完毕。

为此,公司研制了在种可行方案:方案一:将蔬菜全部进行粗加工。

方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接出售。

方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好用15天完成。

你认为哪种方案获利最多?为什么?二、用一元一次不等式来解例2:某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除了保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年),年票分为A、B、C三类:A类年票每张120元,持票者进入园林时,无需再购买门票:B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元,C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。

(1)如果你只选择一种购买门票的方法,并且你计划在一年中用80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。

(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?三、用方程与不等式混合组来解例3:在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派四、用分式方程来解例4:“丽园”开发公司生产的960件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学暑假作业1、一个周末,王老师等3名教师带着若干名学生外出考察旅游(旅费统一支付),旅费为每人500元,他们联系了标价相同的两家旅游公司,经洽谈,甲公司给出的优惠条件是:教师全部付费,学生按七五折付费;乙公司给的优惠条件是:全部师生按八折付费,请你参谋参谋,选择哪家公司较省钱?2.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用相同数量60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算?租几辆车?3.光华农机公司共有50台联合收割机,其中甲型20台,乙型30台,现将50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两(1)设派往A地x台乙型联合收割机,农机公司这50台收割机一天获得的租金为y元,请用的代数式表示,写出x的取值范围。

(2)若使这50台收割机一天获得的租金总额不低于79600元,使说明有多少种分配方案。

(3) 如果要使这50台收割机每天获得的租金最高,请你为光华农机公司提出一条合理建议。

4、为了解决农民工子女入学困难问题,我市建立了一套进城农民工子女就学的保障机制,其中一项就是免交借读费,据统计2014年秋有5000名农民工子女进入主城区中小学学习.预测2015年秋季进进入主城区中小学学习的农民工子女将比2014年有所增加,其中小学增加20%,中学增加30%,这样一来2015年将新增1160名农民工子女进入主城区中小学学习(1)如果按照小学每生每年收借读费500元.中学每生每年收借读费1000元计算,求2015年新增的1160名中小生共免收借读费多少元?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按照2015年秋季入学后,农民工子女进入主城区中小学学习就读的学生人数计算,一共需要配备多少名中小学教师?5、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

设购进A掀电脑x台,这100台电脑的销售总利润为y元。

①求y与x的关系式;②该商店购进A型、B型各多少台,才能使销售利润最大?6、某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现:如果月初出售,可获利15%,并可用本和利再投资其他商品;到月底又可获利10%,如果月末出售可获利30%,但要付出仓储费700元。

(1)如果这笔资金是25000元,则什么时候出售好?(2)月初出售与月末出售获利一样能一样多吗?若能,请求出这笔资金数,若不能,说明理由。

7、现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元,已知甲店制定的优惠方法是买一只茶瓶送一只茶杯,乙店按总价的92%付款,某单位办公室需购茶瓶4只,茶杯若干只(不少于4只)。

(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买?为什么?(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?8、汶川大地震发生后,各地人民纷纷捐款捐物支援灾区,我市某企业向灾区捐助价值94万元的A、B两种帐篷共600顶,已知A种帐篷每顶1700元,B种帐篷每顶1300元,该企业向灾区捐赠A、B两种帐篷各多少顶?9、商店对某种商品作调价,按标价的8折出售,此时商品的利润率是10%,此商品的进价为1600元,该商品的标价是多少?10、某校组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满,如果单独租用60座客车,则可少租1辆,并且剩余15个座位,(1)该校参加春游有多少人?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,该校租用哪种车更合算?11、甲、乙两家高科技公司都准备面向社会招聘人才,两家公司的条件基本相同,只有工资待遇有如下差异,甲公司的年薪为四万元,每年加工资600元,乙公司半年薪为两万元,每半年加工资300元,求甲、乙两家公司第n年的年薪分别是多少?从经济利益来考虑,选择哪家公司有利?甲、乙两家公司收入每年相差多少?12、中国移动宁波分公司开设适合普通用户的两种通讯业务分别是:“e家通”用户先缴16元月租,然后每分钟通话费用0.2元,“神州行”用户不用缴纳月租费,每分钟通话0.4元,通话均指拨打本地电话,通话时间按整数计算。

(1)设一个月内通话时间约为x分钟,则这两种通讯方式的用户每月需缴的费用分别是多少元?(用含x的代数式表示)(2)若李老师一个月的通话时间约为100分钟,请你给他提个建议,应选择哪种通讯方式更合算?请说明理由。

(3)若陈老师10月份付了话费52元,则陈老师10月份的通话时间约为几分钟?请说明理由。

13、某班将卖一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒10元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠,该班需买球拍6副,乒乓球若干盒(不小于6盒)。

(1)当购买乒乓球多少盒时两种优惠办法付款一样?(2)当购买20盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?(3)当购买40盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?14、某中学库存若干套桌凳,准备修理后支援贫困山区学校。

现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。

(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理②由乙单独修理③甲、乙合作同时修理。

你认为哪种方案省时又省钱?为什么?15、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元,制成酸奶销售,每吨可获取利润1200元,制成奶片销售,每吨可获取利润2000元。

该工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片每天可加工1吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。

为此,该厂设计了两种可行方案:方案一、尽可能多的制成奶片,其余直接销售鲜牛奶。

方案二、将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

则方案一与方案二的总利润各为多少? 16、为了提倡低碳经济,某公司为了更好得节约能源决定购买一批节省能源的10台新机器。

现有甲、乙两种型号的设备,其中每台的价格、工作量如下表。

经调查:购买一台A型设备比购买一台B 型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元. (1)求a,b 的值;ﻫ (2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几 种购买方案可供选择; (3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.解答题难度:中档来源:17、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元,每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变。

现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元。

(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?18、为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动。

星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序,若每一个路口安排4人,那么还剩下78人,若每个路口安排8人,那么最后一个路口不足8人,但不少于4人,求这个中学共选派值勤学生多少人,共有多少个交通路口安排值勤?甲型 乙型价格(万元/台) 产量(吨/月) 240 18019、某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”。

计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个。

已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本。

(1)符合题意的组建方案有几种?请你帮学校设计出来。

(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低?最低费用是多少元?20、某企业为了改善污水处理条件,决定购买A 、B 两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表。

经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨。

(1)企业有哪几种购买方案?(2)哪种购买方案更省钱?21、我市某化工厂现有甲种原料290千克,乙种原料212千克。

计划利用这两种原料生产A 、B 两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产一件B 种产品需要甲种原料2.5千克,乙种原料3.5千克。

该化工厂现有的原料能否保证生产顺利进行?若能的话,有几种方22、某电器超市销售每台进价分别为200元、170元的、两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量 销售收入 A 种型号 B 种型号 第一周3台 5台 1800元 第二周 4台 10台 3100元(进价、售价均保持不变,利润=销售收入-进货成本) ﻫ(1)求A.B两种型号的电风扇的销售单价; ﻫ(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.23、某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示: 类型 价格 进价(元/盏) 售价(元/盏)A 型 30 45B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A 型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?型号 A B 价格(万元/台) 8 6月处理污水量(吨/月) 200 180l 街道图(1)B A24、某商场计划销售一批运动衣后可获总利润12000元.在进行市场调查后,为了促销降低了定价,使得每套运动衣少获利润10元,结果销售比计划增加了400套,总利润比计划多得了4000元.问实际销售运动衣多少套?每套运动衣实际利润多少元?25、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?26、“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原售价之和为500元,问这两种商品的原销售价分别为多少元?27、一个两位数的十位数字与个位数字的和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的两位数,求这个两位数28、如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A,B 到它的距离之和最短?29如图,∠AOB 内有一点P,在OA 和OB 边上分别找出M 、N,使ΔP MN的周长最小30、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B 型洗衣机售价比A型洗衣机售价多500元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?31、某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?BO A. P32、一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?33、已知服装厂现有A 种布料70米,B 种布料52米,现计划用这两种面料生产M,N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利45元;做一套N 型号的时装需用A 种布料1.1米,B种布料0.4米,可获利润50元.若设生产N 型号码的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量x的取值范围;(2)服装厂在生产这批时装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?34、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去玻璃店, 就能配一块与原来一样大小的三角形玻璃?应该带( ). (A)第1块 (B)第2 块 (C )第3 块 (D )第4块35、一个n 边形削去一个角后,变成(n+1)边形的内角和为2520°,则原n 边形的边数是( )36如图是一个4×4的正方形网格,图中所标示的7个角的角度之和等于 ( )(A) 585° (B) 540°(C ) 270° (D) 315° 37.一个等腰三角形的周长为25cm,其中一条边长为10c m,求另两边的长. 38.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个三角形的腰和底边.39.若a,b,c 分别是三角形的三边,化简│a-b-c │+│b-c -a │-│c-a +b │. 40.草原上有4口油井,位于四边形AB CD 的4个顶点,现在要建立一个维修站H ,•试问H建在何处,才能使它到4个油井的距离和最小?并说明理由.41.如图,五角星A BCDE 中,求∠A +∠B+∠C +∠D +∠E 的度数和.42.如图,已知D 是△A CB 外角的平分线与BA 延长线的交点,说明:∠BAC>∠B .•43.如图,在△A BC 中,AD ⊥BC 且AD 平分∠BAC ,若∠1=30°,则∠C 为多少度?∠B 呢?△ABC 是什么三角形?44.如图,已知:D 是△ABC 的B C边延长线上一点,DF ⊥AB 于点F ,交AC于E ,•∠A=40°,∠D=30°,求∠ACB 的度数.45.如图,△ABC 中,∠C=90°,AD 平分∠CAB ,与∠ABC 的角平3421CA DBCD A 分线BE 相交于点D,求∠ADE 的度数.46、如图,△A BC 中,AB =AC ,∠BAC =100°,AD ⊥BC 于D,求∠B,∠CAD 的度数.(9分)47.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O ,过点O 作EF∥BC,交AB 于E,交AC 于F,若AB=18,AC=16,求△AEF 的周长?(9分)48.如图,四边形ABCD 中,AD ∥BC,AB=AD,(1)观察∠ABD 与∠CBD ,你能得到什么结论?(3分)(2)试说明你得到的结论.(6分)49、如图,点D,E 在△ABC 的边B C上,AB=A C,AD=AE ,(1) 试比较BD 与CE 的大小,写出你得到的结论;(4分)(2) 对你得到的结论说明理由.(6分) 50、如图,ABC ∆是等边三角形,又DE BC EF AC FD AB DEF ⊥⊥⊥∆,,,问是等边三角形吗?请简要说明理由. --F E O A B C AB D FC。

相关文档
最新文档