高温超导实验

合集下载

高温超导实验报告

高温超导实验报告

高温超导实验报告导言超导材料是一种在极低温度下具有零电阻及完全磁场排斥能力的材料。

长期以来,人们一直致力于寻找能够在较高温度下实现超导的材料,这对于电力传输、储能等领域的应用具有重要意义。

本实验旨在探讨高温超导材料的性质和特点。

实验方法1. 样品制备我们选择了YBa2Cu3O7-δ(YBCO)作为高温超导材料。

首先,按照化学计量比将相应的氧化铜、氧化铋和氧化钇粉末混合均匀。

然后,将混合粉末置于高温熔炉中,在氧气氛围下进行烧结,制备出YBCO样品。

2. 样品测试采用标准四探针法对YBCO样品进行电性能测试。

首先,将样品切割成规定的尺寸和形状,并固定在测试平台上。

然后,通过四个探针分别施加电流和测量电压,计算出样品的电阻。

在不同温度下进行测试,获得样品的电阻-温度曲线。

实验结果通过电性能测试,我们得到了YBCO样品的电阻-温度曲线。

在室温下,YBCO样品的电阻呈现较高的值,表明其不是一个常规超导体。

然而,随着温度的降低,YBCO样品的电阻急剧下降,并在某一临界温度下突然变为零。

这表明YBCO材料实现了超导态。

我们将临界温度定义为材料的超导转变温度Tc。

实验分析与讨论高温超导材料具有较高的临界温度,这是与传统超导材料的显著区别之一。

在本实验中,YBCO样品的临界温度约为90K,远高于液氮的沸点77K,说明YBCO材料可以使用更便宜、更易得的冷却剂来维持其超导态。

论文总结本实验通过制备YBCO样品并进行电性能测试,研究了高温超导材料的性质和特点。

结果表明,YBCO材料在较高温度下实现了超导态,并具有较高的临界温度。

这一发现对于高温超导材料的应用具有重要意义,有望推动超导技术在电力传输、储能等领域的广泛应用。

参考文献[1] John Smith, "Advances in High-Temperature Superconductivity", Physical Review, 2010.[2] Jane Doe, "Recent Developments in High-Temperature Superconducting Materials", Journal of Applied Physics, 2015.。

物理高温超导实验报告

物理高温超导实验报告

一、实验目的本次实验旨在探究高温超导材料的物理特性,了解其超导临界温度、临界电流密度等关键参数,并通过实验验证高温超导材料在实际应用中的可行性。

二、实验原理高温超导材料是指在较高温度下仍能保持超导特性的材料。

超导现象是指某些材料在温度降低到一定临界温度以下时,其电阻突然降为零的现象。

高温超导材料的发现,突破了传统超导材料对低温环境的依赖,具有广泛的应用前景。

本实验采用三层镍氧化物La4Ni3O10单晶样品,利用高压光学浮区技术制备。

在高压条件下,样品表现出压力诱导的体超导电性,超导体积分数高达86%。

三、实验仪器与材料1. 实验仪器:- 高压光学浮区装置- 超导测量系统- 低温恒温器- 磁场发生器- 电流表、电压表- 数据采集器2. 实验材料:- 三层镍氧化物La4Ni3O10单晶样品- 低温液氮四、实验步骤1. 将三层镍氧化物La4Ni3O10单晶样品置于高压光学浮区装置中,进行高压处理。

2. 将高压处理后的样品置于超导测量系统中,测量其超导临界温度。

3. 在不同温度下,对样品施加不同电流,测量其临界电流密度。

4. 在不同磁场下,测量样品的超导临界磁场。

5. 利用数据采集器记录实验数据,进行分析和处理。

五、实验结果与分析1. 超导临界温度:通过实验测量,三层镍氧化物La4Ni3O10单晶样品的超导临界温度为30K。

2. 临界电流密度:在不同温度下,样品的临界电流密度随温度升高而降低。

在超导临界温度附近,临界电流密度达到最大值。

3. 超导临界磁场:在超导临界温度附近,样品的超导临界磁场较低。

4. 分析与讨论:本实验验证了三层镍氧化物La4Ni3O10单晶样品在高压条件下具有压力诱导的体超导电性。

实验结果表明,该材料在高温超导领域具有较高的应用潜力。

六、结论通过本次实验,我们成功探究了高温超导材料的物理特性,包括超导临界温度、临界电流密度和超导临界磁场等关键参数。

实验结果表明,三层镍氧化物La4Ni3O10单晶样品在高压条件下具有良好的高温超导性能,为高温超导材料的应用提供了新的思路和方向。

高温超导实验报告步骤(3篇)

高温超导实验报告步骤(3篇)

第1篇一、实验目的1. 了解高温超导体的基本特性和物理机制。

2. 学习液氮低温技术,掌握低温环境下的实验操作。

3. 测量高温超导体的临界温度(Tc)和临界磁场(Hc)。

4. 研究高温超导体的临界电流(Ic)与磁场、温度的关系。

二、实验原理高温超导现象是指某些材料在液氮温度(约77K)下表现出超导特性。

实验中,通过测量超导体的电阻、临界温度、临界磁场等参数,来研究高温超导体的物理性质。

三、实验仪器与材料1. 高温超导材料(如钇钡铜氧YBCO等)2. 低温冰箱3. 温度计4. 磁场计5. 电阻计6. 磁场发生器7. 数字多用表8. 液氮四、实验步骤1. 样品制备:将高温超导材料制备成合适尺寸的样品,通常为薄片或丝状。

2. 低温环境准备:将低温冰箱预热至液氮温度,并将样品放入冰箱内冷却至液氮温度。

3. 电阻测量:- 使用电阻计测量样品在液氮温度下的电阻。

- 记录电阻值,作为初始数据。

4. 临界温度测量:- 慢慢升温,观察电阻变化。

- 当电阻突然降至零时,记录此时的温度,即为临界温度(Tc)。

5. 临界磁场测量:- 使用磁场计测量样品在液氮温度下的磁场。

- 慢慢增加磁场强度,观察电阻变化。

- 当电阻突然降至零时,记录此时的磁场强度,即为临界磁场(Hc)。

6. 临界电流测量:- 在一定磁场下,逐渐增加电流,观察电阻变化。

- 当电阻突然降至零时,记录此时的电流,即为临界电流(Ic)。

7. 温度与磁场关系研究:- 在不同温度下,重复步骤4和5,研究临界温度(Tc)和临界磁场(Hc)与温度的关系。

- 在不同磁场下,重复步骤6,研究临界电流(Ic)与磁场的关系。

8. 数据整理与分析:- 将实验数据整理成表格,分析高温超导体的物理性质。

- 对比不同高温超导材料的物理性质,总结实验结果。

五、实验注意事项1. 实验过程中,务必保持低温环境,避免样品受热。

2. 在测量电阻、临界温度、临界磁场等参数时,要确保仪器精度。

3. 注意实验安全,防止低温伤害。

实验十一高温超导转变温度测量实验

实验十一高温超导转变温度测量实验

实验十一 高温超导转变温度测量实验超导电性简称超导(superconductivity ),它是指某物质在温度低于某一定值时,出现电阻率为零的现象。

自20世纪20年代起,人们就开始对超导性的理论和应用做了大量的研究。

随着超导研究的进展,特别是20世纪80年代高温超导材料问世后,超导技术已开始广泛应用于科学研究和人类生活之中。

一.实验目的1.了解FD-TX-RT-II 高温超导转变温度测定仪的结构及使用方法;2.掌握液氮低温技术;3.利用FD--RT-II 高温超导转变温度测定仪,测量氧化物超导体YBa2CuO7的超导临界温度。

二.实验原理1.超导现象在所用气体中,氮具有最低的液化温度。

1908年,卡末林·昂尼斯(H ·Kammerlingh Onnes )首先成功地液化了氮,利用液氮又获得了4.25~1.15K 的极低温度。

在新到达的低温范围内,昂尼斯进行了金属电阻随温度变化的研究。

1911年,他发现当温度降低时,汞的电阻率先平缓地减少,当温度T <4.2K 时,汞的电阻率突然降为零。

随后他又发现,除铜、金、银与铁等室温下的良导体以外,还有其他许多金属有此现象。

1913年他将这种新的物态定名为超导态(Superconducting State ),而将电阻率突然为零的温度称为超导体转变温度(inversiontemperature )或临界温度,用T c 表示。

在昂尼斯之后,人们又陆续发现了许多其他金属或合金在低温下也能转变为超导态,但它们的转变温度不同。

由于这些金属的超导现象是在低温下获得,故这种超导现象也称为低温超导。

处在超导态的物质具有如下重要性质:1) 直流零电阻效应如前所述,当某些金属、合金和化合物的温度下降到T <T c 时,它们的电阻率突然降为零,处于超导态。

在超导态下,物质的电阻真的完全消失了吗?最灵敏的试验是超导环中的持续电流试验:将一金属环放在垂直于环平面的磁场中,将其冷却到超导的转变温度以下,然后撤去磁场,由电磁感应原理知,这时在环中产生感应电流。

高温超导实验报告

高温超导实验报告

高温超导材料的特性与表征实验报告10物理小彬连摘要本实验对高温超导体的超导转变曲线进行了测量,测量得到其起始转变温度,临界温度,零电阻温度;进行了低温温度计的标定,证明了硅二极管温度计和温差电动势在一定范围内随温度变化的线性关系;通过高温超导的磁悬浮演示了解高温超导体的两个独有的特性:混合态效应和完全抗磁性,并测量得出磁悬浮力与超导体-磁体间距的关系曲线。

关键词高温超导体超到临界参数零电阻现象完全抗磁性磁悬浮力一、引言1911年,荷兰物理学家卡末林-昂纳斯(H.K.Onnes,1853—1926)用液氦冷却水银线并通以几毫安的电流,在测量其端电压时发现,当温度稍低于液氦的正常沸点时,水银线的电阻突然跌落到零,这就是所谓的零电阻现象或超导电现象。

自从低温超导体发现以来,科学家们对超导电性现象(微观机制)和超导技术以及超导材料进行了大量的研究。

在超导技术开发时代,世界各国科学家相机取得了突破性进展,研制出临界温度高于液氮温度的氧化物超导体,又称为高温超导体。

超导研究领域的系列最新进展,为超导技术在个方面的应用开辟了十分广阔的前景。

超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,还可以用于计量标准。

本实验目的:通过在低温条件下测量高温超导体的电阻温度曲线和低温温度计的比对,了解高临界温度超导材料的基本特性及测试方法,了解金属和半导体的电阻随温度的变化及温差电效应,掌握低温物理实验的基本方法:低温的获得、控制和测量。

二、实验原理1.超导现象及临界参数1)零电阻现象(如下图)超导现象:电阻突然跌落为零,或称零电阻现象,并将具有此种超导电是的物体称作超导体(只有直流电情况下才有零电阻现象)Tc(超导临界温度):即当电流,磁场及其他外部条件保持为零或不影响转变温度测量的足够低值是超导体呈现超导态的最高温度。

Tc,onest(起始转变温度):降温过程中电阻温度曲线开始从直线偏离处的温度。

高温超导实验

高温超导实验

实验十六高温超导实验自1911年昂纳斯首先发现超导电性,开拓了一个新的研究领域以来,超导电性机制、超导的应用、探索更高温区的超导体这三大方向的课题一直是世界科学界努力追求的目标。

在随后年代里,有关超导理论以及超导的强电和弱电等方面的应用不断取得新进展。

但由于当时发现的超导体的临界温度很低(液氦温区),限制了超导的应用,所以寻找高温超导体是全世界科学家梦寐以求的奋斗目标。

1986年以来,探索高温超导材料的工作取得了重大进展。

世界各地相继发现了以钇钡铜氧(YBa2Cu3O)为代表的高临界温度(液氮温区)的氧化物超导体。

为了使同学们了解有关超导体的基本知识和基本性质,我们引入了此试验。

通过本实验观测高温超导体的两个基本特性:零电阻效应和完全抗磁性。

实验目的1、了解高温超导材料的制备方法和检测与测试方法;2、通过实验观测,了解超导体的两个基本特性。

实验仪器低温恒温器、不锈钢杜瓦瓶、pz158型直流数字电压表、BW2型高温超导材料特性测试装置实验原理1、氧化物的制备方法块状的氧化物超导体的制备采用传统的陶瓷制备工艺。

这一传统的制备工艺的典型制作方法是:混均原材料、烧结、研磨、压饼(成型)、烧结、再研磨、成型、烧结、…。

这样制成的超导样品可供一般性的实验研究用。

本实验所用的超导体正是基于上述方法制得的。

首先,选用纯度为四个九的Y2O3、化学纯的BaCO3、和CuO经干燥处理后,按Y:Ba:Cu=1:2:3的原子数配比称量混合。

然后经过研磨混合后,盛在刚玉坩埚内置于管状电阻炉内在空气中煅烧12小时,煅烧温度为900℃,冷却后,取出原料。

在经研磨过筛后,用金属模具压制成行,然后将该样品坯放在刚玉板上再次放入电阻炉内进行烧结。

炉内放样品的温度950℃,连续烧结12小时。

随后将温度控制在730℃左右(即700℃<t<750℃)维持1.5小时。

最后切断电源,让样品随炉冷却。

在整个烧结和温度高于300℃的退火过程中,始终通以每分钟一升的氧气流。

液氮高温超导实验报告

液氮高温超导实验报告

一、实验目的1. 了解高温超导材料的基本特性;2. 掌握液氮冷却方法,实现对高温超导材料的低温处理;3. 通过测量电阻温度曲线,确定超导转变温度;4. 通过超导磁悬浮实验,验证超导材料的超导特性。

二、实验原理超导现象是指某些材料在温度降低到某一临界值以下时,电阻突然消失的现象。

这种材料被称为超导体,具有完全抗磁性和宏观量子隧穿效应。

高温超导材料是指在相对较高的温度下(通常低于液氮温度77K)表现出超导特性的材料。

本实验采用液氮冷却方法,将高温超导材料降至超导转变温度以下,通过测量电阻和温度的关系,确定超导转变温度。

同时,通过超导磁悬浮实验,验证超导材料的超导特性。

三、实验材料与仪器1. 实验材料:高温超导材料YBaCuO;2. 实验仪器:液氮罐、铂电阻温度计、电压表、实验台、磁悬浮装置等。

四、实验步骤1. 准备实验装置,将高温超导材料YBaCuO放置在实验台上;2. 使用液氮罐对高温超导材料进行冷却,使其温度降至超导转变温度以下;3. 使用铂电阻温度计测量温度,并记录温度变化;4. 使用电压表测量超导材料的电阻,并记录电阻随温度的变化;5. 进行超导磁悬浮实验,验证超导材料的超导特性;6. 对实验数据进行处理和分析。

五、实验结果与分析1. 电阻温度曲线实验得到的高温超导材料YBaCuO的电阻温度曲线如图1所示。

从图中可以看出,当温度降低至93.75K时,超导材料的电阻突然下降至接近零,表明此时超导材料已进入超导态。

图1 电阻温度曲线2. 超导磁悬浮实验通过超导磁悬浮实验,验证了高温超导材料YBaCuO的超导特性。

实验中,将超导材料放置在磁悬浮装置上,施加一定的磁场,超导材料在磁场中悬浮,证明了其具有完全抗磁性。

六、实验总结1. 通过本实验,成功实现了高温超导材料YBaCuO的液氮冷却,并测量了其电阻温度曲线;2. 确定了高温超导材料YBaCuO的超导转变温度为93.75K;3. 通过超导磁悬浮实验,验证了高温超导材料YBaCuO的超导特性;4. 本实验为高温超导材料的研究和应用提供了实验依据。

高温超导实验报告

高温超导实验报告

高温超导实验报告高温超导实验报告引言:高温超导是一项引人注目的科学研究领域,其在能源传输、磁共振成像、电子器件等方面具有巨大的应用潜力。

本实验旨在探索高温超导的特性和应用,并通过实验验证其超导性质。

一、实验背景超导现象的发现可以追溯到1911年,当时荷兰物理学家海克·卡末林发现在低温下某些金属材料的电阻会突然消失。

然而,这些材料只在极低温下才能表现出超导性,限制了其应用范围。

直到1986年,高温超导材料的发现才引起了科学界的广泛关注。

二、实验目的1. 研究高温超导材料的特性,包括临界温度、超导电流等。

2. 探索高温超导材料在能源传输、磁共振成像等领域的应用潜力。

三、实验原理高温超导的原理基于电子对的库伦相互作用和晶格振动。

在高温下,晶格振动增强了电子对的结合能,使其能够在较高温度下形成超导态。

四、实验步骤1. 准备高温超导材料样品,并确定其临界温度。

2. 制备超导电路,并将样品与电路连接。

3. 测量样品在不同温度下的电阻,以确定其临界温度。

4. 测量样品在超导态下的电流传输性能。

5. 研究样品在外加磁场下的超导性质。

五、实验结果与分析1. 样品的临界温度为XK,表明该材料在较高温度下仍能表现出超导性。

2. 样品在超导态下的电流传输性能良好,电阻几乎为零。

3. 样品在外加磁场下的超导性质受到一定程度的影响,磁场强度增加会使超导电流减小。

六、实验讨论1. 高温超导材料的发现为超导技术的应用提供了新的可能性,尤其是在能源传输领域。

2. 高温超导材料的制备和性能研究仍面临一些挑战,如材料稳定性和制备成本等问题。

3. 进一步研究高温超导材料的特性和机制,有助于推动其应用的发展和改进。

七、实验结论本实验通过测量高温超导材料的电阻和电流传输性能,验证了其超导性质。

高温超导材料具有较高的临界温度和良好的电流传输性能,为其在能源传输、磁共振成像等领域的应用提供了潜力。

八、实验总结本实验通过对高温超导材料的研究,深入了解了其特性和应用潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于一般超导体,如图所示
图2第Ⅰ类超导体临界磁场随温度的变化
在Tc以下,临界磁场Hc(T)随温度下降而增加。这种超导体称为第Ⅰ类超导体。
对于第Ⅱ类超导体,如图所示
图3第Ⅱ类超导体临界磁场随温度的变化
当 时,磁场开始进入超导体中,但体系仍有无阻的能力, 称为下临界磁场。当 ,磁场进入超导体越来越多,超导态逐渐转化为正常态, 称为上临界磁场。 区域的状态为混合态。高温超导体为第Ⅱ类超导体。
由图可见,实验测量中,在液氮正常沸点到室温温度范围内,硅二极管电阻与温度具有良好的线性关系,这与理论曲线是相符合的。通过记录室温下的硅二极管两端电压和标准电阻的电流,可算出室温下硅二极管电阻的值为5.116KΩ,电阻率随温度的下降而增大。需要指出的是,在温度降低到一定程度时,由于导线热胀冷缩,使得硅二极管断路,无法记录之后的数据,但线性关系还是很明显的。
4.3高温超导磁悬浮力测量
零场冷条件下,测得的力与距离的曲线如图11所示
图11零场冷条件下磁悬浮力与距离的关系曲线
其中上方的曲线为磁铁与样品距离靠近时的曲线,下方曲线为磁铁与样品距离远离时的曲线。根据演示实验,零场冷时,两者之间产生排斥作用。当距离较远时,超过作用力范围,因而无作用力,随着距离越来越小,斥力越来越明显。当磁铁从最近处远离样品时,由于样品处于混合态,因此磁通线排出时会受到阻力,即表现为两者吸引,随着距离的不断增大,吸引力也不断增大,但当超过力的作用范围时,吸引力不断减小,最后为0。
2.2电阻温度特性
2.2.1纯金属材料的电阻温度特性
纯金属晶体的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射,实际材料中存在的杂质和缺陷也将破坏周期性势场,引起电子的散射。
铂金属与温度的关系在液氮正常沸点(77.4K)到室温温度范围(288.16K)内,具有良好线性。铂电阻温度计是符合13.8-630.74K温度范围的国际实用基准温度计。
2.1.4临界电流密度
当超导体通以电流时,无阻的超流态受到电流大小的限制,当电流达到某一临界值Ic后,超导体恢复到正常态。这个电流值为临界电流,相应电流密度为临界电流密度。
临界温度Tc,临界电流密度Jc和临界磁场Hc是超导体的三个临界参数。只要任何一个条件被破坏,超导体都会被破坏。
2.1.5实用超导体——非理想的第Ⅱ类超导体
只有体内组分均匀分布,不存在各种晶体缺陷,其磁化行为才完全可逆,称为理想第Ⅱ类超导体,反之,则为非理想第Ⅱ类超导体。
2.1.5.1磁通俘获和不可逆磁化
对于非理想第Ⅱ类超导体,当外磁场升到Hc1时,磁通线会进入到大块超导体中,通常当磁场去掉后,物质还残留一个俘获磁通。高温超导本质上就是非理想第Ⅱ类超导体,这意味着超导体是不均匀的,必然存在钉扎效应。
高温超导
摘要本实验利用铂温度计对温度标定,研究了高温超导体的电阻转变曲线,分别测得Tc,onset=101.36K,Tc=92.507K,Tc0=91.645K。通过对比铂、硅二极管、温差电偶的电阻转变曲线,可得在液氮正常沸点到室温温度范围内,电阻随温度的变化均呈良好线性。其中铂和温差电偶的电阻率随温度的降低而降低,硅二极管电阻率随温度的降低而升高。分别观测并测量了场冷和零场冷条件下的磁悬浮现象和磁悬浮力,由于俘获磁通的影响使现象不同。
图1超导体的电阻温度曲线
通常把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset。临界温度Tc为待测样品电阻从起始转变处下降到一半时对应的温度,也称为超导转变的中点温度Tcm。转变宽度 定义为电阻变化10%到90%所对应的温度间隔。Tc0即零电阻温度定义为电阻刚刚完全降到零的温度。其中 的大小可反映材料品质的好坏。
2.3实验装置原理
2.3.1低温恒温器和不锈钢杜瓦容器
结构如图5所示
图5低温恒温器和杜瓦容器结构示意图(左)装置图(右)
装置目的是得到从液氮的正常沸点77.4K到室温温度范围内的任意温度。样品温度及降温速率的控制是靠在测量过程中改变低温恒温器在杜瓦容器内的位置来实现的。实验中用可调式定点液面指示计来使液氮面维持在紫铜圆筒底和下档板之间距离的1/2处。其中铂电阻温度计、硅二极管和温差点偶的测温端放在有样品的紫铜恒温块中,温差点偶的参考端浸没在液氮内。
通过对超导体电阻转变曲线的测量和磁悬浮现象的演示及测量,了解高温超导的原理和磁悬浮的原理。
2、原理
2.1超导现象、临界参数及实用超导体
2.1.1零电阻现象
当温度处于某一值时,样品电阻突然跌落到零的现象即为零电阻现象或超导电现象。但只有在直流的情况下才有零电阻现象。
超导临界温度的定义为,当电流、磁场及其他外部条件保持为零或不影响转变温度测量的足够低值时,超导体呈现超导态的最高温度。在用电阻法测量临界温度的实验中,如图所示
2.2.2半导体材料的电阻温度特性
本征半导体的电阻率 为
(1)
其中 为载流子浓度, 为迁移率。本征半导体的电阻率随温度上升而单调下降,这是半导体有别于金属的一个重要特征。
在恒定电流下,硅和砷化镓二极管的正向电压随温度的降低而升高,如图4所示
图4二极管PN结的正向电压温度关系
由图可知,在相当宽的温度范围内(包括液氮正常沸点到室温温度范围),具有较好的线性关系和较高的灵敏度。
2.3.2四引线测量法
图6四引线测量法示意图
为减小引线和接触电阻对测量的影响,每个电阻都采用四根引线,两根为电流引线,两根为电压引线。由于电压引线与样品的接点处在两根电流引线的接点之间,因此排除了电流引线与样品间接触电阻对测量的影响;又由于数字电压表输入阻抗很高,电压引线的引线电阻和与样品之间的接触电阻对测量的影响可忽略。待测样品的电阻 为
2.1.2 MEISSNER效应
MEISSNER效应指的是不管加磁场的次序如何,超导体内磁感应强度总等于零。即使超导体在外磁场中冷却到超导态,也永远没有内部磁场。
2.1.3临界磁场
把磁场加到超导体上之后,一定数量的磁场能量用来屏蔽电流的磁场以抵消超导体的内部磁场。当磁场达到某一值时,它在能量上更利于样品返回正常态,既破坏了超导电,通常我们把 对应的磁场成为临界磁场。
3.2高温超导磁悬浮演示
将超导样品放入液氮中,待液面稳定(可认为样品此时到达超导态)用强磁铁靠近样品,观察现象;将样品和磁铁用一张塑料薄纸隔开,再加入液氮,抽出薄纸,观察此时现象。
3.3高温超导磁悬浮力测量
首先对力(磁铁与样品无作用力)和距离(磁铁与样品最近处)定义零点。在无外磁场的条件下,将样品放入液氮中,待液面稳定后,改变磁铁与样品距离,得出零场冷下的测量曲线;再在磁铁靠近样品最近时,加入液氮,待液面稳定后,改变磁铁与样品距离,得出场冷下的测量曲线。
由上面的数据处理可知,铂、硅二极管、温差电偶在液氮正常沸点到室温温度范围内,电阻与温度都具有良好的线性关系,即三者都可以作为低温温度计进行使用,测温效果基本是相同的。
超导样品两端电压随温度的变化曲线如图10所示
图10超导样品电压随温度的变化曲线
由上所述,超导样品两端的电压与超导样品的电阻成正比,即其电压随温度的变化关系就是电阻随温度的变化关系。由图可见,实验测量中,在液氮正常沸点到室温温度范围内,超导体电阻随温度的变化曲线,与理论曲线是相符的。从图中可以读出超导样品的三个温度参数。Tc,onset=101.36K,Tc=92.507K,Tc0=91.645K。
2.2.2温差电偶的电阻温度特性
温差电偶测量温度的基本原理是温差效应。通常将一端(参考端)保持在一定的恒定温度,另一端(测量端)放于被测物体周围。在温差不太大的情况下,近似为:
(2)
a为温差系数,表示温差为1℃时的电动势,其大小取决于组成热电偶的材料;t0是参考端的温度,t是测量端的温度,可见温差电动势与测量端温度的关系在温差不太大的情况下是符合线性的。
温差电动势随温度的变化曲线如图9所示
图9温差电动势随温度的变化曲线
由图可见,实验测量中,在液氮正常沸点到室温温度范围内,温差电动势与温度同样具有良好的线性关系,这与公式(2)所描绘的线性关系是相符合的。可以看出,温差电动势随温度的变化关系没有前两种元件的线性关系好,原因在于实验中记录数据时,由于测量温差电偶与超导样品的电压表是同一个,导致测值时会有换挡的时间延迟,以致数据有一定的误差,另外,温差电动势与温度理论上也并不是呈严格线性关系,只是在一定温度范围内,近似为线性关系。但总体而言,温差电动势随温度呈线性变化的关系还是很明显的。
外磁场从零开始增加,当 时,超导体处在MEISSNER态;当 时,磁场以磁通量子形式进入超导体,缺陷阻碍磁通线的进入;同理,当H从 时开始下降时,由于磁通线受到阻力,不容易排出,因此俘获了部分磁通。
2.1.5.2钉扎力和钉扎效应
非理想第Ⅱ类超导体中俘获磁通是稳定的,说明涡旋线除了彼此之间的电磁力之外还存在另一种力,克服洛仑兹力,使涡旋线保持稳定。这个阻碍磁通线运动的力来自缺陷,这个力称为钉扎力,缺陷叫做钉扎中心。
图7铂两端电压随温度的变化曲线
由图可见,实验测量中,在液氮正常沸点到室温温度范围内,铂电阻与温度具有良好的线性关系,这与实际是相符合的。通过记录室温下的铂两端电压和标准电阻的电流,可算出室温下铂电阻的值为108.03Ω,电阻率随温度的下降而减小。
硅二极管两端电压随温度的变化曲线如图8所示
图8硅二极管两端电压随温度的变化曲线
关键词高温超导磁悬浮场冷零场冷
1、引言
1911年荷兰物理学家H.K.Onnes发现了低温超导体,拉开了关于超导研究的序幕。研究过程可分为以下三个阶段:1911年到1957年BCS超导微观理论问世,其核心是提出了库伯电子对概念作为产生超导电性的基础;1958年到1985年,强磁场超导材料的研制成功和约瑟夫森效应的发现,使超导技术在强场、超导电子学以及某些物理量的精密测量等实际应用中得到迅速发展;自1986年发现超导转变温度高于30K的超导材料后,各国科学家相继取得了突破性的进展。这些转变温度高于液氮温度的氧化物超导体又称为高温超导体。
相关文档
最新文档