2019年广东省深圳市罗湖区中考数学一模试卷

合集下载

2019年广东省深圳市中考数学一模试卷含答案解析(2套)

2019年广东省深圳市中考数学一模试卷含答案解析(2套)

2019年广东省深圳市光明新区中考数学一模试卷选择题(共12小题,满分36分,每小题3分)1. -3的倒数是( )A. 3B.-c - -i D. - 32.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是(flA. 2q 3+q 2 = 3q 5B. (3。

)2=6a 3)C. (q +力)2=a 2+b 2D. la 9a —2a4.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()€55.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口 44亿,这个数用科学记数法表示为( )A. 44X108B. 4.4X109C. 4.4X108D. 4.4X1O 106.将一副三角板(ZA=30。

)按如图所示方式摆放,使得则匕1等于( )A. 75°B. 90°C. 105°D.115°7.如图,钟面上的时间是8: 30,再经过I 分钟,时针、分针第一次重合,则/为( )8.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米)4.50 4.60 4.65 4.70 4.75 4.80人数 232341则这些运动员成绩的中位数、众数分别是()C. 4.70、4.75 D. 4.70、4.70B. 4.65、4.75A. 4.65、4.70下列结论错误的是10.如图,正六边形ABCDEF 内接于0。

, C. c<0 D. abc>0半径为4,则这个正六边形的边心距OM 和由的长分别A.2,K~3 B. 2媚,n C. 73' D. 2面为( ))11.如图,在^ABCD 中,用直尺和圆规作ZBAD 的平分线AG 交BC 于点E.若BF=6, AB=5,则AE 的长为()A.4B.6C.8D.1012.在直线/上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S]、$2、S3、S4,则S1+S2+S3+S4等于()A.4B.5C.6D.14二.填空题(共4小题,满分12分,每小题3分)13.因式分解:a3- ab2=.14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是.15.用棋子按下列方式摆图形,依照此规律,第"个图形有枚棋子.第1个第2个第3个16.如图,已知点。

2019年广东省深圳市中考数学模拟试卷(1)及答案

2019年广东省深圳市中考数学模拟试卷(1)及答案

2019年广东省深圳市中考数学模拟试卷(1)及答案1.﹣5的相反数是()A.15B.±5C.5D.−152.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.4.下列图形中,是中心对称图形的是()A.B.C.D.5.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:(1)则这些运动员成绩的众数、极差分别为()A.1.70、0.25B.1.75、3C.1.75、0.30D.1.70、36.下列各式计算正确的是()A.a3+2a2=3a5B.3√a+4√a=7√aC.(a6)2÷(a4)3=0D.(a3)2⋅a4=a97.如果一次函数y=2x﹣4的图象与另一个一次函数y1的图象关于y轴对称,那么函数y1的图象与x轴的交点坐标是()A.(2,0)B.(﹣2,0)C.(0,﹣4)D.(0,4)8.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°9.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.{8y +3=x7y −4=xB.{8x +3=x 7x −4=yC.{8x −3=y 7x +4=yD.{8y −3=x 7y +4=x10.如图,AB 是⊙O 的直径,点C 为⊙O 外一点,CA 、CD 是⊙O 的切线,A 、D 为切点,连接BD 、AD .若∠ACD =48°,则∠DBA 的大小是( )A.32°B.48°C.60°D.66°11.如图所示,抛物线y=a x2+bx+c的顶点为B(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,以下结论:①b2−4ac=0,②2a﹣b=0,③a+b+c<0;④c﹣a=3,其中正确的有()个.A.1B.2C.3D.412.如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x 和y=k2x的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是1(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是2()A.①②④B.②③C.①③④D.①④13.因式分解:m2−4n2=__________.14.张老师上班途中要经过1个十字路口,十字路口红灯亮30秒、黄灯亮5秒、绿灯亮25秒,张老师希望上班经过路口是绿灯,但实际上这样的机会是__________.15.如图,在Rt△ABC中,∠C=90°,AC=5,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,OC=4√2,则BC边的长为__________.16.如图,六边形ABCDEF中,AB∥DE且AB=DE,BC∥EF且BC=EF,AF∥CD且AF=CD,∠ABC=∠DEF=120°,∠AFE=∠BCD=90°,AB=2,BC=1,CD=√3,则该六边形ABCDEF的面积是__________.)−2−√9+(√3−4)0−√2cos⁡45°.17.计算:(12,并从﹣1,0,1,3中选取一个合适的代入求值.18.先化简代数式1−x−1÷x2−1219.随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:(A)和同学亲友聊天;(B)学习;(C)购物;(D)游戏;(E)其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)m=__________,n=__________,p=__________.(2)求本次参与调查的总人数,并补全条形统计图.(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.20.解答下面两小题。

广东省深圳市2019年中考数学试题及答案【word版】

广东省深圳市2019年中考数学试题及答案【word版】

2019年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2019年广东深圳)9的相反数是()A.﹣9 B.9 C.±9D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2019年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2019年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2019年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2019年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2019年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2019年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2019年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2019年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B. C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2019年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D. 500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2019年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2019年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2018•怀化)分解因式:2x2﹣8= 2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2019年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3 .考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.(3分)(2019年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,15.求k= 8 .考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2019年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485 .考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2019年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2019年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2019年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a= 200 ,b= 0.4 ,c= 60 .(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2019年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2019年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2019年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据 B,D 两点求出 BD 表达式为 y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为 y=x 又在直线 DO 上的点P的横坐标为2,所以 p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且 MC=,故 C(2,﹣1)过 D 作DH⊥x 轴于 H,设 MC 与 x 轴交于 K,则△ACK∽△ADH,又∵DC=4AC,故 DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为 y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为 y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2019年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E 为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。

2019年广东省深圳市中考数学一模试卷(解析版)

2019年广东省深圳市中考数学一模试卷(解析版)

2019年广东省深圳市中考数学一模试卷一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a54.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1012.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星个.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.18.解不等式组并写出它的所有非负整数解19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.2019年广东省深圳市中考数学一模试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:﹣4的倒数是﹣,故选:D.【点评】此题主要考查了倒数,关键是掌握倒数定义.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.【分析】仔细观察图形找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:C.【点评】本题主要考查了三视图的主视图的知识,主视图是从物体的正面看得到的视图,属于基础题.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16万吨用科学记数法表示为:1.6×105吨.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°【分析】根据平行线的性质求出∠CFE,根据三角形的外角性质得出∠E=∠CFE﹣∠D,代入求出即可.【解答】解:∵AB∥CD,∠ABE=60°,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°,故选:D.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠CFE的度数,注意:两直线平行,同位角相等.7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的成本为x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的成本为y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选:B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选:C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④【分析】令x=1代入可判断①;由对称轴x=﹣的范围可判断②;由图象与x轴有两个交点可判断③;由开口方向及与x轴的交点可分别得出a、c的符号,可判断④.【解答】解:由图象可知当x=1时,y<0,∴a+b+c<0,故①不正确;由图象可知0<﹣<1,∴>﹣1,又∵开口向上,∴a>0,∴b>﹣2a,∴2a+b>0,故②正确;由图象可知二次函数与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△>0,即b2﹣4ac>0,故③正确;由图象可知抛物线开口向上,与y轴的交点在x轴的下方,∴a>0,c<0,∴ac<0,故④不正确;综上可知正确的为②③,故选:C.【点评】本题主要考查二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键.10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选:B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)==.故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星150个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:当n为奇数时:通过观察发现每一个图形的每一行有个,故共有3()个;当n为偶数时,中间一行有个,故共有+1个.所以当n=99时,共有3×=150个.故答案为150.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力,解题的关键是通过仔细观察发现规律.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=﹣15.【分析】根据内心的性质得OB平分∠ABC,再由点B的坐标是(2,0),点C的坐标是(0,﹣2)得到△OBC为等腰直角三角形,则∠OBC=45°,所以∠ABC=90°,利用勾股定理有AB2+BC2=AC2,根据两点间的距离公式得到(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b =5,然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:∵△ABC的内心在x轴上,∴OB平分∠ABC,∵点B的坐标是(2,0),点C的坐标是(0,﹣2),∴OB=OC,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴∠ABC=90°,∴AB2+BC2=AC2,∴(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b=5,∴A点坐标为(﹣3,5),∴k=﹣3×5=﹣15.故答案为﹣15.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了反比例函数图象上点的坐标特征和两点间的距离公式.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.【分析】原式利用特殊角的三角函数值,乘方的意义,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣1+1﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组并写出它的所有非负整数解【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有非负整数解即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤10,则不等式组的解集为2<x≤10,故不等式组的非负整数解为3,4,5,6,7,8,9,10,【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是72°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,;(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)【分析】如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.【点评】本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.【解答】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【点评】此题主要考查了分式方程的应用,根据已知利用总工作量为1得出等式方程是解题关键.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.【解答】解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt △ACB 中,tan ∠OAB ===, ∴∠OAB =30°,∵∠ABO =90°,∴∠OBA =60°,∴∠ABC =∠OBC ==30°, ∴OC =OB •tan30°=1×=,∴AC =OA ﹣OC =, ∴∠ACE =∠ABC +∠OAB =60°,∴∠EAC =60°,∴△ACE 是等边三角形,∴AE =AC =, ∴AF =AE =,EF ==1,∴OF =OA ﹣AF =, ∴点E 的坐标为(,1).【点评】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.【分析】(1)根据点A ,C 的坐标,利用待定系数法可求出抛物线的函数表达式;(2)利用二次函数图象上点的坐标特征可求出点B 的坐标,设点P 的纵坐标为m ,根据三角形的面积公式结合S △AOP =4S △BOC ,即可得出关于m 的含绝对值符号的一元一次方程,解之即可得出m 的值,再利用二次函数图象上点的坐标特征,即可求出点P 的坐标;(3)根据点A ,C 的坐标,利用待定系数法可求出直线AC 的函数表达式,设点Q 的坐标为(x ,x +3)(﹣3<x <0),则点D 的坐标为(x ,﹣x 2﹣2x +3),点E 的坐标为(x ,0),进而可得出DQ ,QE 的长度,结合直线AC 将△ADE 的面积分成1:2的两部分,即可得出关于x 的一元二次方程,解之即可得出x 的值,再将其代入点Q 的坐标即可求出结论.【解答】解:(1)将A (﹣3,0),C (0,3)代入y =﹣x 2+bx +c ,得: ,解得:,∴抛物线的函数表达式为y =﹣x 2﹣2x +3.(2)当y =0时,﹣x 2﹣2x +3=0,解得:x 1=﹣3,x 2=1,∴点B 的坐标为(1,0),∴S △BOC =×1×3=.设点P 的纵坐标为m ,则S △AOP =|m |,∵S △AOP =4S △BOC , ∴|m |=4×,∴m =±4.当y =4时,﹣x 2﹣2x +3=4,解得:x 1=x 2=﹣1,∴点P 的坐标为(﹣1,4);当y=﹣4时,﹣x2﹣2x+3=﹣4,解得:x1=﹣1﹣2,x2=﹣1+2,∴点P的坐标为(﹣1﹣2,﹣4)或(﹣1+2,﹣4).综上所述:点P的坐标为(﹣1,4)、(﹣1﹣2,﹣4)或(﹣1+2,﹣4).(3)设直线AC的函数表达式为y=kx+a(k≠0),将A(﹣3,0),C(0,3)代入y=kx+a,得:,解得:,∴直线AC的函数表达式为y=x+3.设点Q的坐标为(x,x+3)(﹣3<x<0),则点D的坐标为(x,﹣x2﹣2x+3),点E的坐标为(x,0),∴DQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,QE=x+3.∵直线AC将△ADE的面积分成1:2的两部分,且△AEQ和△ADQ等高,∴DQ=2QE或2DQ=QE,∴﹣x2﹣3x=2(x+3)或x+3=2(﹣x2﹣3x),解得:x1=﹣3(舍去),x2=﹣2,x3=﹣,∴点Q的坐标为(﹣2,1)或(﹣,).∴存在点Q(﹣2,1)或(﹣,),使得直线AC将△ADE的面积分成1:2的两部分.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积,解含绝对值符号的一元一次方程、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的函数表达式;(2)根据两三角形面积间的关系,求出点P的纵坐标;(3)由直线AC将△ADE的面积分成1:2的两部分,找出关于x的一元二次方程.。

2019年深圳中考数学模拟题

2019年深圳中考数学模拟题

2019年深圳市中考数学模拟题罗湖区2019年初中数学命题比赛试题命题人:杨紫韵翠园中学东晓校区第一部分选择题(本部分共12小题,每小题3分,共36分。

每小题给出4个选项,其中只有一个是正确的)1.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)2 D.﹣|﹣2|2.某正方体的每一个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体的表面上,与“国”字相对的面上的汉字是()A.厉B.害C.了D.我3.下列运算中,正确的是()A.(x2)3=x5 B.x2+2x3=3x5 C.(﹣ab)3=a3b D.x3?x3=x64.如图,四个图标中是轴对称图形的是()A.B.C.D.5.某市元宵节灯展参观人数约为470000,将这个数用科学记数法表示为()A.4.7×106B.4.7×105C.0.47×106D.47×1046.如图,在3×3的方格中,已有两个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率是()A.B.C.D.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m≥4 C.m<4 D.m=48.如图,△ABC中,AB=AC,∠B=30°,点D是AC的中点,过点D作DE⊥AC交BC于点E,连接EA.则∠BAE的度数为()A.30°B.80°C.90°D.110°9.小亮在同一直角坐标系内作出了y=﹣2x+2和y=﹣x﹣1的图象,方程组的解()A.B.C.D.10.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=611.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.12.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+.其中正确结论的序号是()A.①②③B.①②④C.②③④D.①③④第二部分非选择题填空题(本题共4小题,每小题3分,共12分)13. a+b=0,ab=﹣7,则a2b+ab2=.14.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.15.如图,按此规律,第行最后一个数是2017,则此行的数之和.16.在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数y=(k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,且S△AOF =12时,OA的长为.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20分8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:cos245°+﹣?tan30°.18.先化简,再求值:(+)÷,其中x=.19.某校学生会向全校3800名学生发起了“献爱心”捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数是、众数是和中位数是;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.20.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°,已知原传送带AB长为3米(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出 2.5米的通道,请判断距离B点5米的货物MNQP是否需要挪走,并说明理由.(参考数据:≈1.4,≈1.7.)21.某网店准备经销一款儿童玩具,每个进价为35元,经市场预测,包邮单价定为50元时,每周可售出200个,包邮单价每增加1元销售将减少10个,已知每成交一个,店主要承付5元的快递费用,设该店主包邮单价定为x(元)(x>50),每周获得的利润为y(元).(1)求该店主包邮单价定为53元时每周获得的利润;(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时,每周获得的利润大?最大值是多少?22.如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.罗湖区2019年初中数学命题比赛试题参考答案与试题解析一.选择题(共12小题)1 2 3 4 5 6 7 8 9 10 11 12D D D C B A A C B C C A 二.填空题(共4小题)13.0.14..15.673,13452.16.8.解析:第12题解析【考点】:全等三角形的判定与性质;LE:正方形的性质.【解答】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠P AD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠P AE,∴∠BEP=∠P AE=90°,∴EB⊥ED;故此选项成立;②过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE==,∴BF=EF=,故此选项正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=,∵△APD≌△AEB,∴PD=BE=,∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.故此选项不正确.综上可知其中正确结论的序号是①②③,故选:A.【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.第16题解析【考点】:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;平行四边形的性质.【解答】解:如图作AH⊥OB于H,连接AB.∵四边形OACB是平行四边形,∴OA∥BC,∵∠AOB=60°,设OH=m,则AH=m,∵BF=CF,A、F在y=上,∴A(m,m),F(2m,m),∵S△AOF=12,∴?(m+m)?m=12,∴m=4(负根已经舍弃),∴OA=2OH=8,故答案为8.【点评】本题考查反比例函数系数k的几何意义,平行四边形的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考填空题中的压轴题.三.解答题(共7小题)17(5分).计算:cos245°+﹣?tan30°.【解答】解:原式=()2+﹣×……………………………………2分=+﹣1………………………………………………………4分=.…………………………………………………………5分【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.(6分)先化简,再求值:(+)÷,其中x=.【解答】解:原式=[+]?=(+)?………………………………………2分=?=,……………………………………………………4分当x=时,原式==﹣1.……………………………………6分【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.方程求解.解分式方程一定注意要验根.19.(7分)【考点】全面调查与抽样调查;用样本估计总体;条形统计图;算术平均数;中位数;众数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),…………………1分m=100﹣20﹣24﹣16﹣8=32,…………………………2分故答案为:50,32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为:16,……………………………………3分∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,……………………………………4分∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:(15+15)=15;………………………………………5分(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校3800名学生中捐款金额为10元的学生人数比例为32%,有3800×32%=1216,∴该校本次活动捐款金额为10元的学生约有1216人.………………………………………7分【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)【考点】解直角三角形的应用﹣坡度坡角问题.【解答】解:(1)在Rt△ABD中,sin∠ABD=,∴AD=AB×sin∠ABD=3×=3,……………………………………………2分∵∠ADC=90°,∠ACD=30°,∴AC=2AD=6,答:新传送带AC的长度为6米;………………………………………………4分(2)距离B点5米的货物MNQP不需要挪走,理由如下:在Rt△ABD中,∠ABD=45°,∴BD=AD=3,由勾股定理得,CD==3≈5.1,………………………………………………6分∴CB=CD﹣BD≈2.1,PC=PB﹣CB≈2.9,∵2.9>2.5,∴距离B点5米的货物MNQP不需要挪走.………………………………………………8分【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.21.(8分)【考点】一元二次方程的应用.【解答】解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元).答:每周获得的利润为2210元;………………………………………………2分(2)由题意,y=(x﹣35﹣5)[200﹣10(x﹣50)]即y与x之间的函数关系式为:y=﹣10x2+1100x﹣28000;…………………………5分(3)∵y=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250,∵﹣10<0,∴包邮单价定为55元时,每周获得的利润最大,最大值是2250元.…………………………8分【点评】此题主要考查了一元二次方程的应用,二次函数的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.22.(9分)【考点】勾股定理;垂径定理;切线的判定与性质;相似三角形的判定与性质.【解答】(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;…………………………………………………………………………4分(2)过点D作DF⊥AB于点F,连接OE,∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.………………………………………………9分【点评】本题考查切线的判定与性质、垂径定理、勾股定理、相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(9分)此题来源于广东中山市【考点】二次函数综合题.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,∴,得,∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),即该抛物线的解析式为y=﹣x2﹣2x+3,顶点D的坐标为(﹣1,4);………………………………3分(2)设直线AD的函数解析式为y=kx+m,,得,∴直线AD的函数解析式为y=2x+6,∵点P是线段AD上一个动点(不与A、D重合),∴设点P的坐标为(p,2p+6),∴S△P AE==﹣(p+)2+,∵﹣3<p<﹣1,∴当p=﹣时,S△P AE取得最大值,此时S△P AE=,即△P AE面积S的最大值是;………………………………………………………………6分(3)抛物线上存在一点Q,使得四边形OAPQ为平行四边形,∵四边形OAPQ为平行四边形,点Q在抛物线上,∴OA=PQ,∵点A(﹣3,0),∴OA=3,∴PQ=3,∵直线AD为y=2x+6,点P在线段AD上,点Q在抛物线y=﹣x2﹣2x+3上,∴设点P的坐标为(p,2p+6),点Q(q,﹣q2﹣2q+3),∴,解得,或(舍去),当q=﹣2+时,﹣q2﹣2q+3=2﹣4,即点Q的坐标为(﹣2+,2﹣4).………………………………………………………9分【点评】本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用二次函数的性质和数形结合的思想解答.。

2019年深圳中考数学模拟题

2019年深圳中考数学模拟题

2019年深圳市中考数学模拟题2019年初中数学命题比赛试题罗湖区韵翠园中学东晓校区命题人:杨紫题第一部分选择.其中只有一个是正确的)(本部分共12小题.每小题3分.共36分。

每小题给出4个选项1.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣|﹣2|图.那么在原正方体的表面上. 2.某正方体的每一个面上都有一个汉字.如图是它的一种表面展开与“国”字相对的面上的汉字是()A.厉B.害C.了D.我3.下列运算中.正确的是()2)3=x5B.x2+2x3=3x5C.(﹣ab)3=a3bD.x3?x3=x6 A.(x4.如图.四个图标中是轴对称图形的是()A.B.C.D.5.某市元宵节灯展参观人数约为470000.将这个数用科学记数法表示为()6B.4.7×105C.0.47×106D.47×10A.4.7×1046.如图.在3×3的方格中.已有两个小正方形被涂黑.若在其余空白小正方形中任选一个涂黑.则所得图案是一个轴对称图形的概率是()A.B.C.D.A.m≤4B.m≥4C.m<4D.m=4 ..8.如图.△ABC中.AB=AC.∠B=30°.点D是AC的中点.过点D作DE⊥AC交BC于点E.连接EA.则∠BAE的度数为()A.30°B.80°C.90°D.110°9.小亮在同一直角坐标系内作出了y=﹣2x+2和y=﹣x﹣1的图象.方程组的解()A.B.C.D.10.某书店把一本书按进价提高60%标价.再按七折出售.这样每卖出一本书就可盈利6元.设每本书的进价是x元.根据题意列一元一次方程.正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=611.小李家距学校3千米.中午12点他从家出发到学校.途中路过文具店买了些学习用品.12点50 分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.12.已知:如图.在正方形ABCD外取一点E.连接AE.BE.D E.过点A作AE的垂线交DE于点P.若A E的距离为;③EB⊥ED;AE=AP=1.PB=.下列结论:①△APD≌△AEB;②点B到直线④S△APD+S△APB=1+.其中正确结论的序号是()A.①②③B.①②④C.②③④D.①③④题择第二部分非选填空题(本题共4小题.每小题3分.共12分)2b+ab2=.13.a+b=0.ab=﹣7.则a.CA为半径的圆与AB交于点D.14.如图.在Rt△ABC中.∠ACB=90°.AC=3.BC=4.以点C为圆心则BD的长为..15.如图.按此规律.第行最后一个数是2017.则此行的数之和.且∠AOB=60°.16.在平面直角坐标系中.O为坐标原点.B在x轴上.四边形O ACB为平行四边形反比例函数y=(k>0)在第一象限内过点A.且与BC交于点F.当F为BC的中点.且S△AOF =12时.OA的长为.解答题(本题共7小题.其中第17题5分.第18题6分.第19题7分.第20分8分.第21题8分.17.计算:cos245°+﹣?tan30°..再求值:(+)÷.其中x=.18.先化简19.某校学生会向全校3800名学生发起了“献爱心”捐款活动.为了解捐款情况.学生会随机调.请根据相关信息.解答额.并用得到的数据绘制了如下统计图①和图②查了部分学生的捐款金:下列问题(1)本次接受随机抽样调查的学生人数为.图①中m的值是;数是、众数是和中位数是;(2)求本次调查获取的样本数据的平均10元的学生人数.为(3)根据样本数据.估计该校本次活动捐款金额.工人师傅欲减小传送带与20.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性.使其由45°改为30°.已知原传送带A B长为3米地面的夹角(1)求新传送带A C的长度;(2)如果需要在货物着地点C的左侧留出2.5米的通道.请判断距离B点5米的货物MNQP是否需要挪走.并说明理由.(参考数据:≈1.4.≈1.7.).包邮单价定为50元时.每周可测场预21.某网店准备经销一款儿童玩具.每个进价为35元.经市加1元销售将减少10个.已知每成交一个.店主要承付5元的快递费售出200个.包邮单价每增y(元).用.设该店主包邮单价定为x(元)(x>50).每周获得的利润为;(1)求该店主包邮单价定为53元时每周获得的利润(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时.每周获得的利润大?最大值是多少?22.如图.AB是⊙O的弦.过AB的中点E作EC⊥O A.垂足为C.过点B作直线BD交CE的延长线于点D.使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12.DB=5.求△AOB的面积.23.如图.在平面直角坐标系中.抛物线y=ax2+bx+3经过A(﹣3.0)、B(1.0)两点.其顶点为D.连接A D.点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式.并写出顶点D的坐标;(2)如图1.过点P作PE⊥y轴于点E.求△PAE面积S的最大值;(3)如图2.抛物线上是否存在一点Q.使得四边形OAPQ为平行四边形?若存在求出Q点坐标.若不存在请说明理由.罗湖区2019年初中数学命题比赛试题参考答案与试题解析12小题)一.选择题(共123456789101112DDDCBAACBCCA4小题)二.填空题(共13.0.14..15.673.1345 2.16.8.解析:第12题解析【考点】:全等三角形的判定与性质;LE:正方形的性质.菁优网版权所有【解答】解:①∵∠EAB+∠BAP=90°.∠P A D+∠BAP=90°.∴∠EAB=∠P A D.又∵AE=AP.AB=AD.∵在△APD和△AEB中..∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB.∴∠APD=∠AEB.∵∠AEB=∠AEP+∠BEP.∠APD=∠AEP+∠PAE.∴∠BEP=∠PAE=90°.∴EB⊥ED;故此选项成立;②过B作BF⊥AE.交AE的延长线于F.∵AE=AP.∠EAP=90°.∴∠AEP=∠APE=45°.又∵③中EB⊥E D.BF⊥AF.∴∠FEB=∠FBE=45°.又∵BE==.∴BF=EF=.故此选项正确;④如图.连接B D.在Rt△AEP中.∵AE=AP=1.∴EP=.又∵PB=.∴BE=.∵△APD≌△AEB.∴PD=BE=.×DP×BE=×(4+)﹣××=+.∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣故此选项不正确.综上可知其中正确结论的序号是①②③.故选:A.【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾.理股定决问题.强.解题时要求熟练掌握相关的基础知识才能很好综合性比较解第16题解析【考点】:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;平行四边形的性质.菁优网版权所有【解答】解:如图作A H⊥OB于H.连接A B.∵四边形OACB 是平行四边形.∴OA ∥BC.∵∠AOB =60°.设O H =m .则A H =m .∵BF =CF.A 、F 在y =上.∴A (m .m ).F (2m.m ).∵S △AOF =12.∴?(m +m )?m =12.∴m =4(负根已经舍弃).∴OA =2OH =8.故答案为8.【点评】本题考查反比例函数系数k 的几何意义.平行四边形的性质等知识.解题的关键是学会利用参数.构建方程解决问题.属于中考填空题中的压轴题.三.解答题(共7小题)17(5分).计算:cos245°+﹣?tan30°.【解答】解:原式=() 2+﹣×⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分=+﹣1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分【点评】本题考查了特殊角三角函数值.熟记特殊角三角函数值是解题关键.18.(6分)先化简.再求值:(+)÷.其中x=.【解答】解:原式=[+]?=(+)?⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分=?=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分当x=时.原式==﹣1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式的混合运算顺序和运算法则方程求解.解分式方程一定注意要验根.19.(7分)【考点】全面调查与抽样调查;用样本估计总体;条形统计图;算术平均数;中位数;众数.菁优网版权所有【解答】解:(1)根据条形图4+16+12+10+8=50(人).⋯⋯⋯⋯⋯⋯⋯1分8=32.m=100﹣20﹣24﹣16﹣⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分故答案为:50.32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16.∴这组数据的平均数为:16.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∵在这组样本数据中.10出现次数最多为16次.∴这组数据的众数为:10.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是15.∴这组数据的中位数为:(15+15)=15;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)∵在50名学生中.捐款金额为10元的学生人数比例为32%...∴该校本次活动捐款金额为10元的学生约有1216人.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有【解答】解:(1)在Rt △ABD 中.sin ∠ABD =.∴AD =AB ×sin ∠ABD =3×=3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵∠ADC =90°.∠ACD =30°.∴AC =2AD =6.答:新传送带AC 的长度为6米;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)距离B 点5米的货物M NQP 不需要挪走.理由如下:在Rt △ABD 中.∠ABD =45°.∴BD =AD =3.由勾股定理得.CD ==3≈5.1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CB =CD ﹣BD ≈2.1.PC =PB ﹣CB ≈2.9.∵2.9>2.5.∴距离B 点5米的货物M NQP 不需要挪走.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题.掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.21.(8分)【考点】一元二次方程的应用.菁优网版权所有【解答】解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元).答:每周获得的利润为2210元;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)由题意.y =(x ﹣35﹣5)[200﹣10(x ﹣50)]即y 与x 之间的函数关系式为:y =﹣10x2+1100x ﹣28000;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分..(3)∵y=﹣10x2+1100x﹣55)2+2250.28000=﹣10(x﹣10<0.∵﹣∴包邮单价定为55元时.每周获得的利润最大.最大值是2250元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分语.找到等量关系准.找到关键描述【点评】此题主要考查了一元二次方程的应用.二次函数的应用确的列出方程是解决问题的关键.22.(9分)【考点】勾股定理;垂径定理;切线的判定与性质;相似三角形的判定与性质.菁优网版权所有【解答】(1)证明:∵OA=O B.DB=D E.∴∠A=∠O B A.∠DEB=∠D B E.∵EC⊥O A.∠DEB=∠A E C.∴∠A+∠DEB=90°.∴∠O B A+∠DBE=90°.∴∠OBD=90°.∵OB是圆的半径.∴BD是⊙O的切线;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)过点D作DF⊥AB于点F.连接O E.∵点E是AB的中点.AB=12.∴AE=EB=6.OE⊥AB.又∵DE=D B.DF⊥BE.DB=5.DB=D E.∴EF=BF=3.∴DF==4.∵∠AEC=∠DEF.∴∠A=∠EDF.∵OE⊥AB.DF⊥AB.∴∠AEO=∠DFE=90°.∴△AEO∽△DFE.∴.即.得EO=4.5...∴△AOB的面积是:=27.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分【点评】本题考查切线的判定与性质、垂径定理、勾股定理、相似三角形的判定与性质.解答本题件.利用数形结合的思想解答.的关键是明确题意.找出所求问题需要的条23.(9分)此题来源于广东中山市【考点】二次函数综合题.菁优网版权所有【解答】解:(1)∵抛物线y=ax2+bx+3经A(﹣3.0)、B(1.0)两点.过∴.得.2+4.∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2﹣2x+3=﹣(x+1)∴抛物线的顶点坐标为(﹣1.4).即该抛物线的解析式为y=﹣x2﹣2x+3.顶点D的坐标为(﹣1.4);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分(2)设直线AD的函数解析式为y=kx+m..得.∴直线AD的函数解析式为y=2x+6.∵点P是线段A D上一个动点(不与A、D重合).∴设点P的坐标为(p.2p+6).∴S△PAE==﹣(p+)2+.∵﹣3<p<﹣1.∴当p=﹣时.S△PAE取得最大值.此时S△PAE=.即△PAE面积S的最大值是;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)抛物线上存在一点Q.使得四边形OAPQ为平行四边形.∵四边形OAPQ为平行四边形.点Q在抛物线上.∴OA=P Q. ..∵点A(﹣3.0).∴OA=3.∴PQ=3.xA D上.点Q在抛物线y=﹣∵直线AD为y=2x+6.点P在线段2﹣2x+3上.q∴设点P的坐标为(p.2p+6).点Q(q.﹣2﹣2q+3).∴.解得.或(舍去).q当q=﹣2+时.﹣2﹣2q+3=2﹣4.即点Q的坐标为(﹣2+.2﹣4).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分本题是一道二次函数综合题.解答本题的关键是明确题意.找出所求问题需要的条件.求出【点评】相应的函数解析式.利用二次函数的性质和数形结合的思想解答.欢迎您的光临,Word文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。

广东省深圳市罗湖区2018-2019学年第二学期九年级数学一模质量检测试卷(含答案)

广东省深圳市罗湖区2018-2019学年第二学期九年级数学一模质量检测试卷(含答案)

初三综合测试(2019.05) 数学试卷说明:1.答题前,请将学校、班级和姓名用规定的笔写在答题卡指定的位置上。

2.全卷分两部分,第一部分为选择题,第二部分为非选择题,共23题,考试时间90分钟,满分100分3.考生必须在答题卡上规定的区域作答;否则其答案一律无效。

第一部分 选择题一、选择题(本大题共12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的) 1.- 14的相反数是A .- 4 B. 14C.4D.- 142.将如图所示的正方体地展开图重新折叠成正方体后,和“应”字相对的面上的汉字是 A.静 B.沉 C.冷 D.着3.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩”抢凳子”的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放置的位置是△ABC 的 A.三条高的交点 B.重心 C.内心 D. 外心4.”大潮起珠江——广东改革开放四十周年展览”自2018年11月8日开放以来,吸引了来自市内外的大批市民和游客,开放第一天大约有8万人参观,第三天达到12万人参观,设参观人数平均每天的增长率均为x ,则可列方程为A.8(1+x)2=12B.8(1+2x)=12C.8(1+x 2)=12D.8(1+x)=12 5.下列命题正确的是A .方程(x-2)2=1有两个相等的实数根 B.反比例函数y=2x 的图像经过点(-1,2)C.平行四边形是中心对称图形D.二次函数y=x 2-3x+4的最小值是4 6.如图,菱形对角线AC 、BD 相交于点O ,点E 的CD 的中点,且OE=4,则菱形ABCD 的周长为A.32B.20C. 16D.127.如图,点E 是矩形ABCD 的边DC 上的点,将△AED 沿着AE 翻折,点D 刚好落在对角线AC 的中点D ’处,则∠AED 的度数为A.50°B.60°C.70°D.80°沉 着冷 静应 考8.如图,某中学九年级数学兴趣小组测量校内旗杆AB 的高度,在C 点测得旗杆顶端A 的仰角∠BCA=30°,沿旗杆方向向前走了20米到达D 点,在D 点测得旗杆顶端A 的仰角∠BDA=60°,则旗杆AB 的高度是A.10米B.10√3米C.20√33米 D.15√3米9.如图,是反比例函数y=3x 与y=−7x在X 轴上方的图像,x 轴的平行线AB 分别与这两个函数图像相交于A 点和B点,则△AOB 的面积等于A.5B.4C.10D.2010.如图,已知⊙O 的圆心在原点,半径OA=1(单位圆),设∠AOP=∠α,其始边OA 与X 轴重合,终边与⊙O 交于点P ,设P 点坐标P(x,y), ⊙O 的切线AT 交OP 于T ,且AT=m ,则下列结论中错误的是A .sin α=y B.cos α=x C.tan α=m D.x 与y 成反比例11.如图,抛物线y=ax 2+bx+c(a ≠0)经过(-1,0),对称轴为直线x=1,则下列结论中:①b<0;②方程ax 2+bx+c=0得解为-1和3;③2a+b=0;④m(ma+b)<a+b(常数m ≠0),其中正确的结论有:A.1个B.2个C.3个D.4个12.由三角函数定义,对于任意锐角A ,有sinA=cos(90°-A)及sin 2A+cos 2A=1成立.如图,在△ABC 中,∠A ,∠B 是锐角,BC=a ,AC=b,AB=c,CD ⊥AB 于D ,DE//AC 交BC 于E ,设CD=h ,BE=a ’,DE=b ’,BD=c ’,则下列条件中能判断△ABC 是直角三角形的个数是(1)a 2+b 2=c 2 (2)aa ’+bb ’=cc ’ (3)sin 2A+sin 2B=1 (4)1a2+1b2=1h2 A.1个 B.2个 C.3个 D.4个 第二部分 非选择题 二、填空题(本题共4小题,每小题3分,满分12分)13.已知△ABC 与△DEF 是位似图形,且△ABC 与△DEF 的相似比为12,则△ABC 与△DEF 的面积比是__________.14.有四张不透明的卡片,正面分别写有:π,103,-2,√3 除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数的卡片的概率是_______.15.如图,从多边形一个顶点出发作多边形的对角线,试根据下面几种多边形的顶点数、线段数及三角形个数统计结果,推断f,e,v 三个量之间的数量关系是:______________多边形:顶点个数f 1: 4 5 6 … 线段条数e: 5 7 9 … 三角形个数v 1: 2 3 4 …16.如图,在△ABC 中,∠ACB=90°,BC 在x 轴中,且点B 与点C 关于原点对称, AB=5,AO=√13,边AC 上的点P 满足∠COP=∠CAO,且双曲线y=kx 经过P 点,则k 值等于_____________.三、解答题(本题共7小题,期中第17题5分,第18题6分,第19题7分,第20题7分,第21题8分,第22题9分,第23题10分,满分52分) 17.计算:sin30°-√9+(π-4)0+|-12|. 18.先化简,在求值(1-1x−1)÷x 2−4x+4x 2−1,其中x 是方程x 2-4x-5=0的正根.19.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题: (1)a=______,b=__________;(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为_______度;(3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.如图,D,E,F 分别是△ABC 的边BC,AB,AC 上的点,EF//BC ,AD 与EF 相交于点G,AD=10,BC=8. (1)若DG=5,求EF 的长.(2)在上述线段EF 的平移过程助攻,设DG=x ,EF=y ,试求y 与x 之间的函数关系式.21.某商店预测某种礼盒销售有发展前途,先用4800元购进了这种礼盒,第二次又用6000元购进了相同数量的这种礼盒,但价格比上次上涨了8元/盒.(1)求第一次购进礼盒的进货单价是多少元?(2)若两次购进礼盒按统一销售单价销售,两批全部售完后,要使获利不少于2700元,那么销售单价至少为多少元?22.如图,AB是⊙O的直径,弦CD⊥AB于G ,射线DO与直线CE相交于E,直线DB与CE相交于H,且∠BDC=∠BCH.(1)求证:直线CE是⊙O的切线.(2)如图1,若OG=BG,BH=1,直接写出⊙O的半径:_______.(3)如图2,在(2)的条件下,将射线DO绕D逆时针旋转,得射线DM,DM与AB交于M,与⊙O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.23.已知抛物线y=ax2+bx+2与x轴交点分别是A(-4,0)和点B(1,0),与y轴相交于点C.(1)求该抛物线的函数表达式.(2)如图1,将直线AC沿y轴向下平移,得直线BD,BD与抛物线交于另一点于D,连结CD,CD与x轴相交于E 点,试判断△ADE与△ABD是否相似,并说明理由.(3)如图2,在(2)条件下,设点M是△ABD的外心,点Q是线段AE上的动点(不与点A,E重合).①直接写出M点的坐标:_________.②设直线MQ的函数表达式为y=kx+b,在射线MQ绕点M从MA旋转到ME的过程中,是否存在点Q,使得k为整数.若存在,求Q点的坐标;若不存在,请说明理由.参考答案 一、选择题1~6 BADACA 7~12 BBADBD 二、填空题13.1414.1215.f+v-e=1 16.83三、解答题 17.原式=12-3+112=-1 18.原式=x−2x−1×(x−1)(x+1)(x−2)2=x+1x−2x 2-4x-5=0 (x+1)(x-5)=0 x 1=-1,x 2=5 ∵x 2-1≠0 ∴x ≠±1∴当x=5时,原式=5+15−2=219.(1)2;45%;20%; (2)72; (3)画树状图:P(甲、乙两名男生同时被选中)=212=1620.(1)∵EF//BC∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8 ∴△AEG ∽△ABD ,△AFG ∽△ACD∴EG BD =AG AD =12,FG CD =AG AD =12∴EG=12BD ,GF=12CD ∴EF=EG+GE=12BD+12CD=4(2)若DG=x,则AG=10-x 同理△AEG ∽△ABD,△AFG ∽△ACD ∴EG BD =AG AD ,GF CD =AGAD即EG BD=10−x 10,GF CD=10−x10∴EF=EG+GF=10−x 10BD+10−x 10CD=10−x 10(BD+CD)=10-x即y=10-x21.(1)设:第一次购进礼盒单价为x 元/个.4800x=6000x+8X=32经检验:x=32时原方程得解,且符合题意. 答:第一次购进礼盒单价为32元/盒. (2)第二次:32+8=40(元/盒) 480032=150(盒)设销售单价为a 元/盒(a-32)×150+(a-40)×150≥2700a ≥45答:销售单价至少为45元/盒.22.(1)由题意,∠4=2∠1,且AB 垂直平分CD ,则∠1=∠2 ∵∠1=∠2,∠1=∠BCH∴∠2=∠BCH ,即∠GCH=2∠2=2∠1 ∵∠4=2∠1,∠GCH=2∠1 ∴∠4=∠GCH∴∠OCH=∠3+∠GCH=∠3+∠4=90° ∴直线CE 是⊙O 的切线(2)2;(3)过点F 作FE ⊥DC 延长线于点E 。

广东省深圳罗湖区四校联考2019-2020学年中考数学模拟试卷

广东省深圳罗湖区四校联考2019-2020学年中考数学模拟试卷

8 11.如图,点 A 在反比例函数 y= ( x> 0)图象上,点
x
△ AOC的面积为 1,则△ BOC的面积为(

B 在 y 轴负半轴上,连结
AB 交 x 轴于点 C,若
1
A.
4
1
B.
3
1
C.
2
D.1
12.如图, BD为⊙ O的直径, AC为⊙ O的弦, AB= AC, AD交 BC于点 E, AE= 2, ED= 4,延长 DB到点
广东省深圳罗湖区四校联考 2019-2020 学年中考数学模拟试卷
一、选择题
1.将直线 y 2x 1向下平移 n 个单位长度得到新直线 y 2x 1,则 n 的值为( )
A. 2
B. 1
C. 1
D. 2
2.小明的作业本上有以下四题①
16a4 4a2 ;② 5a 10a 5a 2 ;③ a 1 a
a2 1 a
3
5 C. ( b a) 元
4
5 D. ( b a) 元
4
y ax2 bx c 的图象过点 ( - 1,0) ,其对称轴为 x 1 ,下列结论:① abc
0 ;②
2a b 0 ;③ 4a 2b c 0 ;④此二次函数的最大值是 a b c ,其中结论正确的是( )
A.①②
B.②③
C.②④
D.①③④
( 计算结果精确到 0.1 米 , 参考数据 2 ≈1.414, 3 ≈1.732)
23.( 1)计算: ( 1)2017
3
0
1cos 30 3来自23 2 sin 60
x1
( 2)解分式方程:
x3
2
=1
x3
24.如图,在矩形 ABCD中,点 E 在 BC上,且 AE= CE,请仅用一把无刻度的直尺按要求画出图形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年广东省深圳市罗湖区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)﹣的相反数为()A.﹣4B.C.4D.2.(3分)将如图所示的正方体展开图重新折叠成正方体后,和“应”字相对的面上的汉字是()A.静B.沉C.冷D.着3.(3分)在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的()A.三条高的交点B.重心C.内心D.外心4.(3分)“大潮起珠江﹣广东改革开放四十周年展览”自2018年11月8日开放以来,吸引了来自市内外的大批市民和游客.开放第一天大约有8万人参观,第三天达到12万人参观.设参观人数平均每天的增长率为x,则可列方程为()A.8(1+x)2=12B.8(1+2x)=12C.8(1+x2)=12D.8(1+x)=125.(3分)下列命题正确的是()A.方程(x﹣2)2=1有两个相等的实数根B.反比例函数的图象经过点(﹣1,2)C.平行四边形是中心对称图形D.二次函数y=x2﹣3x+4的最小值是46.(3分)如图,菱形ABCD的对角线相交于点O,点E是CD的中点,且OE=4,则菱形的周长为()A.32B.20C.16D.127.(3分)如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,则∠AED的度数为()A.50°B.60°C.70°D.80°8.(3分)如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,沿旗杆方向向前走了20米到D点,在D点测得旗杆顶端A的仰角∠BDA=60°,则旗杆AB的高度是()A.10米B.10米C.米D.15米9.(3分)如图,是反比例函数y=和y=﹣在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点A.B,则△AOB的面积是()A.5B.4C.10D.2010.(3分)如图,已知圆O的圆心在原点,半径OA=1(单位圆),设∠AOP=∠α,其始边OA与x轴重合,终边与圆O交于点P,设P点的坐标P(x,y),圆O的切线AT交OP于点T,且AT=m,则下列结论中错误的是()A.sinα=y B.cosα=xC.tanα=m D.x与y成反比例11.(3分)如图,抛物线y=ax2+bx+c经过点(﹣1,0),抛物线的对称轴为直线x=1,那么下列结论中:①b<0;②方程ax2+bx+c=0的解为﹣1和3;③2a+b=0;④m(ma+b)<a+b(常数m≠0且m≠1),正确的有()A.1个B.2个C.3个D.4个12.(3分)由三角函数定义,对于任意锐角A,有sin A=cos(90°﹣A)及sin2A+cos2A=1成立.如图,在△ABC 中,∠A,∠B是锐角,BC=a,AC=b,AB=c.CD⊥AB于D,DE∥AC交BC于E,设CD=h,BE=a',DE =b',BD=c',则下列条件中能判定△ABC是直角三角形的个数是()①a2+b2=c2;②aa'+bb'=cc';③sin2A+sin2B=1;④.A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF的面积比为.14.(3分)有四张不透明的卡片,正面分别写有:π,,﹣2,.除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数的卡片的概率是 .15.(3分)如图,从多边形一个顶点出发作多边形的对角线.试根据下面几种多边形的顶点数、线段数及三角形个数统计结果,推断f 、e 、v 三个量之间的数量关系是 .16.(3分)如图,在△ABC 中,∠ACB =90°,BC 在x 轴上,点B 与点C 关于原点对称,AB =5,AO =,边AC 上的点P 满足∠COP =∠CAO ,且双曲线y =经过点P ,则k 值等于 .三、解答题(本大题共7小题,共52分) 17.(5分)计算:sin30°﹣+(π﹣4)0+|﹣|18.(6分)先化简,再求值;,其中x 是方程x 2﹣4x ﹣5=0的正根.19.(7分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A 、B 、C 、D 四个等次绘制如图所示的不完整的统计图,请你依据图解答下列问题: (1)a = ;b = ;c = ;(2)扇形统计图中,扇形C 的圆心角度数是 度;(3)学校决定从A 等次的甲乙丙丁4名男生中,随机抽取2名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲乙两名男生同时被选中的概率.20.(7分)如图,D、E、F分别是△ABC的边BC.AB.AC上的点,EF∥BC,AD与EF相交于点G,AD=10,BC=8.(1)若DG=5,求EF的长;(2)在上述线段EF的平移过程中,设DG=x,EF=y,试求y与x之间的函数关系式.21.(8分)某商店预测某种礼盒销售有发展前途,先用4800元购进了这种礼盒,第二次又用6000元购进了相同数量的这种礼盒,但价格比上次上涨了8元/盒.(1)求第一次购进礼盒的进货单价是多少元?(2)若两次购进礼盒按同一销售单价销售,两批全部售完后,要使获利不少于2700元,那么销售单价至少为多少元?22.(9分)如图,AB是圆O的直径,弦CD⊥AB于G,射线DO与直线CE相交于点E,直线DB与CE交于点H,且∠BDC=∠BCH.(1)求证:直线CE是圆O的切线.(2)如图1,若OG=BG,BH=1,直接写出圆O的半径;(3)如图2,在(2)的条件下,将射线DO绕D点逆时针旋转,得射线DM,DM与AB交于点M,与圆O及切线CF分别相交于点N,F,当GM=GD时,求切线CF的长.23.(10分)如图已知抛物线y=ax2+bx+2经过点A(﹣4,0)和B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,将直线AC沿y轴向下平移,得直线BD,BD与抛物线交于另一点D,连接CD,CD与x轴交于点E,试判定△ADE和△ABD是否相似,并说明理由.(3)如图2,在(2)的条件下,设点M是△ABD的外心.点Q是线段AE上的动点(不与点A,E重合).①直接写出M点的坐标:.②设直线MQ的函数表达式为y=kx+b.在射线MQ绕点M从MA旋转到ME的过程中,是否存在点Q,使得k为整数.若存在,求出Q点的坐标;若不存在,请说明理由.2019年广东省深圳市罗湖区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:﹣的相反数是.故选:B.2.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“沉”与“考”相对,“着”与“冷”相对,“应”与“静”相对.故选:A.3.【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三条垂直平分线的交点最适当.故选:D.4.【解答】解:设平均每天提高的百分率x,则可列方程8(1+x)2=12,故选:A.5.【解答】解:A、方程(x﹣2)2=1有两个不相等的实数根,是假命题;B、反比例函数的图象经过点(﹣1,﹣2),是假命题;C、平行四边形是中心对称图形,是真命题;D、二次函数y=x2﹣3x+4的最小值是,是假命题;故选:C.6.【解答】解:∵四边形ABCD是菱形∴AB=BC=CD=AD,BO=DO,又∵点E是CD的中点∴BC=2OE=8∴菱形ABCD的周长=4×8=32故选:A.7.【解答】解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,∴AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE∴∠ACD=30°,∴∠DAC=60°,且∠DAE=∠CAE∴∠DAE=∠CAE=30°,且∠D=90°∴∠AED=60°故选:B.8.【解答】解:由题意得,∠ADB=60°,∠C=30°,CD=20,∴∠DAC=∠ADB﹣∠C=30°,∴∠DAC=∠C,∴AD=CD=20,∴AB=AD•sin∠ADB=10(米),故选:B.9.【解答】解:∵x轴的平行线AB分别与这两个函数图象相交于点A.B,∴AB⊥y轴,∵点A、B在反比例函数y=和y=﹣在x轴上方的图象上,∴S△AOB=S△COB+S△AOC=(3+7)=5,故选:A.10.【解答】解:如图,过点P作PH⊥OA于H,由题意知,OA=OP=1,OH=x,PH=y,由切线的性质定理可知AT⊥OA,在Rt△POH中,∠AOP=∠α,∴sinα===y,cosα===x,故A,B正确;在Rt△TOA中,tanα===m,故C正确,在Rt△POH中,OH2+PH2=OP2,∴x2+y2=1,故D错误;故选:D.11.【解答】解:①由抛物线的开口向下知a<0,对称轴为x=﹣>0,则b>0,故本选项错误;②由对称轴为x=1,一个交点为(﹣1,0),∴另一个交点为(3,0),∴方程ax2+bx+c=0的解为﹣1和3,故本选项正确;③由对称轴为x=1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;④∵对称轴为x=1,∴当x=1时,抛物线有最大值,∴a+b+c>m2a+mb+c,∴m(ma+b)<a+b(常数m≠0且m≠1),故本选项正确;故选:C.12.【解答】解:∵a2+b2=c2,∴∠ACB=90°,∴△ABC是直角三角形,故①正确,∵DE∥AC,∴△DEB∽△ACB,∴==,∴==,不妨设===k,则a′=ak,b′=bk,c′=ck,∵aa'+bb'=cc',∴a2k+b2k=c2k,∴a2+b2=c2,∴△ABC是直角三角形,故②正确,∵sin2A+sin2B=1,sin2A+cos2A=1,∴sin2B=cos2A,∴sin B=cos A,∵sin A=cos(90°﹣A),∴90°﹣∠B=∠A,∴∠A+∠B=90°,∴△ABC是直角三角形,故③正确,∵,∴+=1,∴sin2B+sin2A=1,∴△ABC是直角三角形,故④正确.故选:D.二、填空题(本大题共4小题,每小题3分,共12分)13.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故答案为:1:4.14.【解答】解:所有的数有4个,无理数有π,共2个,∴抽到写有无理数的卡片的概率是.故答案为:.15.【解答】解:三角形个数v=f﹣2,线段条数e=f﹣3+f=2f﹣3,∴f=2e﹣3v,故答案为f=2e﹣3v;16.【解答】解:∵点B与点C关于原点对称,∴BC=2OC,在Rt△ABC中,AB2=AC2+BC2,∵AB=5,∴25=AC2+4OC2,在Rt△AOC中,AO2=AC2+OC2,∵AO=,∴13=AC2+OC2,∴OC=2,AC=3,∵∠COP=∠CAO,∴tan∠COP=tan∠CAO,∴,∴PC=,∴P(2,),∴k=;故答案为;三、解答题(本大题共7小题,共52分)17.【解答】解:原式=﹣3+1+=﹣1.18.【解答】解:原式=()÷==,解方程x2﹣4x﹣5=0,(x﹣1)(x+5)=0,∴x=1或x=﹣5,∵x是方程x2﹣4x﹣5=0的正根.∴x=1,将x=1代入,原式=.19.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=.20.【解答】解:(1)∵EF∥BC,∴△AEF∽△ABC,△AEG∽△ABD,∴=,=,∴=,∵AD=10,BC=8,DG=5,∴=,∴EF=4;(2)由(1)得,=,∵AD=10,BC=8,DG=x,EF=y,∴=,∴y=﹣x+8,∴y与x之间的函数关系式为y=﹣x+8.21.【解答】解:(1)设第一次购进礼盒的进货单价是x元/瓶,则第二次进货单价为(x+8)元/盒,依题意,得:=,解得:x=32,经检验,x=32是原方程的解,且符合题意.答:第一次购进礼盒的进货单价是32元.(2)由(1)可知:第一批购进该种礼盒32元/盒,第二批购进该种礼盒40元/盒.设销售单价为y元/盒,依题意,得:(32+40)y﹣4800﹣6000≥2700,解得:y≥187.5答:销售单价至少为187.5元/盒.22.【解答】解:(1)如图1,∵CD⊥AB,∠4=2∠2,∴∠1=∠2,∴∠4=2∠1,∵∠1=∠BCH,∴∠DCH=2∠1,∴∠4=∠DCH,∵∠3+∠4=90°,∴∠3+∠DCH=90°,即∠OCH=90°,∴直线CE是圆O的切线;(2)∵OG=BG,且OB⊥CG,∴OC=BC,又∵OC=OB,∴△OBC是等边三角形,∴∠1=∠2=∠3=∠BCH=30°,∠4=60°,∴∠H=90°,∵BH=1,∴OC=BC=2BH=2,即圆O的半径为2;(3)如图2,过点F作FE⊥DC.交DC延长线于点E,∴∠CFE+∠FCE=90°,∵OC⊥FC,∴∠OCG+∠FCE=90°,∴∠CFE=∠OCG,∴tan∠CFE=tan∠OCG,即,设CE=x,则EF=x,∵GM=GD,MG⊥CD,∴∠MDG=45°,∵FE⊥ED,∴∠DFE=90°﹣∠MDG=45°=∠MDG,∴EF=ED=EC+CD,又∵CD=2CG=2×=2,∴x=x+2,解得x=3+,∴FC=2EC=6+2.23.【解答】解:(1)设解析式为y=a(x﹣1)(x+4),将(0,2)代入解析式的a=抛物线解析式为y=(2)设AC直线解析式为y=kx+b,将A、C坐标代入可得k=,b=2∴AC直线解析式为将AC直线平移后得到直线BD直线BD的解析式为联立解析式解得x1=1,x2=﹣5∴点D坐标为(﹣5,﹣3)∴直线CD的解析式为y=x+2∴点E坐标为(﹣2,0)∴AE=2,AD=,BD=,DE=,AB=5∵∴△ADE∽△ABD(3)①点M△ABD的外心,则点M在AB的垂直平分线上设点M()∴MD=MB∴MD2=MB2∴()2+(a+3)2=()2+a2∴a=∴M点坐标为()②∵A(﹣4,0),M()可得AM直线解析式为y=﹣x﹣4∵E(﹣2,0),M()可得EM直线解析式为y=﹣5x﹣10可知当直线MQ的k值为整数时,k值可以为﹣1,﹣2,﹣3,﹣4,﹣5当k=﹣1时,直线MQ为y=﹣x﹣4,点Q坐标为(﹣4,0)当k=﹣2时,直线MQ为y=﹣2x﹣,点Q坐标为(﹣,0)当k=﹣3时,直线MQ为y=﹣3x﹣7,点Q坐标为(,0)当k=﹣4时,直线MQ为y=﹣4x﹣,点Q坐标为(,0)当k=﹣5时,直线MQ为y=﹣5x﹣10,点Q坐标为(﹣2,0)∴Q点坐标为(﹣4,0)或(﹣,0)或(,0)或(,0)或(﹣2,0)。

相关文档
最新文档