(完整版)高中物理传送带模型典型例题(含答案)【经典】,推荐文档
高中物理【传送带问题】(含经典习题)

牛顿第二定律的应用---传送带问题一、传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
难点疑点:传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
一、水平放置运行的传送带1.如图所示,物体A从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A滑至传送带最右端的速度为v1,需时间t1,若传送带逆时针转动,A滑至传送带最右端的速度为v2,需时间t2,则()A.1212,v v t t><B.1212,v v t t<<C.1212,v v t t>>D.1212,v v t t==2.如图7所示,一水平方向足够长的传送带以恒定的速度v1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v2′,则下列说法正确的是:()A.只有v1= v2时,才有v2′= v1B.若v1 >v2时, 则v2′= v2C.若v1 <v2时, 则v2′= v2D.不管v2多大,v2′= v2.3.物块从光滑斜面上的P点自由滑下通过粗糙的静止水平传送带后落到地面上的Q点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P点自由滑下,则()A.物块有可能落不到地面B.物块将仍落在Q点C.物块将会落在Q点的左边D.物块将会落在Q点的右边PQ4.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A、B始终保持v=1m/s的恒定速率运行;一质量为m=4kg的行李无初速地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处.求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.二、倾斜放置运行的传送带5.如图所示,传送带与地面倾角θ=37°,从AB长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.(sin37°=0.6,cos37°=0.8)求:物体从A运动到B需时间是多少?(思考:物体从A运动到B在传送带上滑过的痕迹长?)6.如图所示,传送带两轮A、B的距离L=11 m,皮带以恒定速度v=2 m/s运动,现将一质量为m的物块无初速度地放在A端,若物体与传送带间的动摩擦因数为μ=0.8,传送带的倾角为α=37°,那么物块m从A端运到B端所需的时间是多少?(g取10 m/s2,cos37°=0.8)三、组合类的传送带7.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC=4m,一小物体P与传送带的动摩擦因数 =0.25,皮带沿A至B方向运行,速率为v=2m/s,若把物体P放在A点处,它将被传送带送到C点,且物体P不脱离皮带,求物体从A点被传送到C点所用的时间.(sin37°=0.6,g=l0m/s2)牛顿第二定律的应用----传送带问题参考答案一、水平放置运行的传送带1.D 提示:物体从滑槽滑至末端时,速度是一定的.若传送带不动,物体受摩擦力方向水平向左,做匀减速直线运动.若传送带逆时针转动,物体受摩擦力方向水平向左,做匀减速直线运动.两次在传送带都做匀减速运动,对地位移相同,加速度相同,所以末速度相同,时间相同,故D .2.B3.B 提示:传送带静止时,物块能通过传送带落到地面上,说明滑块在传送带上一直做匀减速运动.当传送带逆时针转动,物块在传送带上运动的加速度不变,由2202t v v as =+可知,滑块滑离传送带时的速度v t 不变,而下落高度决定了平抛运动的时间t 不变,因此,平抛的水平位移不变,即落点仍在Q 点.4.【答案】(1)4N ,a =lm/s 2;(2)1s ;(3)2m/s解析:(1)滑动摩擦力F =μmg① 以题给数值代入,得F =4N② 由牛顿第二定律得F =ma ③代入数值,得a =lm/s 2 ④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s .则 v =at ⑤代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at = ⑦代入数值,得min 2s t =⑧ 传送带对应的运行速率V min =at min ⑨代人数据解得V min =2m/s⑩ 二、倾斜放置运行的传送带5.【答案】2s解析:物体的运动分为两个过程,一个过程在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动情况,其中速度相同点是一个转折点,此后的运动情况要看mgsinθ与所受的最大静摩擦力,若μ<tanθ,则继续向下加速.若μ≥tanθ,则将随传送带一起匀速运动,分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F ,物体受力情况如图所示.物体由静止加速,由牛顿第二定律得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2物体加速至与传送带速度相等需要的时间1110s=1s 10v t a ==, t 1时间内位移21115m 2s a t ==.由于μ<tanθ,物体在重力情况下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F .此时物体受力情况如图所示,由牛顿第二定律得:222sin cos ,2m/s mg mg ma a θμθ-==.设后一阶段物体滑至底端所用的时间为t 2,由 222212L s vt a t -=+,解得t 2=1s ,t 2=-11s (舍去).所以物体由A→B 的时间t=t 1+t 2=2s .6.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动 由牛顿第二定律得μmg cos37°-mg sin37°=ma则a =μg cos37°-g sin37°=0.4 m/s 2物体加速至2 m/s 所需位移s 0=v 22a =222×0.4m =5 m<L 经分析可知物体先加速5 m再匀速运动s =L -s 0=6 m.匀加速运动时间t 1=v a =20.4s =5 s. 匀速运动的时间t 2=s v =62s =3 s. 则总时间t =t 1+t 2=(5+3) s =8 s.答案:8 s三、组合类的传送带7.【答案】2.4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v v t a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=, 匀速运动时间120.6s AB s s t v-==. P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s (另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .。
运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求:(1)经过多长时间才与皮带保持相对静止?(2)传送带上留下一条多长的摩擦痕迹?【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动(2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律:皮箱加速度:a==m/s2=6m/s2由v=at 得t==s=0.1s(2)到相对静止时,传送带带的位移为s1=vt=0.06m皮箱的位移s2==0.03m摩擦痕迹长L=s1--s2=0.03m(10分)所以,(1)经0.1s行李与传送带相对静止(2)摩擦痕迹长0.0.03m二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。
此时物体可能经历两个过程——匀加速运动和匀速运动。
【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示:可知,物体所受合力F合=f-Gsinθ又因为f=μN=μmgcosθ所以根据牛顿第二定律可得:此时物体的加速度a===m/s2=1.2m/s2当物体速度增加到10m/s时产生的位移x===41.67m因为x<50m所以=8.33s所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动故匀速运动的位移为50m-x,所用时间所以物体运动的总时间t=t1+t2=8.33+0.83s=9.16s答:物体从A到B所需要的时间为9.16s.三、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的顶端,物体被向下传送。
(完整版)高中物理传送带模型(解析版)

送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
传送带模型--2024年高三物理二轮常见模型含参考答案

2024年高三物理二轮常见模型专题传送带模型特训目标特训内容目标1水平传送带模型(1T -5T )目标2倾斜传送带模型(6T -10T )目标3电磁场中的传送带模型(11T -15T )【特训典例】一、水平传送带模型1如图所示,足够长的水平传送带以v 0=2m/s 的速度沿逆时针方向匀速转动,在传送带的左端连接有一光滑的弧形轨道,轨道的下端水平且与传送带在同一水平面上,滑块与传送带间的动摩擦因数为μ=0.4。
现将一质量为m =1kg 的滑块(可视为质点)从弧形轨道上高为h =0.8m 的地方由静止释放,重力加速度大小取g =10m/s 2,则()A.滑块刚滑上传送带左端时的速度大小为4m/sB.滑块在传送带上向右滑行的最远距离为2.5mC.滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为2.5sD.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功为12J 2如图甲所示,一足够长的水平传送带以某一恒定速度顺时针转动,一根轻弹簧一端与竖直墙面连接,另一端与工件不拴接。
工件将弹簧压缩一段距离后置于传送带最左端无初速度释放,工件向右运动受到的摩擦力F f 随位移x 变化的关系如图乙所示,x 0、F f 0为已知量,则下列说法正确的是(工件与传送带间的动摩擦因数处处相等)()A.工件在传送带上先做加速运动,后做减速运动B.工件向右运动2x 0后与弹簧分离C.弹簧的劲度系数为F f 0x 0D.整个运动过程中摩擦力对工件做功为0.75F f 0x 03如图所示,水平传送带AB 长L =10m ,以恒定速率v 1=2m/s 运行。
初速度大小为v 2=4m/s 的小物块(可视为质点)从与传送带等高的光滑水平地面上经A 点滑上传送带。
小物块的质量m =1kg ,物块与传送带间的动摩擦因数μ=0.4,g取10m/s2,则()A.小物块离开传送带时的速度大小为2m/sB.小物体在传送带上的运动时间为2sC.小物块与传送带间的摩擦生热为16JD.小物块和传送带之间形成的划痕长为4.5m4如图甲所示,水平传送带在电机的作用下,t=0时刻由静止开始向右做匀加速直线运动,物块(视为质点)在t=0时刻以速度v0从左轮中心的正上方水平向右滑上传送带,t0时刻物块与传送带的速度相等均为0.4v0,物块和传送带运动的v-t图像如图乙所示,t0时刻前后物块的加速度大小变化量为53m/s2,物块从右轮中心正上方离开传送带时速度为0.8v0,整个过程中物块相对传送带的位移为1.5m。
(完整版)高中物理传送带模型

一、水平传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景21.可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景31可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速1、如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以s m v /10=的速度向右匀速运动。
现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,取2/10s m g =。
(1)求旅行包经过多长时间到达传送带的右端。
(2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件?2、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.3、(讲逆时针)如图所示,倾角为37°、长为L=16m 的传送带,转动速度为s m v /10=,在传送带顶端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。
高考物理——传送带问题专题归类(含答案解析)完整版.doc

传送带问题归类分析传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型)1.按放置方向分水平、倾斜和组合三种;2.按转向分顺时针、逆时针转两种;3.按运动状态分匀速、变速两种。
(二)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。
(三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。
突变有下面三种:1.滑动摩擦力消失;2.滑动摩擦力突变为静摩擦力;3.滑动摩擦力改变方向;(四)运动分析:1.注意参考系的选择,传送带模型中选择地面为参考系;2.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?3.判断传送带长度——临界之前是否滑出?(五)传送带问题中的功能分析1.功能关系:W F=△E K+△E P+Q。
传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。
因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。
2.对W F 、Q 的正确理解(a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对(c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q=2mv 21传 。
一对滑动摩擦力做的总功等于机械能转化成热能的值。
而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。
高中物理---传送带模型-----典型例题(含答案)【经典】

难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=,A 、B 间的距离L =2 m ,g 取10 m/s 2. (1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小; (2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率. |解析 (1)行李刚开始运动时,受力如图所示,滑动摩擦力:F f =μmg =4 N 由牛顿第二定律得:F f =ma 解得:a =1 m/s 2 (2)行李达到与传送带相同速率后不再加速,则:v =at ,解得t =v a=1 s(3)行李始终匀加速运行时间最短,且加速度仍为a =1 m/s 2,当行李到达右端时, 有:v 2min =2aL 解得:v min =2aL =2 m/s故传送带的最小运行速率为2 m/s 行李运行的最短时间:t min =v mina=2 s 2:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=㎏的物体,它与传送带间的动摩擦因数μ=,已知传送带从A →B 的长度L=50m ,则物体从A 到B 需要的时间为多少【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 2.1sin cos =-=mmg mg a θθμ。
专题17 传送带模型(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题17 传送带模型特训目标 特训内容目标1 水平传送带模型(1T —5T ) 目标2 水平传送带图像问题(6T —10T ) 目标3 倾斜传送带模型(11T —15T ) 目标4倾斜传送带图像问题(16T —20T )一、水平传送带模型1.如图所示,水平匀速转动的传送带左右两端相距 3.5m L =,物块A (可看做质点)以水平速度04m/s v =滑上传送带左端,物块与传送带间的动摩擦因数0.1μ=,设A 到达传送带右端时的瞬时速度为v ,g 取10m/s 2,下列说法不正确的是( )A .若传送带速度等于2m/s ,物块不可能先减速运动后匀速运动B .若传送带速度等于3.5m/s ,v 可能等于3m/sC .若A 到达传送带右端时的瞬时速度v 等于3m/s ,传送带可能沿逆时针方向转动D .若A 到达传送带右端时的瞬时速度v 等于3m/s ,则传送带的速度不大于3m/s 【答案】D【详解】A .物体在传送带上的加速度大小为21m/s mga mμ==若物体一直做匀减速运动到传送带右端时,根据'2202v v aL -=-解得'3m/s 2m/s v =>可知当传送带速度等于2m/s 时,物块一直减速到最右端,故A 正确;B .当传送带速度等于3.5m/s ,v 可能等于3m/s ,故B 正确;CD .若A 到达传送带右端时的瞬时速度v 等于3m/s ,传送带可能沿逆时针方向转动;若A 到达传送带右端时的瞬时速度v 等于3m/s ,传送带顺时针转动时,则传送带的速度要大于3m/s 。
故C 正确,D 错误。
本题选不正确的,故选D 。
2.足够长的传送带水平放置,在电动机的作用下以速度v 2逆时针匀速转动,一质量为m 的小煤块以速度v 1滑上水平传送带的左端,且v 1>v 2。
小煤块与传送带间的动摩擦因数μ,重力加速度大小为g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点形成的原因:1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.解析 (1)行李刚开始运动时,受力如图所示,滑动摩擦力:F f =μmg =4 N 由牛顿第二定律得:F f =ma 解得:a =1m/s 2(2)行李达到与传送带相同速率后不再加速,则:v =at ,解得t ==1 sv a (3)行李始终匀加速运行时间最短,且加速度仍为a =1 m/s 2,当行李到达右端时,有:v =2aL 解得:v min ==2 m/s 2min2aL 故传送带的最小运行速率为2 m/s 行李运行的最短时间:t min ==2 sv mina 2:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B 的长度L=50m ,则物体从A 到B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 2.1sin cos =-=m mg mg a θθμ。
这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为: ,33.8s 2.1101s a v t === m 67.412 21==a s υ<50m 以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。
设物体完成剩余的位移2s 所用的时间为2t ,则202t s υ=,50m -41.67m=210t 解得:s, 33.8 2=t 所以:s 66.16s 33.8s 33.8=+=总t 。
3、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°。
现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处。
已知P 、Q之间的距离为4 m ,工件与传送带间的动摩擦因数μ=,取g =1032m/s 2。
(1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间。
[答案] (1)先匀加速运动0.8 m ,然后匀速运动3.2 m (2)2.4 s解析 (1)工件受重力、摩擦力、支持力共同作用,摩擦力为动力由牛顿第二定律得:μmg cos θ-mg sin θ=ma 代入数值得:a =2.5 m/s 2则其速度达到传送带速度时发生的位移为 x 1== m =0.8 m<4 mv 22a 222× 2.5可见工件先匀加速运动0.8 m ,然后匀速运动3.2 m(2)匀加速时,由x 1=t 1得t 1=0.8 s 匀速上升时t 2== s =1.6 sv 2x 2v 3.22所以工件从P 点运动到Q 点所用的时间为 t =t 1+t 2=2.4 s4:如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B 的长度L=5m ,则物体从A 到B 需要的时间为多少? 【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为: ,1s 10101s a v t ===m 52 21==a s υ 此时物休刚好滑到传送带的低端。
所以:s 1=总t 。
5:如图所示,传送带与地面成夹角θ=30°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A→B 的长度L=16m ,则物体从A 到B 需要的时间为多少?【解析】物体放上传送带以后,开始一段时间,其运动加速度2m/s 46.8cos sin =+=m mg mg a θμθ。
这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为: ,18.1s 46.8101s a v t ===m 91.52 21==a s υ<16m 以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。
设物体完成剩余的位移2s 所用的时间为2t ,则202t s υ=,16m -5.91m=210t 解得:s, 90.10 2=t 所以:s 27.11s 09.10s 18.1=+=总t 。
6:如图,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;(2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间.答案 (1)4 s (2)2 s解析 (1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg (sin 37°-μcos 37°)=ma则a =g sin 37°-μg cos 37°=2 m/s 2,根据l =at 2得t =4 s.12(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a 1,由牛顿第二得,mg sin 37°+μmg cos 37°=ma 1则有a 1==10 m/s 2mg sin 37°+μmg cos 37°m 设当物体运动速度等于传送带转动速度时经历的时间为t 1,位移为x 1,则有t 1== s =1 s ,x 1=a 1t =5 m<l =16 m v a 110101221当物体运动速度等于传送带速度瞬间,有mg sin 37°>μmg cos 37°,则下一时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力——摩擦力发生突变.设当物体下滑速度大于传送带转动速度时物体的加速度为a 2,则a 2==2 m/s 2 x 2=l -x 1=11 mmg sin 37°-μmg cos 37°m 又因为x 2=vt 2+a 2t ,则有10t 2+t =11,解得:t 2=1 s(t 2=-11 s 舍去)所以t 总=t 1+t 2=2 s.12227.如图所示,足够长的传送带与水平面倾角θ=37°,以12m/s 的速率逆时针转动。
在传送带底部有一质量m = 1.0kg 的物体,物体与斜面间动摩擦因数μ= 0.25,现用轻细绳将物体由静止沿传送带向上拉动,拉力F = 10.0N ,方向平行传送带向上。
经时间t = 4.0s 绳子突然断了,求:(1)绳断时物体的速度大小;(2)绳断后物体还能上行多远(3)从绳断开始到物体再返回到传送带底端时的运动时间( g = 10m/s 2,sin 37°= 0.6,cos 37°= 0.8)答案:1 、8.0m/s 2、 = 4.0m 3、3.3s【解析】(1)物体开始向上运动过程中,受重力mg ,摩擦力F f ,拉力F ,设加速度为a 1,则有F – mgsinθ- F f = m a 1 又 F f = μF N F N = mgcosθ得a 1 = 2.0m / s 2 所以 ,t = 4.0s 时物体速度v 1 =a 1t = 8.0m/s(2)绳断后, 物体距传送带底端s 1 =a 1t 2 /2= 16m.设绳断后物体的加速度为a 2, 由牛顿第二定律得-mgsinθ - μmgcosθ= m a 2 a 2 = -8.0m / s 2 物体做减速运动时间t 2 = -= 1.0s12v a 减速运动位移s 2=v 1t 2+ a 2t 2 2 /2 = 4.0m(3)此后物体沿传送带匀加速下滑, 设加速度为a 3, 由牛顿第二定律得mgsinθ + μmgcosθ= m a 2 a 3 = 8.0m / s 2当物体与传送带共速时向下运动距离s 3=v 2/(2a 3)=9m 用时t 3 = v / a 3=1.5s共速后摩擦力反向,由于mgsinθ 大于 μmgcosθ,物体继续沿传送带匀加速下滑,设此时加速度为a 4, 由牛顿第二定律得Mgsinθ-μmgcosθ=ma 4下滑到传送带低部的距离为s 4= s 1+s 2-s 3=11m 设下滑的时间为t4,由得t 4=0.8s 最后得t=t 2+t 3+t 4=3.3s 8:在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。
随后它们保持相对静止,行李随传送带一起前进。
设传送带匀速前进的速度为0.25m/s ,把质量为5kg 的木箱静止放到传送带上,由于滑动摩擦力的作用,木箱以6m/s 2的加速度前进,那么这个木箱放在传送带上后,传送带上将留下一段多长的摩擦痕迹?解法一:行李加速到0.25m/s 所用的时间:t =a v 0=s 625.0=0.042s 行李的位移: x 行李=221at =m 2)042.0(621⨯⨯=0.0053m传送带的位移:x 传送带=V0t =0.25×0.042m =0.0105m摩擦痕迹的长度:mmm x x x 50052.0≈=-=∆行李传送带解法二:以匀速前进的传送带作为参考系.设传送带水平向右运动。