经济数学基础形成性考核册作业3参考答案
电大经济数学基础形成性考核册及参考答案[1]
![电大经济数学基础形成性考核册及参考答案[1]](https://img.taocdn.com/s3/m/2699fbff59f5f61fb7360b4c2e3f5727a5e924fa.png)
电大经济数学基础形成性考核册及参考答案[1]关建字摘要:答案,矩阵,下列,百台,产量,成本,利润,求解,未知量,对称竭诚为您提供优质文档,本文为收集整理修正,共13页,请先行预览,如有帮助感谢下载支持经济数学基础形成性考核册及参考答案作业(一)(三)解答题1.计算极限x 2-3x +21(x -2)(x -1)x -2(1)lim==-=lim lim 2x →1x →1x →12x -1(x -1)(x +1)(x +1)x 2-5x +61(x -2)(x -3)x -3(2)lim 2=lim =lim =x →2x -6x +8x →2(x -2)(x -4)x →2(x -4)2(1-x -1)(1-x +1)1-x -1lim (3)lim=x →0x →0x x (1-x +1)=limx →0-x -11=lim=-2x (1-x +1)x →0(1-x +1)351-+2x 2-3x +5x x =1lim (4)lim =x →∞x →∞3x 2+2x +42433++2x x (5)lim5x sin 3x 33sin 3x==lim x →03x sin 5x 55x →0sin 5xx 2-4(x -2)(x +2)(6)lim=lim =4x →2sin(x -2)x →2sin(x -2)1⎧x sin +b ,x <0⎪x ⎪2.设函数f (x )=⎨a ,x =0,⎪sin xx >0⎪x ⎩问:(1)当a ,b 为何值时,f (x )在x =0处有极限存在?(2)当a ,b 为何值时,f (x )在x =0处连续.答案:(1)当b =1,a 任意时,f (x )在x =0处有极限存在;(2)当a =b =1时,f (x )在x =0处连续。
3.计算下列函数的导数或微分:(1)y =x +2+log 2x -2,求y '答案:y '=2x +2ln 2+x 2x 21x ln 2(2)y =ax +b,求y 'cx +d答案:y '=a (cx +d )-c (ax +b )ad -cb=22(cx +d )(cx +d )13x -513x -5,求y '12(3)y =答案:y ==(3x -5)-y '=-32(3x -5)3(4)y =答案:y '=x -x e x ,求y '12xax -(x +1)e x(5)y =e sin bx ,求d y答案:y '=(e )'sin bx +e (sin bx )'ax ax =a e ax sin bx +e ax cos bx ⋅b=e ax (a sin bx +b cos bx )dy =e ax (a sin bx +b cos bx )dx(6)y =e +x x ,求d y1x311答案:d y =(x -2e x )d x 2x (7)y =cos x -e -x ,求d y 答案:d y =(2x e -x -n 22sin x 2x)d x(8)y =sin x +sin nx ,求y '答案:y '=n sin n -1x cos x +cos nxn =n (sin n -1x cos x +cos nx )(9)y =ln(x +1+x 2),求y '答案:1-1x 1122'=y '=(x +1+x )=(1+)=(1+(1+x )2x )2x +1+x 2x +1+x 21+x 21+x 2x +1+x 2121(10)y =2cot 1x+1+3x 2-2xx,求y 'ln 21-21-6-x +x 答案:y '=126x 2sinx4.下列各方程中y 是x 的隐函数,试求y '或d y (1)x 2+y 2-xy +3x =1,求d y 答案:解:方程两边关于X 求导:2x2cot 1x 35+2yy '-y -xy '+3=0y -3-2xd x2y -x(2y -x )y '=y -2x -3,d y =(2)sin(x +y )+e xy =4x ,求y '答案:解:方程两边关于X 求导cos(x +y )(1+y ')+e xy (y +xy ')=4(cos(x +y )+e xy x )y '=4-ye xy -cos(x +y )4-y e xy -cos(x +y )y '=xy x e +cos(x +y )5.求下列函数的二阶导数:(1)y =ln(1+x ),求y ''22-2x 2答案:y ''=22(1+x )(2)y =1-x x,求y ''及y ''(1)3-1-答案:y ''=x 2+x 2,y ''(1)=14453作业(二)(三)解答题1.计算下列不定积分3x (1)⎰xd xe3xx 3x 3xe 答案:⎰xd x =⎰()d x =+c 3e e ln e(2)⎰(1+x )2xd x113-(1+x )2(1+2x +x 2)答案:⎰d x =⎰d x =⎰(x 2+2x 2+x 2)d x x x42=2x +x 2+x 2+c35x2-4d x (3)⎰x +21x2-4d x =⎰(x -2)d x =x 2-2x +c答案:⎰2x +2(4)351⎰1-2xd x 答案:1111d x -ln1-2x +c ==-d(1-2x )⎰1-2x ⎰221-2x2(5)x 2+x d x 3211222答案:⎰x2+x d x =⎰2+x d(2+x )=(2+x )+c 322⎰(6)⎰sinx xd x答案:⎰sinx xd x =2⎰sin xd x =-2cos x +c(7)x sin⎰xd x 2答案:x sin ⎰x xd x =-2⎰xdco s d x 22x x x x +2⎰co s d x =-2x cos +4sin +c 2222=-2x cos (8)ln(x +1)d x 答案:ln(x +1)d x ==(x +1)ln(x +1)-2.计算下列定积分(1)⎰⎰⎰ln(x +1)d(x +1)⎰(x +1)dln(x +1)=(x +1)ln(x +1)-x +c⎰2-11-x d x答案:⎰12-11-x d x =1x21211252+==(x -x )+(x -x )(1-x )d x (x -1)d x -11⎰-1⎰12221(2)⎰2ed x x 22答案:⎰1121e x x -e d x ==-e d ⎰1x x21x1121=e -e(3)⎰e 31x 1+ln xd xe 311d(1+ln x )=2(1+ln x )21+ln x答案:⎰e 31x 1+ln x1d x =⎰1e 31=2π(4)⎰20x cos 2x d x ππππ111122--sin 2xdx 答案:⎰2x cos 2x d x =⎰2xd sin 2x =x sin 2x 0=⎰0002222(5)⎰e1x ln x d xe答案:⎰01x ln x d x =e 21e12122e (e +1)==ln x d x x ln x -x d ln x 1⎰⎰11422(6)⎰4(1+x e-x)d x40答案:⎰(1+x e)d x =x -⎰xd e =3-xe -x414-x -x4+⎰0e -x d x =5+5e -44作业三三、解答题1.计算(1)⎢⎡-21⎤⎡01⎤⎡1-2⎤=⎢⎥⎢⎥⎥⎣53⎦⎣10⎦⎣35⎦⎡02⎤⎡11⎤⎡00⎤(2)⎢⎥⎢00⎥=⎢00⎥0-3⎦⎣⎦⎣⎦⎣⎡3⎤⎢0⎥(3)[-1254]⎢⎥=[0]⎢-1⎥⎢⎥⎣2⎦23⎤⎡-124⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥02.计算-122143-61⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦23⎤⎡-124⎤⎡245⎤⎡7197⎤⎡245⎤⎡1⎢⎥⎢⎥⎢⎥=⎢7120⎥-⎢610⎥0解-122143-61⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣1-32⎥⎦⎢⎣23-1⎥⎦⎢⎣3-27⎥⎦⎢⎣0-4-7⎥⎦⎢⎣3-27⎥⎦⎡515=⎢⎢111⎢⎣-3-2⎡23-1⎤⎡123⎤3.设矩阵A =⎢⎢111⎥,B =⎢112⎥,求AB 。
经济数学基础形成性考核册及参考答案

(5) y = e ax sin bx ,求 dy
答案: dy = eax (a sin bx + b cos bx)dx
1
(6) y = e x + x x ,求 dy
答案: dy = ( 1
x−
1
1
e x )dx
2
x2
(7) y = cos x − e−x2 ,求 dy
答案: dy = (2xe− x2 − sin x )dx 2x
D. 1 dx = d x x
答案:C 3. 下列不定积分中,常用分部积分法计算的是( ).
A. ∫ cos(2 x +1)dx , ∫ B. x 1 − x2 dx C. ∫ x sin 2xdx
答案:C
4. 下列定积分计算正确的是(
).
∫ D. x dx
1+ x2
1
∫ A. 2xdx = 2 −1
x x →0+
1
C. lim x sin = 1
x→ 0
x
siБайду номын сангаас x
D. lim
=1
x x →∞
3. 设 y = lg2 x ,则 d y = ( ).答案:B
A. 1 dx 2x
B. 1 dx x ln10
C. ln10 dx x
D. 1 dx x
4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B
2 =2
12
0 −1 1 0 −1 0
123 1 2 3 B = 1 1 2 = 0 -1 -1 =0
011 0 1 1
所以 AB = A B = 2 × 0 = 0
⎡1 2 4⎤ 4.设矩阵 A = ⎢⎢2 λ 1⎥⎥ ,确定 λ 的值,使 r ( A) 最小。
经济学基础形考任务3答案

形考任务3(第十章至第十三章)任务说明:本次形考任务包含填空题(22道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。
任务要求:下载任务附件,作答后再上传,由教师评分。
任务成绩:本次形考任务成绩占形成性考核成绩的20%,任务附件中题目是百分制。
教师在平台中录入的成绩=百分制成绩*20%一、填空题(22道,共20分)1.国内生产总值的计算方法主要有支出法、收入法以及部门法。
2.GDP-折旧= NDP。
3.名义国内生产总值是指按当年价格计算的国内生产总值。
4.物价水平普遍而持续的上升称为通货膨胀。
5.长期中的失业是指自然失业,短期中的失业是指周期性失业。
6.经济增长的源泉是资源的增加,核心是技术进步。
7.生产一单位产量所需要的资本量被称为资本—产量比率。
8.根据新古典经济增长模型,决定经济增长的因素是资本的增加、劳动的增加和技术进步。
9.根据货币数量论,在长期中通货膨胀发生的惟一原因是货币量增加。
10.摩擦性失业是经济中由于正常的劳动力流动而引起的失业。
11.效率工资是指企业支付给工人的高于市场均衡工资的工资。
12.总需求曲线是一条向右下方倾斜的曲线,短期总供给曲线是一条向右上方倾斜的线。
13.在影响总需求的财产效应、利率效应和汇率效应中,利率效应最重要。
14.在短期,价格的粘性引起物价与总供给同方向变动。
15.根据总需求-总供给模型,总供给不变时,总需求减少,均衡的国内生产总值减少,物价水平下降。
16.平均消费倾向与平均储蓄倾向之和等于1 ,边际消费倾向与边际储蓄倾向之和等于 1 。
17.消费函数图中的45°线表示在这条线上任何一点都是收入等于消费,在简单的凯恩斯主义模型中,45°线上表示任何一点都是总支出等于总供给。
18.净现值是指一笔投资未来所带来的收益的现值与现在投入的资金现值的差额。
19.加速原理表明投资的变动取决于产量变动率。
国开电大《经济数学基础3》形考任务形成性考核三答案

"试题1:标准答案1:"试题2:下列函数中,可以作为随机变量_X_密度函数的是( ).标准答案2:"试题3:设随机变量_Y_~_B_(_n_,_p_),且_E_(_Y_)=2.4,_D_(_Y_)=1.44,则参数_n_,_p_为( )A. _n_=6,_p_=0.6B. _n_=8,_p_=0.3C. _n_=6,_p_=0.4答案3:n=6,p=0.4"试题4:设随机变量_X_~_N_(_a_,_d_)(_d_>0),则( )~_N_(0,1).A. _Z_=_d_2(_X_-_a_)B. _Z_=_dX_+_a_C.标准答案4:""试题5:A.1B. 1/2C. 3/8答案5:3/8"试题6:设随机变量_X_,且_E_(_X_)存在,则_E_(_X_)是( ).A. 确定常数B. _X_的函数C. 随机变量答案6:确定常数"试题7:设二维离散型随机变量(_X_,_Y_)的联合概率分布为_P_(_X_=_xi_,_Y_=_yj_)=_pij_则随机变量_X_的边缘概率分布为_P_(_X_=_xi_)=(?? ) 答案7:"试题8:设(_X_,_Y_)是二维连续型随机变量,其联合密度函数为_f_(_x_,_y_),_X_,_Y_的边缘密度函数分别为_fX_(_x_),_fY_(_y_),则_E_(_XY_)=(?? ).答案8:"试题9:答案9:对试题10:设_X_服从区间[2,5]上的均匀分布,则_E_(_X_)=3.5.( )答案10:对试题11:设随机变量_X_的方差存在,则_X_的方差_D_(_X_)的计算公式为_E_[_X__-__E_(_X_)].( )答案11:错试题12:答案12:对。
经济数学基础形考答案

电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/24.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.若x xf =)1(,则=')(x f ( B ). A .21x B .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括:⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量)⑷利用连续函数的定义。
春电大《经济数学基础》形成性考核册及参考答案

春电大《经济数学基础》形成性考核册及参考答案作业()(一)填空题 .___________________sin lim=-→xxx x .答案: .设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案: .曲线x y =在)1,1(的切线方程是 .答案:2121+=x y .设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 .设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 . 函数212-+-=x x x y 的连续区间是( )答案: .),1()1,(+∞⋃-∞ .),2()2,(+∞-⋃--∞.),1()1,2()2,(+∞⋃-⋃--∞ .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ . 下列极限计算正确的是( )答案: .1lim=→xx x .1lim 0=+→xx x.11sinlim 0=→x x x .1sin lim =∞→xx x. 设y x =lg2,则d y =( ).答案: .12d x x .1d x x ln10 .ln10x x d .1d xx . 若函数 ()在点处可导,则( )是错误的.答案:.函数 ()在点处有定义 .A x f x x =→)(lim 0,但)(0x f A ≠.函数 ()在点处连续 .函数 ()在点处可微 .当0→x 时,下列变量是无穷小量的是( ). 答案: .x2 .xxsin .)1ln(x + .x cos (三)解答题 .计算极限()=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x )1(2lim 1+-→x x x 21-()8665lim 222+-+-→x x x x x )4)(2()3)(2(lim 2----→x x x x x )4(3lim 2--→x x x 21 ()x x x 11lim--→)11()11)(11(lim 0+-+---→x x x x x)11(lim+--→x x x x 21)11(1lim 0-=+--→x x()=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x ()=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →53()=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:()当b a ,为何值时,)(x f 在0=x 处有极限存在? ()当b a ,为何值时,)(x f 在0=x 处连续.答案:()当1=b ,a 任意时,)(x f 在0=x 处有极限存在; ()当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册参考答案

经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
经济数学基础形成性考核参(全)

经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1..答案:0 2.答案:1 3.答案:2121+=x y 4..答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1.2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。