高考数学 统计与概率单元测试卷

合集下载

2023-2024学年河南省焦作市高中数学人教B版 必修二统计与概率章节测试-4-含解析

2023-2024学年河南省焦作市高中数学人教B版 必修二统计与概率章节测试-4-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年河南省焦作市高中数学人教B 版 必修二统计与概率章节测试(4)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( ).A.B.C.D.2010242. 如图所示的是某篮球运动员最近5场比赛所得分数的茎叶图,则该组数据的方差是( )A. B. C. D. x 甲>x 乙;乙比甲成绩稳定x 甲>x 乙;甲比乙成绩稳定x 甲<x 乙;乙比甲成绩稳定x 甲<x 乙;甲比乙成绩稳定3.甲乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲乙两人的平均成绩分别是x 甲 , x 乙 , 则下列正确的是()A. B. C. D. 14. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.B.C.D.对立事件互斥但不对立事件不可能事件必然事件5. 把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得红牌”与事件“乙分得红牌”是()A. B. C. D.无法确定6. 某学校为了了解高二年级学生对教师教学的意见,打算从高二年级883名学生中抽取80名进行座谈,若采用下面的方法选取:先用简单随机抽样从883人中剔除3人,剩下880人再按系统抽样的方法进行,则每人入选的概率是()A. B. C.D.34 3.5 4.57. 某读书会有6名成员,寒假期间他们每个人阅读的书本数分别如下:3,2,5,4,3,1,则这组数据的75%分位数为()A. B. C. D.202110708. 两位大学毕业生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是”,根据这位负责人的话可以推断出参加面试的人数为().A. B. C. D.,,,,9. 炎炎夏日,冰淇淋成为青年人的热宠,现用简单随机抽样的方法监测某品牌冰淇淋是否符合食品安全标准,若从21个冰淇淋中逐个抽取一个容量为3的样本,则其中某一个体A“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是()A. B. C. D.0.350.450.550.6510. 容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[10,40)的频率为()分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542A. B. C. D.11. 设的平均数为,标准差是,则另一组数的平均数和标准差分别是()A. B. C. D.12. 一批产品共30件,其中5件次品,25件正品,从中任意抽取两件,则恰有一件正品的概率为()A. B. C. D.阅卷人得分二、填空题(共4题,共20分)13. 血药浓度(Serum Drug Concentration)是指药物吸收后在血浆内的总浓度(单位:mg/ml),通常用血药浓度来研究药物的作用强度.下图为服用同等剂量的三种新药后血药浓度的变化情况,其中点的横坐标表示服用第种药后血药浓度达到峰值时所用的时间,其它点的横坐标分别表示服用三种新药后血药浓度第二次达到峰值一半时所用的时间(单位:h),点的纵坐标表示第种药的血药浓度的峰值.()①记为服用第种药后达到血药浓度峰值时,血药浓度提高的平均速度,则中最大的是;②记为服用第种药后血药浓度从峰值降到峰值的一半所用的时间,则中最大的是14. 某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.15. 下图是某校10个班的一次统考数学成绩平均分,则其平均分的中位数是16. 已知一组数据为1,2,3,5,a,4,5,5,7,8,若该组数据的平均数与众数之和等于中位数的2倍,则该组数据方差的最大值为 .17. 为了促进落实“科技助农”服务,某地农业农村局组织基层工作人员参与农业科技知识竞赛,先进行选拔赛. 选拔赛中选手需要从题库中随机抽一题答一题,每位选手最多有5次答题机会,选手累计答对或答错3题即终止比赛,答对3题者进入正赛,答错3题者则被淘汰. 设选手甲答对每个题的概率均为,且答每个题互不影响.(1) 求选手甲进入正赛的概率;(2) 设选手甲在选拔赛中答题的个数为随机变量,求的分布列及数学期望.18. 随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某社团为调查大学生对于“中华诗词”的喜好,从甲、乙两所大学各随机抽取了40名学生,记录他们每天学习“中华诗词”的时间,并整理得到如下频率分布直方图:根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :(Ⅰ)从甲大学中随机选出一名学生,试估计其“爱好”中华诗词的概率;(Ⅱ)从两组“痴迷”的同学中随机选出2人,记为选出的两人中甲大学的人数,求的分布列和数学期望;(Ⅲ)试判断选出的这两组学生每天学习“中华诗词”时间的平均值与的大小,及方差与的大小.(只需写出结论) 19. 某校参加夏令营的同学有3名男同学和3名女同学,其所属年级情况如下表:高一年级高二年级高三三年级男同学A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1) 用表中字母写出这个试验的样本空间;(2) 设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件M的样本点,并求事件M发生的概率.20. 某大学生命科学学院为激发学生重视和积极参与科学探索的热情和兴趣,提高学生生物学实验动手能力,举行生物学实验技能大赛.大赛先根据理论笔试和实验操作两部分进行初试,初试部分考试成绩只记“合格”与“不合格”,只有理论笔试和实验操作两部分考试都“合格”者才能进入下一轮的比赛.在初试部分,甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.(1) 假设甲、乙、丙三人同时进行理论笔试与实际操作两项考试,谁获得下一轮比赛的可能性最大?(2) 这三人进行理论笔试与实际操作两项考试后,求恰有两人获得下一轮比赛的概率.21. 某学校计划从甲,乙两位同学中选一人去参加省数学会举办的数学竞赛,以下是甲,乙两位同学在10次测试中的数学竞赛成绩的茎叶图.(1) 从甲的成绩中任取一个数据,从乙的成绩中任取一个数据,求满足条件的概率;(2) 分别计算甲乙两位同学成绩的平均值和方差,根据结果决定选谁去合适.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.19.(1)(2)20.(1)(2)21.(1)(2)。

高三数学单元测试《概率与统计》

高三数学单元测试《概率与统计》
(1)取得的4个元件均为正品的概率;
(2)取得正品元件个数 的数学期望.
(参考数据:4个元件中有两个正品的概率为 ,三个正品的概率为 )
18.(本小题满分12分)已知10件产品中有3件是次品.
(1)任意取出3件产品作检验,求其中至少有1件是次品的概率;
(2)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法
3.设随机变量ξ的概率分布列为P(ξ=k)= ,k=1,2,3,4……6,其中c为常数,则P
(ξ≤2)的值为()
A. B. C. D.
4.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()
高三数学单元测试《概率与统计》
一、选择题(本题每小题5分,共60分)
1.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()
A. B. C. D.
参考答案
一、选择题(每小题5分,共60分):
(1).D (2).B (3).B (4). C(5).D (6) B (7).B (8).C (9).C (10). B (11).C (12).C
二、填空题(每小题4分,共16分)
(13). (文) 5 (14). 24 (15). (p+0.1)a(16).
A. B. C. D.
5.一台X型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是()

2023-2024学年山东省临沂市高中数学人教B版 必修二统计与概率章节测试-7-含解析

2023-2024学年山东省临沂市高中数学人教B版 必修二统计与概率章节测试-7-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山东省临沂市高中数学人教B 版 必修二统计与概率章节测试(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)697173751.某校300名高三学生期中考试数学成绩的频率分布直方图如图所示,由图中数据估计此次数学成绩平均分()A. B. C.D. 2. 为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,,,,,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有人,第三组中没有疗效的有 人,则第三组中有疗效的人数为( )A. B. C. D.0.320.450.640.673. 口袋中有100个大小相同的红球、白球、黑球,其中红球32个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( )A. B. C. D.4. 现有如表所示的五项运动供选择,记试验F“某人运动的总时长大于或等于60min 的运动组合方式”,则该试验中样本点的个数761023为( )A 运动B 运动C 运动D 运动E 运动7:00~8:008:00~9:009:00~10:0010:00~11:0011:00~12:0030 min 20 min40 min30 min 30 minA. B. C. D. 0.6480.6250.375 0.55. 投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0.5,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A. B. C. D.6. 从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,数字之积是偶数的概率为( )A.B.C.D.被调查的所有市民中四居室住户共有150户用分层抽样的方法抽取的二居室住户有20户用分层抽样的方法抽取的市民中对三居室满意的有10户7. 某市商品房调查机构随机抽取n 名市民,针对其居住的户型结构和是否满意进行了调查,如图1,被调查的所有市民中二居室住户共100户,所占比例为, 四居室住户占.如图2,这是用分层抽样的方法从所有被调查的市民对户型是否满意的问卷中,抽取20%的调查结果绘制成的统计图,则下列说法错误的是( )A. B. C. D. 878685.5858. 如图是表示某班6名学生期末数学考试成绩的茎叶图,则这6名学生的平均成绩为( )A. B. C.D. 9. 甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次:当有人掷硬币的结果与其他二人不同时,此人就出局且游戏终止;否则进入下一轮,并且按相同的规则继续进行游戏,规定进行第十局时,无论结果如何都终止游戏.则该游戏终止前,至少玩了六局的的概率为( )A.B.C.D.10. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样作抽样调查,拟从初中部和高中部两层共抽取名学高中部产生个样本初中部产生个样本不同级部每个学生被抽取的可能性不相同可以从两个级部各抽取个样本生,已知该校初中部和高中部分别有和名学生,则正确的( )A. B. C. D. 按一定的方法抽取随意抽取根据个人的爱好抽取全部抽取11. 抽样调查在抽取调查对象时是( )A. B. C. D. 12. 某校高三年级有班号为1~9的9个班,从这9个班中任抽5个班级参加一项活动,则抽出班级的班号的中位数是5的概率等于( )A.B.C.D.13. 甲、乙两校各有3名教师报名支教.若从这6名教师中任选2名,选出的2名教师来自同一学校的概率为 .14. 某个随机数选择器每次从0,1,2,3,4,5,6,7,8,9这10个数字中等可能地选择一个数字,用该随机数选择器连续进行三次选择,选出的数字依次是则概率= .15. “双十一”是指每年的11月11日,以一些电子商务为代表,在全国范围内兴起的大型购物促销狂欢日.某商家在去年的“双十一”中开展促销活动:凡购物满5888元的顾客会随机获得A ,B ,C 三种赠品中的一件,现恰有3名顾客的购物金额满5888元.设随机变量X 表示获得赠品完全相同的顾客人数,则 , .16. 由茎叶图可知,甲组数据的众数和乙组数据的极差分别是 .17. 随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图.(1) 根据茎叶图判断哪个班的平均身高较高;(2) 计算甲班的样本方差;(3) 现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.18. 某社团现有5名女生,5名男生,其中3名学生来自同一个班,另外7名学生分别来自不同的班级.现要随机选3名学生参加活动.(1) 求“选出的3名学生中,至多有2名来自同一班级”的概率;(2) 设选出的3名学生中女生的人数为随机变量,求的分布列.19. “2021年全国城市节约用水宣传周”已于5月9日至15日举行、成都市围绕“贯彻新发展理念,建设节水型城市”这一主题,开展了形式多样,内容丰富的活动,进一步增强全民保护水资源,防治水污染,节约用水的意识.为了解活动开展成效,某街道办事处工作人员赴一小区调查住户的节约用水情况,随机抽取了300.名业主进行节约用水调查评分,将得到的分数分成6组:,,,,,,得到如图所示的频率分布直方图.(1) 求a的值,并估计这300名业主评分的众数和中位数;(2) 若先用分层抽样的方法从评分在和的业主中抽取5人,然后再从抽出的这5位业主中任意选取2人作进一步访谈:①写出这个试验的样本空间;②求这2人中至少有1人的评分在概率.20. 如图,已知四面体中,平面,.(1) 求证:;(2) 《九章算术》中将四个面都是直角三角形的四面体称为“鱉臑”,若此“鱉臑”中,,有一根彩带经过面与面,且彩带的两个端点分别固定在点和点处,求彩带的最小长度;(3) 若在此四面体中任取两条棱,记它们互相垂直的概率为;任取两个面,记它们互相垂直的概率为;任取一个面和不在此面上的一条棱,记它们互相垂直的概率为. 试比较概率、、的大小.21. 为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图,根据直方图所提供的信息:(1) 求该班学生周末的学习时间不少于小时的人数;(2) 估计这名同学周末学习时间的分位数;(3) 如果用该班学生周末的学习时间作为样本去推断该校高一年级全体学生周末的学习时间,这样推断是否合理?说明理由.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)(3)18.(1)(2)19.(1)(2)20.(1)(2)(3)21.(1)(2)(3)。

2020学年新教材高中数学第5章统计与概率单元质量测评(含解析)新人教B版必修第二册(最新整理)

2020学年新教材高中数学第5章统计与概率单元质量测评(含解析)新人教B版必修第二册(最新整理)

第五章统计与概率单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列调查,比较适用普查而不适用抽样调查方式的是()A.为了了解中央电视台春节联欢晚会的收视率B.为了了解高一某班的每个学生星期六晚上的睡眠时间C.为了了解夏季冷饮市场上冰淇淋的质量情况D.为了考查一片实验田某种水稻的穗长情况答案B解析A选项做普查时数量太大,且该调查对调查结果准确性的要求不高,适合采用抽样调查的方式;B选项班级人数有限,比较容易调查因而适合普查;C选项数量大并且耗时长,不适合普查;D选项普查时数量太大,要费太大的人力、物力,得不偿失,不适合普查.故选B.2.近几年来移动支付越来越普遍,为了了解某地10000名居民常用的支付方式,从中抽取了500名居民,对其常用支付方式进行统计分析.在这个问题中,10000名居民的常用支付方式的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案A解析10000名居民的常用支付方式的全体是总体,样本容量是500,每个居民的常用支付方式是个体,500名居民的常用支付方式是从总体中抽取的一个样本.故选A。

3.下列说法正确的有( )①概率是频率的稳定值,频率是概率的近似值;②一次试验中不同的事件不可能同时发生;③任意事件A发生的概率P(A)总满足0<P(A)<1;④若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事件.A.0个 B.1个 C.2个 D.3个答案B解析易知①是正确的;一次试验中不同的事件可能同时发生,故②错误;任意事件A发生的概率P(A)总满足0≤P(A)≤1,故③错误;当事件A的概率P(A)=0时,事件A是不可能事件,故④错误.所以选B.4.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案D解析从左到右符合题意的5个个体的编号分别为08,02,14,07,01,故第5个个体的编号为01.5.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.100,10 B.200,10C.100,20 D.200,20答案D解析易知(3500+4500+2000)×2%=200,即样本容量为200.抽取的高中生人数为2000×2%=40,由于其近视率为50%,所以近视的人数为40×50%=20。

统计与概率试题单元测试,统计与概率试题试卷

统计与概率试题单元测试,统计与概率试题试卷

四公学校统计与概率试题一、选择题:(3分每题) 1、(2007福建福州)随机掷两枚硬币,落地后全部正面朝上的概率是( ) A .1B .12C .13D .142、(2007福建龙岩)如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是( ) A .58B .12C .34D .783、(2007河北省)在一个暗箱里放有a 个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A .12 B .9 C .4 D .3 4、(2007哈尔滨)随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为( )A .12B .13C .14D .155、(2007湖北孝感)在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15B .29C .14D .5186、(2007湖南怀化)已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙则( ) A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较 7、(2007杭州)将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A.1216B.172C.136 D.1128.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )(Q 相当于12点)A .13B .12C .34D .239、投掷3次硬币,有2次正面朝上,有1次反面朝上,那么,投掷4次硬币正面朝上的可能性是( )。

高三数学第三册概率与统计单元测试

高三数学第三册概率与统计单元测试

高三数学第三册概率与统计单元测试概率,又称或然率、时机率、机率(几率)或能够性,是概率论的基本概念。

以下是查字典数学网为大家整理的高三数学第三册概率与统计单元测试,希望可以处置您所遇到的相关效果,加油,查字典数学网不时陪伴您。

一、依据以下事情发作的能够性,把A、B、C、D、E填入事情后的括号里.1、3团体下棋,肯定有一个是旁观者.()2、恣意一张扑克牌,一定是红桃()3、白昼能见到太阳()4、你能举起300公斤的重物()5、恣意抓一把围棋子,个数是奇数()A.不能够发作B.发作的能够性小于50%C.发作的能够性大于50%D.肯定发作100%E.发作的能够性等于50%二、小新和小丁想应用做一道数字题来决议谁去看球赛,他们叫教员给他们出一道题,假定小新先做出来小新就去,假定小丁先做出小丁就去.这个游戏对双方公允吗?三、七(2)班班长重新选举,小梁和小栋都想被中选,于是全班52人停止投票选举,谁的选票多谁中选.这对双方公允吗?四、选做题1、小阳和小鸣掷一对骰子,假设小阳掷出的骰子点数之和为6,那么加1分,否那么不得分;假设小鸣掷出的点数之和为7,那么加1分;否那么不得分.他们各掷20次,记载每次得分,20次累计分高的为胜,这个游戏对小阳和小鸣双方公允吗?说明你的理由。

2、如图,小明在用白色、黄色和白色的同心圆(半径比为1:2:3)制成的靶子上玩飞镖。

飞镖停留在白色区域中7次,停在别的区域中共13次。

小明说他下一次扔的时分,停在白色区域中的概率是35%。

他说的对吗?为什么?3、将下面事情的字母写在最能代表它的概率的点上。

A.投掷硬币时,失掉一个正面。

B.在一小时内,你步行可以走80千米。

C.给你一个色子中,你掷出一个3。

D.明天太阳会升起来。

4、在学校举行的游艺活动中,数学俱乐部办了个掷色子的游戏。

玩这个游戏要花四张5角钱的票。

一个游戏者掷一次色子。

假设掷到6,游戏者失掉奖品。

每个奖品要破费俱乐部8元。

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案

高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。

如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。

2023-2024学年江西省南昌市高中数学人教B版 必修二统计与概率章节测试-1-含解析

2023-2024学年江西省南昌市高中数学人教B版 必修二统计与概率章节测试-1-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年江西省南昌市高中数学人教B 版 必修二统计与概率章节测试(1)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 甲、乙两位同学暑假计划从吉林省去河北省旅游,他们所搭乘动车的“3+2”座位车厢如图所示,若这两位同学买到了同一排的座位,则他们的座位正好相邻的概率为( )A. B. C.D. 18篇24篇25篇27篇 2. 某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比,下面是将某年级60篇学生调查报告进行整理,分成5组画出的频率分布直方图(如图).已知从左至右4个小组的频率分别为0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀且分数为整数)( ).A. B. C.D. 以上均不对3. 一个不透明的盒子里有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.那么甲赢的概率是( )A. B. C. D. 4. 甲、乙两支球队进行比赛,预定先胜 3局者获得比赛的胜利,比赛随即结束.结束除第五局甲队获胜的概率是 外,其余每局比赛甲队获胜的概率都是 .假设各局比赛结果相互独立.则甲队以3:2获得比赛胜利的概率为( )A. B. C. D.5,10,15,20,253,13,23,33,431,2,3,4,52,4,8,16,325. 要从已编号(1~50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射的试验,用选取的豪迈间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是 ( )A. B. C. D. 126. 已知五个数3,5,7,4,6,则该样本标准差为( )A. B. C. D. 至多有一次中靶两次都中靶恰有一次不中靶至少有一次中靶7. 一个人打靶时连续射击两次,则事件“恰有一次中靶”的互斥的事件是( )A. B. C. D. 掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”8. 下列各对事件中,不互为相互独立事件的是( )A. B. C. D. 33253130305029509. 某高校12名毕业生的起始月薪如下表所示:毕业生123456789101112起始月薪285029503050288027552710289031302940332529202880则第85百分位数是( )A. B. C. D. 事件甲与事件丁为对立事件事件乙的概率是事件丁的6倍事件丙和事件丁相互独立事件甲与事件丙相互独立10. 一个口袋中有大小、形状完全相同的4个红球,3个蓝球,3个白球,现从袋中随机抽取3个球.事件甲:3个球的颜色互不相同;事件乙:恰有2个红球;事件丙:至多有1个蓝球;事件丁:3个球颜色均相同.则下列结论正确的是( )A. B. C. D. 11. 随机变量ξ的概率分布规律为P(X =n)= (n =1,2,3,4),其中a 为常数,则 的值为( )A. B. C. D.12. 从含有5张假钞的20张百元钞票中任意抽取2张,在其中1张是假钞的条件下,2张都是假钞的概率是( )A. B. C. D.阅卷人二、填空题(共4题,共20分)得分13. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是.14. 某单位有360名职工,现采用系统抽样方法,抽取20人做问卷调查,将360人按1,2,...,360随机编号,则抽取的20人中,编号落入区间的人数为 .15. 如果天气状况分为阴、小雨、中雨、大雨、晴五种,它们分别用数字1、2、3、4、5来表示,用ξ来表示一天的天气状况.若某天的天气状况是阴天有小雨,则用ξ的表示式可表示为.16. 为积板应对新冠肺炎疫情,提高大家对新冠肺炎的认识,某企业举办了“抗击疫情,共克时艰”预防新冠肺炎知识竞赛,知识竞赛规则如下:在预设的6个问题中,选手若能连续正确回答出3个问题,即停止答题,晋级下一轮.假定某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手至少回答了5个问题晋级下一轮的概率等于 .17. 为了了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.(Ⅰ)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;(Ⅱ)求调查中随机抽取了多少个学生的百米成绩;(Ⅲ)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.18. 某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:等级一等品二等品三等品重量(g)[165,185][155,165)[145,155)若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.19. 随着人们生活水平的提高,越来越多的人愿意花更高的价格购买手机.某机构为了解市民使用手机的价格情况,随机选取了100人进行调查,并将这100人使用的手机价格按照,,…,分成6组,制成如图所示的频率分布直方图:(1) 求图中的值;(2) 求这组数据的平均数和中位数(同一组中的数据用该组区间的中间值作代表);(3) 利用分层抽样从手机价格在和的人中抽取5人,并从这5人中抽取2人进行访谈,求抽取出的2人的手机价格在不同区间的概率.20. 数字人民币是由央行发行的法定数字货币,它由指定运营机构参与运营并向公众兑换,与纸钞和硬币等价.截至2021年6月30日,数字人民币试点场景已超132万个,覆盖生活缴费、餐饮服务、交通出行、购物消费、政务服务等领域.为了进一步了解普通大众对数字人民币的感知以及接受情况,某机构进行了-次问卷调查,部分结果如下:学历小学及以下初中高中大学专科大学本科硕士研究生及以上不了解数字35358055646人民币了解数字人406015011014025民币(1) 如果将高中及高中以下的学历称为“低学历”,大学专科及以上学历称为“高学历”,根据所给数据,完成下面的列联表;学历低学历高学历合计了解情况不了解数字人民币了解数字人民币合计(2) 若从低学历的被调查者中,按对数字人民币的了解程度用分层抽样的方法抽取8人,然后从这8人中抽取2人进行进一步调查,求被选中的2人中至少有1人对数字人民币不了解的概率;(3) 根据列联表,判断是否有95%的把握认为“是否了解数字人民币”与“学历高低”有关?附:0.0500.0100.001k 3.841 6.63510.82821. 科技改变生活,方便生活.共享单车的使用就是云服务的一种实践,它是指人民政府合作,为居民出行提供单车共享服务,它符合低碳出生理念,为解决城市出行的“最后一公里”提供了有力支撑,是共享经济的一种新形态.某校学生社团为研究当地使用共享单车人群的年龄状况,随机抽取了当地100名使用共享单车的群众作出调查,所得频率分布直方图如图所示.(1) 估计当地共享单车使用者年龄的中位数;(2) 若按照分层抽样从年龄在,的人群中抽取5人,再从这5人中随机抽取2人调查单车使用体验情况,求抽取的2人中年龄都在的概率.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.(1)(2)(3)20.(1)(2)(3)21.(1)(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档