2017全国一卷理科数学高考真题和答案
2017北京高考真题数学理(含解析)

2017年普通高等学校招生全国统一考试(北京卷)理科数学第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.1.复数().A.B.C.D.2.若,满足,则的最大值为().A.B.C.D.3.执行如图所示的程序框图,输出的结果为().A.B.C.D.4.设,两个不同的平面,是直线且,“”是“”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是().A.B.C.D.6.设是等差数列,下列结论中正确的是().A.若,则B.若,则C.若,则D.若,则7.如图,函数的图像为折线,则不等式的解集是().A.B.C.D.8.汽车的“燃油效率”是指汽车每消耗升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是().A.消耗升汽油,乙车最多可行驶千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以千米/小时的速度行驶小时,消耗升汽油D.某城市机动车最高限速千米/小时,相同条件下,在该市用丙车比用乙车更省油第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在的展开式中,的系数为__________.(用数字作答)10.已知双曲线的一条渐近线为,则__________.11.在极坐标中,点到直线的距离为__________.12.在中,,,,则__________.13.在中,点,满足,.若,则__________.__________.14.设函数①若,则的最小值为__________.②若恰有个零点,则实数的取值范围是__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求在区间上的最小值.16.(本小题满分13分),两组各有位病人,他们服用某种药物后的康复时间(单位:天)记录如下:组:,,,,,,组:,,,,,,假设所有病人的康复时间互相独立,从,两组随机各选人,组选出的人记为甲,组选出的人记为乙.(Ⅰ)求甲的康复时间不少于天的概率;(Ⅱ)如果,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当为何值时,,两组病人康复时间的方差相等?(结论不要求证明).17.(本小题满分14分)如图,在四棱锥中,为等边三角形,平面平面,,,,,为的中点.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)若平面,求的值.18.(本小题满分13分)已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)设实数使得对恒成立,求的最大值.19.(本小题满分14分)已知椭圆:()的离心率为,点,和点都在椭圆上,直线交轴于点..(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得若存在,求点的坐标;若不不存在,说明理由.20.(本小题满分13分)已知数列{}满足,,且.记集合.(Ⅰ)若,写出集合的所有元素;(Ⅱ)若集合存在一个元素是的倍数,证明:的所有元素都是的倍数;(Ⅲ)求集合的元素个数的最大值.2017年普通高等学校招生全国统一考试(北京卷)数学答案(理工类)一、选择题题号 1 2 3 4 5 6 7 8答案A D B B C C C D二、填空题题号9 10 11 12 13 14 答案三、解答题15.解:(Ⅰ)周期.(Ⅱ),,,,最小值为.16.解:(Ⅰ)记甲康复时间不小于天为事件.则,答:甲康复时间不小于天的概率为.(Ⅱ)记甲的康复时间比乙的康复时间长为事件.基本事件空间如下表乙甲短短短长长长长短短短短长长长短短短短短长长短短短短短短长短短短短短短短短短短短短短短短短短短短短短所以.(Ⅲ)或,由于组为公差为的等差数列,所以当或时组也为公差为的等差数列,所以方差一定相等,而方差相等的方程是关于的一个一元二次方程,故最多有两个解,所以只有或两个值.17.(Ⅰ)证明:为等边三角形,为中点,又平面平面,平面平面,平面,.(Ⅱ)以为原点建立如图坐标系,,,,平面的法向量;设平面的法向量,则取又二面角为钝角,二面角的余弦值为.(Ⅲ)平面,,,,解得(舍)或.18.解:(Ⅰ)所以又所以切线方程为,即.(Ⅱ)又因为,所以所以在上是增函数又,故所以.(Ⅲ),设,,,,函数是单调递增,显然成立当时,令,得极值,显然不成立,由此可知最大值为.19.解:(Ⅰ)由题意知,,又,解得,,所以的方程为.的斜率,所以方程,令,解得所以.(Ⅱ),同(I)可得,,,因为所以,设则即,又在椭圆上,所以,即,所以,故存在使得.20.解:(Ⅰ),,.(Ⅱ)若存在是的倍数,设,当时,,也是的倍数;当时,,也是的倍数.综上,是的倍数,依次类推,当时,是的倍数;若存在是的倍数,设,当时,,因为,所以也是的倍数;当时,,因为,所以也是的倍数;.综上,是的倍数,依次类推,当时,是的倍数;所以原结论成立.(Ⅲ)当时,将代入,依次得到,,,,,,,,所以当时,,此时,共个元素.由题意,可取的值有,,,共个元素,显然,不论为何值,必为的倍数,所以,①当时,,此时最多有个元素;②当时,,此时最多有个元素;③当时,,此时最多有个元素;所以集合的元素个数的最大值为.2017年普通高等学校招生全国统一考试(北京卷)数学(理工类)选填解析一、选择题1.【答案】A【解析】解:.故选A.2.【答案】D【解析】解:如图,当,.故选D.3.【答案】B【解析】解:结束,输出.故选B.4.【答案】B【解析】解:不能推出,而,,“”是“”的必要不充分条件.故选B.5.【答案】C【解析】解:由三视图知,面ABC,,,,,,.故选C.6.【答案】C【解析】解:,,所以,.故答案为C.7.【答案】C【解析】解:由题可知:,当时,.时,单调递减,单调递增,当时,,的解集为.故答案选C.8.【答案】D【解析】由图可知,对乙车存在一个速度,使燃油效率高于,A错;由图知,当以的速度行驶时,甲车燃油效率最高,行驶相同路程时,耗油最少,B错;甲车以行驶小时耗油升,故C错在限速,相同情况下,丙车燃油效率较乙车高,所以乙车更省油.故答案选D.二、填空题9.【答案】【解析】解:,当时,系数为.故答案为.10.【答案】【解析】解:令,所以.故答案为.11.【答案】【解析】直线方程为,点为,所以点到直线方程的距离为.故答案为.12.【答案】【解析】解:.故答案为13.【答案】,【解析】解:,所以,.故答案为,.14.【答案】,【解析】解:①当时,,时,,时,,所以;②(I)当时,没有两个零点,(Ⅱ)当时,时,,有一个零点;时,;当,即时,恰有两个零点,所以当时,恰有两个零点;(Ⅲ)当时,时,,有一个零点;时,,,有两个零点,此时有三个零点;(Ⅳ)当时,时,无零点;时,有两个零点,此时有两个零点.综上所述.故答案为,.。
2017全国1卷理科数学(含答案).docx

2017 年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={ x|x<1} ,B={ x| 3x 1 },则()A .AB { x | x 0} B .A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .πC.1D.π84 423.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1, z2满足 z1z2R,则z z;p4:若复数z R,则z R.12其中的真命题为()A.p1, p3 B .p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n} 的前 n 项和.若 a4a524 , S648 ,则 { a n } 的公差为()A . 1B . 2C.4D. 85.函数f ( x)在(,) 递减,且为奇函数.若 f (1) 1 ,则满足 1 f ( x2)1的 x 的取值范围是()A.[2,2] B .[ 1,1]C.[0,4]D.[1,3]6.(116展开式中2的系数为()x2 )(1x)xA . 15B . 20C.30D. 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A . 10B.12C.14 D .168.右面程序框是了求出足3n- 2n>1000 的最小偶数 n,那么在和两个空白框中,可以分填入(A . A>1000 和 n=n+1B .A>1000 和 n=n+2C.A 1000 和 n=n+1 D .A 1000 和 n=n+2: y=cos x, C: y=sin (2 x+2π)9.已知曲 C2),下面正确的是(3A.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向右平移π个位度,得到曲6C2B.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向左平移π个位度,得到曲12C2C.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向右平移π个位度,得到曲26C2D.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向左平移π个位度,得到212曲 C210.已知 F 抛物2的焦点, F 作两条互相垂直的直l 1,l 2,直 l 1与 C 交于 A、B 两点,直C:y =4x与 C 交于 D、 E 两点, |AB |+|DE|的最小()A . 16B . 14C.12D. 10、、z 正数,且2x3y5z)11. x y,(A . 2x<3 y<5zB . 5z<2x<3y C.3y<5 z<2x D. 3y<2x<5z 12.几位大学生响国家的号召,开了一款用件.激大家学数学的趣,他推出了“解数学)l2取件激活”的活.款件的激活下面数学的答案:已知数列1, 1, 2, 1, 2, 4, 1,2, 4, 8, 1, 2,4, 8,16,⋯,其中第一是 20,接下来的两是 20, 21,再接下来的三是 20,21, 22,依此推.求足如下条件的最小整数 N:N>100 且数列的前 N 和 2 的整数.那么款件的激活是()A . 440B . 330C.220D. 110二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量 a , b 的夹角为 60°, |a |=2, |b |=1,则 | a +2 b |=.x 2 y 114.设 x ,y 满足约束条件2x y 1,则 z 3x 2 y 的最小值为.x y2215.已知双曲线 C :x2y 2 1( a>0,b>0)的右顶点为 A ,以 A 为圆心, b 为半径作圆 A ,圆 A 与双曲线 C 的 ab一条渐近线交于 M 、 N 两点.若∠ MAN =60°,则 C 的离心率为 ____ ____.16.如图,圆形纸片的圆心为O ,半径为 5 cm ,该纸片上的等边三角形ABC 的中心为 O .D 、E 、F 为圆 O 上的点,△ DBC ,△ ECA ,△ FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、 E 、 F 重合,得到三棱锥.当△ ABC 的边长变化时,所得 三棱锥体积(单位:cm 3)的最大值为 _______.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共60 分.a 2 17.(12 分)△ ABC 的内角 A , B , C 的对边分别为 a ,b ,c ,已知△ ABC 的面积为3sin A( 1)求 sinBsinC;( 2)若 6cosBcosC=1, a=3,求△ ABC 的周长.18.( 12 分)如图,在四棱锥 P-ABCD 中, AB//CD ,且BAP CDP 90 .( 1)证明:平面 PAB ⊥平面 PAD ;( 2)若 PA=PD=AB=DC ,APD 90 ,求二面角 A-PB-C 的余弦值.19.( 12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N ( , 2 ).( 1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在 ( 3 ,3 ) 之外的零件数,求P( X 1) 及X的数学期望;( 2)一天内抽检零件中,如果出现了尺寸在(3,3 ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95116116( xi x )2116经计算得 x x i9.97 ,s(x i216x 2 ) 20.212,其中x i为抽取的第 i16 i 116 i 116i1个零件的尺寸,i1,2,,16 .用样本平均数x 作为的估计值 ?,用样本标准差s 作为的估计值? ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ? 3 ?, ? 3 ?) 之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z 服从正态分布 N (,2 ) ,则 P(3Z3)0.9974 ,0.9974160.9592,0.0080.09.20.( 12 分)已知椭圆x2y23), P4( 1,3 C:22 =1 (a>b>0),四点P1(1,1),P2(0,1),P3(–1,)a b22中恰有三点在椭圆 C 上.( 1)求 C 的方程;( 2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点.若直线P2A 与直线 P2B 的斜率的和为–1,证明: l 过定点.21.( 12 分)已知函数 f ( x) ae2x(a 2)e x x .( 1)讨论 f ( x) 的单调性;( 2)若f ( x)有两个零点,求 a 的取值范围.(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答,如果多做,则按所做的第一题计分.22. [ 选修 4―4:坐标系与参数方程]( 10 分)x3cos x a4t 在直角坐标系 xOy 中,曲线 C 的参数方程为(θ为参数),直线 l 的参数方程为(为参数).y sin y1t( 1)若 a=-1 ,求 C 与 l 的交点坐标;( 2)若 C 上的点到 l 的距离的最大值为17 ,求 a.23. [ 选修 4—5:不等式选讲]( 10 分)已知函数f(x) = –x2+ax+4 , g(x)= │x+1│ +│x– 1│.(1)当 a=1 时,求不等式 f(x) ≥g(x)的解集;(2)若不等式 f(x) ≥g(x)的解集包含 [–1, 1],求 a 的取值范围.参考答案(理科数学)一、选择题123456789101112A B B C D C B D D A D A二、填空题13.2 314.52315.16.4 15 3三、解答题。
2017山东高考真题数学理(含解析)

2017年普通高等学校招生全国统一考试(山东卷)(理科数学)第一部分(选择题共50分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,则AB=()A.B.C.D.2.若复数满足,其中i为虚数为单位,则().A.B.C.D.3.要得到函数的图像,只需要将函数的图像().A.向左平移个单位B.向右平移个单位C.向左平移个单位D向右平移个单位4.已知菱形的边长为,,则().A.B.C.D.5.不等式的解集是()A.B.C.D.6.已知x,y满足约束条件,若的最大值为,则().A.B.C.D.7.在梯形中,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.8.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间内的概率为()(附:若随机变量ξ服从正态分布N,则,A.B.C.D.9.一条光纤从点射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()A.或B..或C.或D.或10.设函数则满足的a取值范围是()A. B.C D.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.(观察下列各式:;;;;……照此规律,当时,_________.12.若“”是真命题,则实数m的最小值为 .13.执行右边的程序框图,输出的的值为_________14.已知函数的定义域和值域都是,则_________15.平面直角坐标系中,双曲线:(,b>0)的渐近线与抛物线,交于,若的垂心为C2的焦点,则的离心率为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)设(Ⅰ)求的单调区间;(Ⅱ)在锐角中,角的对边分别为若求面积的最大值.17.(本题满分12分)如图,在三棱台中,分别为的中点.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的角(锐角)的大小.18.(本小题满分12分)设数列的前n项和为.已知(I)求的通项公式;(II)若数列满足,求的前项和.19.(本小题满分12分)若是一个三位正整数,且的个位数字大于十位数字,十位数字大于百位数字,则称为“三位递增数”(如等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被整除,参加者得分;若能被整除,但不能被整除,得分;若能被整除,得分.(I)写出所有个位数字是的“三位递增数”;(II)若甲参加活动,求甲得分的分布列和数学期望.20.(本小题满分13分)平面直角坐标系中,已知椭圆C:的离心率为,左、右焦点分别是F1、F2.以为圆心以为半径的圆与以为圆心为半径的圆相交,且交点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆为椭圆上任意一点,过点P的直线交椭圆E于两点,射线交椭圆于点.(i)求的值(ii)求面积的最大值.21.(本小题满分4分)设函数,其中。
2017年高考数学试卷及答案

2017年高考真题一.解答题(共12小题)1.已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.6.已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.8.已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.10.已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f (x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.12.已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2017年高考真题导数专题参考答案与试题解析一.解答题(共12小题)1.(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).2.(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a﹣.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.3.(2017•新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f (a),又因为f(x)min=f(a)≥0,所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.一方面,ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;另一方面,(1+)(1+)…(1+)>(1+)(1+)(1+)=>2;从而当n≥3时,(1+)(1+)…(1+)∈(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,所以m的最小值为3.4.(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0的实根,所以4a2﹣12b≥0,即a2﹣+≥0,解得a≥3,所以b=+(a≥3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].5.(2017•新课标Ⅱ)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1﹣x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).6.(2017•浙江)已知函数f(x)=(x﹣)e﹣x(x≥).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,可得f′(x)=0时,x=1或,当<x<1时,f′(x)<0,f(x)递减;当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f()=e,f(1)=0,f()=e,即有f(x)的最大值为e,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,e].7.(2017•山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].8.(2017•北京)已知函数f(x)=e x cosx﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cosx﹣x的导数为f′(x)=e x(cosx﹣sinx)﹣1,令g(x)=e x(cosx﹣sinx)﹣1,则g(x)的导数为g′(x)=e x(cosx﹣sinx﹣sinx﹣cosx)=﹣2e x•sinx,当x∈[0,],可得g′(x)=﹣2e x•sinx≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()=e cos﹣=﹣.9.(2017•天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|﹣x0|≥.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x=.当x变化时,g′(x),g(x)的变化情况如下表:x(﹣∞,﹣1)(﹣1,)(,+∞)g′(x)+﹣+g(x)↗↘↗所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g′(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H2(x)单调递减.因此,当x∈[1,x0)∪(x0,2]时,H2(x)>H2(x0)=0,可得得H2(m)<0即h(x0)<0,.所以,h(m)h(x0)<0.(Ⅲ)对于任意的正整数p,q,且,令m=,函数h(x)=g(x)(m﹣x0)﹣f(m).由(Ⅱ)知,当m∈[1,x0)时,h(x)在区间(m,x0)内有零点;当m∈(x0,2]时,h(x)在区间(x0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x1,则h(x1)=g(x1)(﹣x0)﹣f()=0.由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x1)<g(2),于是|﹣x0|=≥=.因为当x∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x0外没有其他的零点,而≠x0,故f()≠0.又因为p,q,a均为整数,所以|2p4+3p3q﹣3p2q2﹣6pq3+aq4|是正整数,从而|2p4+3p3q﹣3p2q2﹣6pq3+aq4|≥1.所以|﹣x0|≥.所以,只要取A=g(2),就有|﹣x0|≥.10.(2017•山东)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.【解答】解:(1)当a=2时,f(x)=x3﹣x2,∴f′(x)=x2﹣2x,∴k=f′(3)=9﹣6=3,f(3)=×27﹣9=0,∴曲线y=f(x)在点(3,f(3))处的切线方程y=3(x﹣3),即3x﹣y﹣9=0(2)函数g(x)=f(x)+(x﹣a)cosx﹣sinx=x3﹣ax2+(x﹣a)cosx﹣sinx,∴g′(x)=(x﹣a)(x﹣sinx),令g′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x>a时,g′(x)>0恒成立,故g(x)在(a,+∞)上单调递增,当0<x<a时,g′(x)<0恒成立,故g(x)在(0,a)上单调递减,∴当x=a时,函数有极小值,极小值为g(a)=﹣a3﹣sina当x=0时,有极大值,极大值为g(0)=﹣a,②若a<0时,当x>0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,当x<a时,g′(x)>0恒成立,故g(x)在(﹣∞,a)上单调递增,当a<x<0时,g′(x)<0恒成立,故g(x)在(a,0)上单调递减,∴当x=a时,函数有极大值,极大值为g(a)=﹣a3﹣sina当x=0时,有极小值,极小值为g(0)=﹣a③当a=0时,g′(x)=x(x+sinx),当x>0时,g′(x)>0恒成立,故g(x)在(0,+∞)上单调递增,当x<0时,g′(x)>0恒成立,故g(x)在(﹣∞,0)上单调递增,∴g(x)在R上单调递增,无极值.11.(2017•天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:x(﹣∞,a)(a,4﹣a)(4﹣a,+∞)f'(x)+﹣+f(x)↗↘↗∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].12.(2017•新课标Ⅰ)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]。
2017年高考真题全国1卷理科数学(附答案解析)

(2)若 PA=PD=AB=DC, ∠APD = 90o,求二面角 A−PB−C 的余弦值.
19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取
16 个零件,并测量其尺寸(单位: cm ).根据长期生产经验,可以认为这条生产线正
( ) 常状态下生产的零件的尺寸服从正态分布 N µ,σ 2 .
x − y ≤ 0
15.已知双曲线 C
:
x2 a2
−
y2 b2
= 1(a
> 0,b > 0) 的右顶点为
A ,以
A 为圆心, b
为半径作
圆 A ,圆 A 与双曲线 C 的一条渐近线于交 M 、 N 两点,若 ∠MAN = 60o,则 C 的离心
率为__________.
16.如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O.D,E,F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的 等腰三角形.沿虚线剪开后,分别以 BC,CA,AB 为折痕折起△DBC,△ECA,△FAB, 使得 D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3) 的最大值为______.
(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在
( µ − 3σ , µ + 3σ ) 之外的零件数,求 P ( X ≥ 1) 及 X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在 ( µ − 3σ , µ + 3σ ) 之外的零件,就认为这
条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸:
2017全国卷1理科数学试题解析纯版完美版(最新整理)

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学一、选择题:(本题共12小题,每小题5分,共60分)1、已知集合A={x|x<1},B={x|3x <1},则( )A .A∩B={x|x<0}B .A ∪B=R C .A ∪B={x|x>1} D .A∩B=∅解析:A={x|x<1},B={x|3x <1}={x|x<0},∴A ∩B={x|x<0},A ∪B={x|x<1},选A .2、如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .B .C .D .14π812π4解析:设正方形边长为2,则圆半径为1,则正方形的面积为2×2=4,圆的面积为π×12=π,图中黑色部分的概率为.则此点取自黑色部分的概率为=.故选B .π2π24π83、设有下面四个命题,其中正确的是( )p 1:若复数z 满足∈R ,则z ∈R ;1zp 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;z 2p 4:若复数z ∈R ,则∈R .z A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4解析:p 1:设z=a+bi ,则==∈R ,得到b=0,所以z ∈R .故p 1正确;1z 1a +bi a–bia 2+b2p 2:若z 2=–1,满足z 2∈R ,而z=i ,不满足z 2∈R ,故p 2不正确;p 3:若z 1=1,z 2=2,则z 1z 2=2,满足z 1z 2=R ,而它们实部不相等,不是共轭复数,故p 3不正确;p 4:实数没有虚部,所以它的共轭复数是它本身,也属于实数,故p 4正确;故选B .4、记S n 为等差数列{a n }的前n 项和,若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1 B .2 C .4 D .8解析:a 4+a 5=a 1+3d+a 1+4d=24,S 6=6a 1+d=48,联立求得6×52{2a 1+7d =24①6a 1+15d =48②)①×3–②得(21–15)d=24,∴6d=24,∴d=4,∴选C .当然,我们在算的时候引用中间项更快更简单:a 4+a 5=24→a 4.5=12,S 6=48→a 3.5=8,∴d=4.5、函数f(x)在(–∞,+∞)单调递减,且为奇函数.若f(1)=–1,则满足–1≤f(x –2)≤1的x 的取值范围是( )A .[–2,2] B .[–1,1] C .[0,4] D .[1,3]解析:因为f(x)为奇函数,所以f(–1)=–f(1)=1,于是–1≤f(x –2)≤1等价于f(1)≤f(x –2)≤f(–1).又f(x)在(–∞,+∞)单调递减,∴–1≤x –2≤1,∴1≤x≤3.故选D .6、(1+)(1+x)6展开式中x 2的系数为( )1x2A .15 B .20 C .30 D .35解析:(1+)(1+x)6=1·(1+x)6+·(1+x)6.对(1+x)6的x 2项系数为C ==15,1x 21x 2266×52对·(1+x)6的x 2项系数为C =15,∴x 2的系数为15+15=30.故选C .1x2467、某多面体的三视图如图,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:由三视图可画出立体图该立体图平面内只有两个相同的梯形的面,∴S 梯=(2+4)×2÷2=6,S 全=6×2=12.故选B .8、右面程序框图是为了求出满足3n –2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .A>1000和n=n+1B .A>1000和n=n+2C .A≤1000和n=n+1D .A≤1000和n=n+2解析:因为要求A 大于1000时输出,且框图中在“否”时输出,∴“”中不能输入A>1000,排除A 、B .又要求n 为偶数,且n 初始值为0,“中n 依次加2可保证其为偶,故选D .9、已知曲线C 1:y=cosx ,C 2:y=sin(2x+),则下面结论正确的是( )2π3A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲π6线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲π12线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线12π6C 2D .把C 1上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲π12线C 2解析:C 1:y=cosx ,C 2:y=sin(2x+),首先曲线C 1、C 2统一为一三角函数名,可将C 1:y=cosx 用诱导公式处2π3理.y=cosx=cos(x+–)=sin(x+).横坐标变换需将ω=1变成ω=2,π2π2π2即y=sin(x+)→y=sin(2x+)=sin2(x+)→y=sin(2x+)=sin2(x+).π2C 1上各点横坐标缩短为它原来的一半π2π42π3π3注意ω的系数,在右平移需将ω=2提到括号外面,这时x+平移至x+,π4π3根据“左加右减”原则,“x+”到“x+”需加上,即再向左平移.π4π3π12π1210、已知F 为抛物线C :y 2=4x 的交点,过F 作两条互相垂直l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D ,E 两点,|AB|+|DE|的最小值为( ) A .16B .14 C .12 D .10解析:设AB 倾斜角为θ.作AK 1垂直准线,AK 2垂直x 轴,易知.{|AF|·cos θ+|GF|=|AK 1|(几何关系)|AK 1|=|AF||GP|=PP ,2))=P)∴|AF|·cosθ+P=|AF|.同理|AF|=,|BF|=,∴|AB|==.P 1–cos θP 1+cos θ2P 1–cos 2θ2Psin 2θ又DE 与AB 垂直,即DE 的倾斜角为+θ,|DE|==,而y 2=4x ,即P=2.π22P sin 2(\F(π,2)+θ)2Pcos 2θ∴x|AB|+|DE|=2P(+)=4==≥16,当θ=取等号,即|AB|+|DE|最小值为16,故1sin 2θ1cos 2θsin 2θ+cos 2θsin 2θcos 2θ4sin 2θcos 2θ16sin 2θπ4选A .11、设x ,y ,z 为正数,且2x =3y =5z ,则( )A .2x<3y<5zB .5z<2x<3yC .3y<5z<2xD .3y<2x<5z解析:取对数:xln2=yln3=zln5,=>,∴2x>3y .又∵xln2=zln5,则=<.∴2x<5z ,∴3y<2x<5z ,故选D .x y ln3ln232x z ln5ln25212、几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,在接下来的三项式26,21,22,依次类推,求满足如下条件的最小整数N :N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440B .330C .220 D .110解析:设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第n 组的项数为n ,则n 组的项数和为,n(1+n)2由题,N>100,令>100→n≥14且n ∈N +,即N 出现在第13组之后.第n 组的和为=2n–1.n(1+n)21–2n 1–2n 组总共的和为–n=2n –2–n .2(1–2n )1–2若要使前N 项和为2的整数幂,则N–项的和2k –1应与–2–n 互为相反数,即2k –1=2+n(k ∈N+,n≥14).n(1+n)2∴k=log 2(n+3).∴n=29,k=5.∴N=+5=440,故选A .29×(1+29)2二、填空题:本题共4小题,每小题5分,共20分.1、已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.解析:|a +2b |2=(a +2b )2=|a |2+2·|a ||2b |·cos60°+(2|b |)2=22+2×2×2×+22=4+4+4=12,∴|a +2b |==2.121232、设x ,y 满足约束条件,则z=3x–2y 的最小值为_______.{x +2y ≤12x +y ≥–1x–y≤0)解析:不等式组表示的平面区域如图.{x +2y ≤12x +y ≥–1x–y ≤0)2x +y +1=0由z=3x–2y 得y=x–,32z2求z 的最小值,即求直线y=x–的纵截距的最大值32z2当直线y=x–过图中点A 时,纵截距最大32z2由解得A 点坐标为(–1,1),此时z=3×(–1)–2×1=–5.{2x +y =–1x +2y =1)3、已知双曲线C :–=1,(a>0,b>0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条x 2a 2y 2b2渐近线交于M ,N 两点,若∠MAN=60°,则C 的离心率为_______.解析:如图,|OA|=a ,|AN|=|AM|=b .∵∠MAN=60°,∴|AP|=b ,|OP|==,32|OA|2–|PA|2a 2–34b 2∴tanθ==,又∵tanθ=,∴=,解得a 2=3b 2,∴e===. |AP||OP|32b a 2–34b 2b a 32ba 2–34b 2b a 1+b 2a 21+132334、如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O ,D 、E 、F 为元O 上的点,△DBC ,△ECA ,△FAB 分别是一BC ,CA ,AB 为底边的等腰三角形,沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.解析:由题,连接OD ,交BC 与点G ,由题,OD ⊥BC ,OG=BC ,即OG 的长度与BC 的长度或成正比.36设OG=x ,则BC=2x ,DG=5–x .∴三棱锥的高h===.3DG 2–OG 225–10x +x 2–x 225–10x 又∵S △ABC =2·3x·=3x 2,∴V=S △ABC ·h=x 2·=·,312313325–10x 325x 4–10x 3令f(x)=25x 4–10x 3,x ∈(0,),f'(x)=100x 3–50x 4.52令f'(x)>0,即x 4–2x 3<0,x<2.∴f(x)≤f(2)=80,∴V≤×=4,∴体积最大值为4cm 3.380515三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17–21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为.a 23sinA(1)求sinBsinC ;(2)若6cosBcosC=1,a=3,求△ABC 的周长.解析:本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用.(1)∵△ABC 面积S=且S=bcsinA ,∴=bcsinA .∴a 2=bcsinA .a 23sinA 12a 23sinA 1232∵由正弦定理得sin 2A=sinBsinCsin 2A ,由sinA≠0得sinBsinC=.3223(2)由(1)得sinBsinC=,cosBcosC=.∵A+B+C=π,∴cosA=cos(π–B–C)=–cos(B+C)=sinBsinC–cosBcosC=.231612又∵A ∈(0,π),∴A=60°,∴sinA=,cosA=.3212由余弦定理得a 2=b 2+c 2–bc=9 ①由正弦定理得b=·sinB ,c=·sinC ,∴bc=·sinBsinC=8②a sinA a sinA a 2sin 2A由①②得b+c=.∴a+b+c=3+,即△ABC 的周长为3+.3333332、(12分)如图,在四棱锥P–ABCD 中,AB ∥CD 中,且∠BAP=∠CDP=90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A–PB–C 的余弦值.解析:(1)证明:∵∠BAP=∠CDP=90°,∴PA ⊥AB ,PD ⊥CD .又∵AB ∥CD ,∴PD ⊥AB .又∵PD∩PA=P ,PD 、PA ⊂平面PAD .∴AB ⊥平面PAD ,又AB ⊂平面PAB .∴平面PAB ⊥平面PAD .(2)取AD 中点O ,BC 中点E ,连接PO ,OE ,∵AB ∥CD ∴四边形ABCD 为平行四边形,∴OE ∥AB .由(1)知,AB ⊥平面PAD ,∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD .∴OE ⊥PO ,OE ⊥AD .又∵PA=PD ,∴PO ⊥AD .∴PO 、OE 、AD 两两垂直∴以O 为坐标原点,建立如图所示的空间直角坐标系O–xyz .设PA=2,∴D(–,0,0)、B(,2,0)、P(0,0,)、C(–,2,0),∴PD =(–,0,–)、PB =(,2,– )、BC =(–2,0,0) 222222222设n =(x,y,z)为平面PBC 的法向量由,得.令y=1,则z=,x=0,可得平面PBC 的一个法向量n =(0,1,). {n ·PB =0n ·BC =0){x +2y–z =0–2x =0)22∵∠APD=90°,∴PD ⊥PA .又知AB ⊥平面PAD ,PD ⊂平面PAD .∴PD ⊥AB ,又PA∩AB=A ,∴PD ⊥平面PAB即PD 是平面PAB 的一个法向量,PD =(–,0,–). ∴cos<PD ,n >===–.22PD ·n |PD ||n |–22333由图知二面角A–PB–C 为钝角,所以它的余弦值为–.333、(12分)为了抽检某种零件的一条生产线的生产过程,实验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性:②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得1619.97i i x x ===∑,0.212s ==≈,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)用样本平均数为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否需对当天的生产过x μσ程进行检查,剔除(–3,+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).μσμσ附:若随机变量Z 服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ).0.997416≈0.9592,≈0.09.0.008解析:(1)由题可知尺寸落在(μ–3σ,μ+3σ)之内的概率为0.9974,落在(μ–3σ,μ+3σ)之外的概率为0.0026.P(X=0)=C (1–0.9974)0·0.997416≈0.9592,P(X≥1)=1–P(X=0)≈1–0.9592=0.0408,016由题可知X~B(16,0.0026),∴E(X)=16×0.0026=0.0416.(2)①尺寸落在(μ–3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ–3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程的方法合理.②(μ–3σ=9.97–3×0.212=9.334,μ+3σ=9.97+3×0.212=10.606,∴(μ–3σ,μ+3σ)=(9.334,10.606)∵9.22∉(9.334,10606),∴需对当天的生产过程检查,因此剔除9.22.剔除数据之后:μ==10.02.9.97×16–9.2215σ2=[(9.95–10.02)2+(10.12–10.02)2+(9.96–10.02)2+(9.96–10.02)2+(10.01–10.02)2+(9.92–10.02)2+(9.98–10.02)2+(10.04–10.02)2+(10.26–10.02)2+(9.91–10.02)2+(10.13–10.02)2+(10.02–10.02)2+(10.04–10.02)2+(10.05–10.02)2+(9.95–10.02)2]×,∴σ=≈0.09.1150.0084、(12分)已知椭圆C :+=1(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上.x 2a 2y 2b 23232(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A 、B 两点,若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.解析:(1)根据椭圆对称性,必过P 3、P 4.又P 4横坐标为1,椭圆必不过P 1,所以过P 2、P 3、P 4三点将P 2(0,1)、P 3(–1,)代入椭圆方程得,解得a 2=4,b 2=1.∴椭圆C 的方程为:+y 2=1.32x 24(2)①当斜率不存在时,设l :x=m ,A(m,y A ),B(m,–y A ),k P2A +k P2B =+=–=–1y A –1m –y A –1m 2m得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y=kx+b(b ≠1),A(x 1,y 1),B(x 2,y 2),联立,整理得(1+4k 2)x 2+8kbx+4b 2–4=0.∴x 1+x 2=,x 1x 2=.{y =kx +b x 2+4y 2–4=0)–8kb 1+4k 24b 2–41+4k 2则k P2A +k P2B =+====–1.y 1–1x 1y 2–1x 2x 2(kx 1+b)–x 2+x 1(kx 2+b)–x 1x 1x 28kb 2–8k–8kb 2+8kb1+4k 24b 2–41+4k 28k(b–1)4(b +1)(b–1)又b ≠1,∴b=–2k–1,此时△=–64k ,存在k 使得△>0成立.∴直线l 的方程为y=kx–2k–1.当x=2时,y=–1.所以l 过定点(2,–1).5、(12分)已知函数f(x)=ae 2x +(a–2)e x –x .(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a 的取值范围.解析:(1)由于f(x)=ae 2x +(a–2)e x –x ,故f'(x)=2ae 2x +(a–2)e x –1=(ae x –1)(2e x +1)①当a≤0时,ae x –1<0,2e x +1>0.从而f'(x)<0恒成立.f(x)在R 上单调递减②当a>0时,令f'(x)=0,从而x 综上,当a≤0时,f(x)在R lna,+∞)上单调递增(2)由(1)知,当a≤0时,f(x)在R 上单调减,故f(x)在R 上至多一个零点,不满足条件.当a>0时,f min =f(–lna)=1–+lna .1a令g(a)= f min =1–+lna(a>0),则g(a)在(0,+∞)上单调增,而g(1)=0.故当0<a<1时,g(a)<0.当1a a=1时g(a)=0.当a>1时若a>1,则f min =1–+lna=g(a)>0,故f(x)>0恒成立,从而f(x)无零点,不满足条件.1a 若a=1,则f min =1–+lna=0,故f(x)=0仅有一个实根x=–lna=0,不满足条件.1a 若0<a<1,则f min =1–+lna<0,注意到–lna>0.f(–1)=++1–>0.1a a e 2a e 2e故f(x)在(–1,–lna)上有一个实根,而又ln(–1)>ln =–lna .3a 1a且f(ln(–1))=e 的ln(–1)次方·(a·e 的ln(–1)次方+a–2)–ln(–1)=(–1)·(3–a+a–2)–ln(–1)=(–1)–ln(–1)>0.3a 3a 3a 3a 3a 3a 3a 3a故f(x)在(–lna,ln(–1))上有一个实根.3a又f(x)在(–∞,–lna)上单调减,在(–lna,+∞)单调增,故f(x)在R 上至多两个实根.又f(x)在(–1,–lna)及(–lna,ln(–1))上均至少有一个实数根,故f(x)在R 上恰有两个实根.3a综上,0<a<1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.1、[选修4–4:坐标系与参考方程]在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的{x =3cos θy =sin θ)参数方程为(t 为参数).{x =a +4t y =1–t)(1)若a=–1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为,求a .17解析:(1)a=–1时,直线l 的方程为x+4y–3=0.曲线C 的标准方程是+y 2=1,x 29联立方程,解得:或,则C 与l 交点坐标是(3,0)和(–,).{x +4y–3=0x 2){x =3y =0)21252425(2)直线l 一般式方程是x+4y–4–a=0.设曲线C 上点P(3cosθ,sinθ).则P 到l 距离d==,其中tan φ=.依题意得:d max =,解得a=–16或|3cos θ+4sin θ–4–a|17|5sin(θ+φ)–4–a|173417a=8.2、[选修4–5:不等式选讲]已知函数f(x)=–x 2+ax+4,g(x)=|x+1|+|x–1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a 的取值范围.解析:(1)当a=1时,f(x)=–x 2+x+4,是开口向下,对称轴x=的二次函数.g(x)=|x+1|+|x –1|=12,{2x(x >1)2(–1≤x ≤1)–2x(x <–1))当x ∈(1,+∞)时,令–x 2+x+4=2x ,解得x=.17–12g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减.∴此时f(x)≥g(x)解集为(1,].17–12当x ∈[–1,1]时,g(x)=2,f(x)≥f(–1)=2;当x ∈(–∞,–1)时,g(x)单调递减,f(x)单调递增,且g(–1)=f(–1)=2.综上所述,f(x)≥g(x)解集[–1,].17–12(2)依题意得:–x 2+ax+4≥2在[–1,1]恒成立.即x 2–ax–2≤0在[–1,1]恒成立.则只须,解出:–1≤a≤1.故a 取值范围是[–1,1].{12–a·1–2≤0(–1)2–a(–1)–2≤0)“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2017年全国各地高考数学真题试卷(含答案和解析)

!!!!! !"!已知双曲线 %+#$$ 02-$$ '!+&#的 右 顶 点 为 "以 " 为
圆心2为半径作圆"圆 " 与双曲线% 的 一 条 渐 近 线 交 于 3 1 两点!若.3"1'	则 % 的离心率为!!!!! !&!如图圆形 纸 片 的 圆 心 为 4半 径 为"4:该 纸 片上的等边三角形 "$% 的中心为4!&0 . 为圆4 上 的 点/&$%/0%"/."$ 分 别是以$%%""$ 为底 边 的 等 腰 三 角 形!沿 虚线剪开后分别以 $%%""$ 为 折 痕 折 起
复
数
(
满
足
! (
(#则
(('
'$&若复数( 满足($(#则(('
'(&若 复 数(!#($ 满 足(!($(#则(!'($'
'- &若 复 数((#则((! 其 中 的 真 命 题 为 $! ! %
)%'!#'(! !
*%'! #'-
+%'$#'(! !
,%'$ #'-
-!记 )* 为 等 差 数 列 !+*"的 前 * 项 和 !若 +- /+" '$-#)& '-.#则
出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!已知集合 "'!#"##!"#$'!#"(# #!"#则$!!%
2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)

绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。
考试用时 120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2 C.A≤1 000和n=n+1 D.A≤1 000和n=n+29.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.1011.设xyz为正数,且235x y z==,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.几位大学生响应国家的创业号召,开发了一款应用软件。
为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。
求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂。
那么该款软件的激活码是A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= .14.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为 .15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。
若∠MAN=60°,则C的离心率为________。
16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O。
D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。
沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。
当△ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得x =,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.21.(12分)已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l a .23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试理科数学参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. A 2.B 3.B4.C5.D6.C7.B8.D 9.D 10.A 11.D 12.A二、填空题:本题共4小题,每小题5分,共20分。
13.14.-515.3163三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题意可得21sin 23sin ABCa S bc A A∆==, 化简可得2223sin a bc A =,根据正弦定理化简可得:2222sin 3sin sinCsin sin sinC 3A B A B =⇒=。
(2)由()2sin sinC 123cos cos sin sinC cos cos 123cos cos 6B A A B B B C A B C π⎧=⎪⎪⇒=-+=-=⇒=⎨⎪=⎪⎩, 因此可得3B C π=-,将之代入2sin sinC3B=中可得:231sin sin sin cos sin032C C C C Cπ⎛⎫-=-=⎪⎝⎭,化简可得3tan,366C C Bππ=⇒==,利用正弦定理可得1sin3sin23ab BA==⨯=,同理可得3c=,故而三角形的周长为323+。
18.(12分)如图,在四棱锥P-ABCD中,AB//CD,且90BAP CDP∠=∠=.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90APD∠=,求二面角A-PB-C的余弦值.(1)证明://,AB CD CD PD AB PD⊥∴⊥,又,AB PA PA PD P∴⊥⋂=,PA、PD都在平面PAD内,故而可得AB PAD⊥。
又AB在平面PAB内,故而平面PAB⊥平面PAD。
(2)解:不妨设2PA PD AB CD a====,以AD中点O为原点,OA为x轴,OP为z轴建立平面直角坐标系。