273位似练习题及答案
《位似》习题

《位似》习题一、选择题(每小题5分,共25分)1.下列每组的两个图形不是位似图形的是()A.B.C.D.2.如图所示的两个三角形是位似图形,它们的位似中心是( )A.点O B.点P C.点M D.点N第2题图第3题图3.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A 的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(0,2) C.(2,2) D.(2,2)4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A.①②B.①④C.②③D .③④二、填空题(每小题5分,共25分)6.下列四幅图中的两个图形属于位似图形的是__________.(将序号填入横线上)B DCAEB①②③④7.如图所示,DC∥AB,OA=2OC,则OCD△与OAB△的位似比是__________.8.如图所示,△ABC与△A′B′C′是位似图形,且位似比是1:2,若AB=2cm,则A′B ′=_________cm.第7题图第8题图第10题图9.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是__________.10.如图,将△DE F缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP、FP,取它们的中点B、C,得到△ABC,则下列说法正确的有________ __个.①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1:2;④△ABC与△DEF的面积比是1:2.三、解答题(共50分)11.(10分)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出位似中心.12.(10分)如图,在方格纸上,与是关于点O为位似中心的位似图形,他ABC∆111CBA∆们的顶点都在格点上.(1)画出位似中心O;(2)求出与的位似比;ABC∆111CBA∆CABD E(2)(1)O(4)(5)(3)以O 点为位似中心,再画一个使它与的位似比等于3222C B A∆13.(10分)如图,△ABC 在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的位似图形;A B C '''△(3)计算的面积S .A B C '''△14.(10分)如图,已知矩形ABCD 与矩形AB C D '''是位似图形,A 为位似中心,已知矩形ABCD 的周长为24,4,2BB DD ''==.求AB 与AD 的长.15.(10分)如图,在平面直角坐标系中,△AOB 的顶点坐标分别为A (2,1)、O (0,0)、B (1,-2).(1)P (a ,b )是△AOB 的边AB 上一点,△AOB 经平移后点P 的对应点为P 1(a -3,b +1),请画出上述平移后的△A 1O 1B 1,并写出点A 1的坐标;DB 'C 'D(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.参考答案1.B【解析】根据位似图形的概念对各选项逐一判断,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形;据此可得A、C、D三个图形中的两个图形都是位似图形;而B的对应顶点的连线不能相交于一点,故不是位似图形.故选B.2.B.【解析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,故选B.3.C【解析】由题意可得OA:OD=1:2,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选C.4.D.【解析】∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.5.C【解析】如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误.故选C.6.①②③【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,①②③三个图形中的两个图形都是位似图形;④中的两个图形是相似三角形,但不符合概念,故不是位似图形.故填①②③.7.1︰2【解析】先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OC D与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.8.4.【解析】根据△ABC与△A′B′C′是位似图形,可知△ABC∽△A′B′C′,利用位似比是1:2,即可求得A′B′=4cm.解:∵△ABC与△A′B′C′是位似图形∴△ABC ∽△A ′B ′C ′∵位似比是1:2∴AB :A ′B ′=1:2∵AB =2cm ∴A ′B ′=4cm .9.(﹣2,1)或(2,﹣1)【解析】根据题意得:则点E 的对应点E ′的坐标是(﹣2,1)或(2,﹣1).10.3【解析】位似图形同时也是相似图形,位似比等于其相似比,等于其对应边的比,对应周长的比,面积比等于位似比的平方.解:由于△ABC 是由△DEF 缩小一半得到,所以△ABC 与△DEF 是位似图形,①正确;位似图形也是相似图形,②正确;将△DEF 缩小为原来的一半,得到△ABC ,所以△ABC 与△DEF 的位似比为1:2,所以其周长比也为1:2,③正确;所以其面积比为1:4,④错误.题中共有3个结论正确.11.答案见解析【解析】根据位似图形的定义及位似中心分析各图,即可得出答案.解:图(1)(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点P ,图(2)中的点A ,图(4)中的点O .12. 答案见解析【解析】(1)如下图所示;(2)与的位似比是2;ABC ∆111C B A ∆(3)如下图所示.e 【解析】(1)根据A (2,3),C (6,2),找出原点,求出点B 的坐标即可;(2)根据位似比为2,得出三角形各顶点坐标即可得出答案;(3)利用所画图形得出三角形的底与高求出即可.解:(1)B 点:(2,1)(2)(3)的面积S =16A B C '''△14. 答案见解析【解析】解:∵矩形ABCD 的周长为24∴12AB AD +=设,12AB x AD x==-则 ∴4,14AB AB BB x AD AD DD x ''''=+=+=+=- ∵矩形ABCD 与矩形AB C D '''是位似图形 ∴AB ADAB AD ='' 即12414x x x x-=+- 解得8x =∴8,4AB AD ==15.(1)作图见解析,A 1(﹣1,2);(2)作图见解析,A 2(4,2),P 2 (2a ,2b );(3)是,Q (﹣6,2).【解析】(1)如图所示,画出平移后的△A1O1B1,找出A1的坐标即可;(2)如图所示,画出位似图形△A2OB2,求出A2、P2的坐标即可;(3)根据题意得到△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形,找出Q坐标即可.解:(1)如图所示,A1(﹣1,2);(2)如图所示,A2(4,2),P2 (2a,2b);(3)如图所示,△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形.此时Q(﹣6,2).。
2017-2018人教版数学九年级下册 第二十七章 相似 27.3 位似 同步训练 含答案

2017-2018人教版数学九年级下册 第二十七章 相似 27.3 位似 同步训练1.下列说法中正确的是( ) A .全等图形一定是位似图形 B .相似图形一定是位似图形 C .位似图形一定是全等图形D .位似图形是具有某种特殊位置的相似图形2.如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,O 为位似中心,OD =12OD ′,则A ′B ′∶AB =( )A .2∶3B .3∶2C .1∶2D .2∶13.如图,以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,已知OB =3OB′,则△A′B′C′与△ABC 的面积比为( )A .1∶3B .1∶4C .1∶5D .1∶94. △ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的相似比是1∶2,已知△ABC 的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.如图,已知△OAB与△OA′B′是相似比为1∶2的位似图形,点O为位似中心,若△OAB内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标为( )A.(-x,-y) B.(-2x,-2y)C.(-2x,2y) D.(2x,-2y)6. 如图,在直角坐标系中有两点A(6,3),B(6,0).以原点O为位似中心,把线段AB按相似比1∶3缩小后得到线段CD,点C在第一象限,则点C的坐标为_________.7. 如图,在平面直角坐标系中,矩形OABC的顶点坐标分别为O(0,0),A(2,0),B(2,1),C(0,1),以坐标原点O为位似中心,将矩形OABC放大为原图形的2倍,记所得矩形为OA1B1C1,B的对应点为B1,且B1在OB的延长线上,则B1的坐标为____________.8. △OAB三个顶点的坐标分别为O(0,0),A(4,6),B(3,0),以O为位似中心,将△OAB缩小为原来的,得到△OA′B′,则点A的对应点A′的坐标为_____________________.9. 如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=_______.10. 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE 与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.11. 如图,在平面直角坐标系中,以点A为位似中心,把正方形ABCD缩小为原来的一半,得正方形A′B′C′D′,画出图形并写出B′,C′,D′的坐标.12. 已知△ABC的三个顶点坐标如下表:(1)将下表补充完整,并在平面直角坐标系中画出△A′B′C′;(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.答案: 1---5 DDDDB 6. (2,1) 7. (4,2)8. (-2,-3)或(2,3) 9. 4.510. 解:(1)AC ∥A ′C ′.理由如下:∵△ABC 与△A ′B ′C ′是位似图形,∴△ABC ∽△A ′B ′C ′, ∴∠A =∠C ′A ′B ′,∴AC ∥A ′C ′(2)∵△ABC ∽△A ′B ′C ′,∴AB A ′B ′=ACA ′C ′.∵AB =2A ′B ′,∴AC A ′C ′=21.又∵△ABC 与△A ′B ′C ′是位似图形,∴OC O ′C ′=AC A ′C ′=21. ∵OC ′=5,∴OC =10,∴CC ′=OC -OC ′=10-5=5 11. 解:图略,有两种情况:①B′(2,0), C′(2,1),D′(1,1); ②B′(0,0),C′(0,-1),D′(1,-1) 12. (1) (8,6)(10,2)图略(2) (2)答案不唯一,如△ABC ∽△A′B′C, 周长比为1∶2等。
2022-2023学年人教版九年级数学下册《27-3位似》同步题型分类练习题(附答案)

2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。
2019人教版九年级下册数学27.3 位似专题练习(含答案)

2019人教版九年级下册数学27.3位似专题练习(含答案)1.如图所示的四组图形中是位似图形的组数为()A.1B.2C.3D.42.如图.平行四边形ABCD中,点E、F分别是边AB、CD的中点,点O是AF、DE的交点,点P是BF、CE的交点,则除△FOD外,与△AOE位似的是_________.(写出一个即可)3.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3B.3:2C.4:5D.4:94.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA′:A′A=2:1.四边形A′B′C′D′的面积为12cm²,则四边形ABCD的面积为()A.24cm²B.27cm²C.36cm²D.54cm²5.如图27-3-5,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点D是位似中心,若AB=2,则DE=_______.6.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3)如图(1)画出△ABC关于x轴对称的△A₁B₁C₁;(2)以M点为位似中心,在网格中画出△A₁B₁C₁的位似图形△A₂B₂C₂,使△A₂B₂C₂与△A₁B₁C₁的相似比为2:1.7.在平面直角坐标系中,△ABC 的顶点A(2,3).若以原点O 为位似中心,画三角形ABC 的位似图形△A′B′C′,使△ABC 与△A′B′C′的相似比为32,则A′的坐标为()A.(3,29)B.(34,6)C.⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛29-3-293,或,D.⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛6,346,34或8.(2018辽宁沈阳皇姑期末)如图,线段AB 端点B 的坐标为(8,2)以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD,则端点D 的坐标为_________.9.(2018安徽芜湖繁昌一模)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的顶点坐标分别是A(-2,2),B(-3,1),C(-1,0).(1)将△ABC 绕点O 逆时针旋转90º得到△DEF,画出△DEF;(2)以O 为位似中心,将△ABC 放大为原来的2倍,在网格内画出放大后的△A ₁B ₁C ₁,若P(x,y)为△ABC 中的任意一点,这次变换后的对应点P 1的坐标为(____,____).10.已知△ABC 和△A′B′C′是位似图形,△A′B′C′的面积为6cm²,周长是△ABC 的一半,AB =8cm,则AB 边上的高等于()A.3cm B.6cm C.9cm D.12cm11.如图,在5×6的网格中,每个小正方形边长均为1,△ABC 的顶点均为格点,D 为AB 中点,以点D 为位似中心,相似比为2,将△ABC 放大,得到△A′B′C′,则BB’的长为()A.25B.5C.253D.25325或12.如图.△OAB 与△OCD 是以点O 为位似中心的位似图形,点B 在OD 上,AE、CB 分别是△OAB、△OCD 的中线,则图中的位似三角形共有_______对.13.如图.四边形ABCD 是正方形,原点O 是四边形ABCD 和A′B,C′D′的位似中心,点B、C 的坐标分别为(-8,2),(-4,0),点B′是点B 的对应点,且点B′的横坐标为-1,则四边形A′B′C′D′的周长为_________.14.(2018河南南阳镇平一模.2.★☆☆)如图,在平面直角坐标系中,有两点A(6,3),B(6,O),以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到CD,则C 的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)15.如图,已知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF.下列结论:①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 是相似图形;③△ABC 与△DEF 的周长比为1:2:④△ABC 与△DEF 的面积比为4:1.其中结论正确的个数是()A.1B.2C.3D.416.(2018山东济南历城一模.14,★☆☆)如图,将△AOB 以O 为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB 与△COD 的相似比为_______.17.△ABC 三个顶点的坐标分别为A(2,2),B(4,2),C(6,6),在平面直角坐标系中作△DEF,使△DEF 与△ABC 位似,且以原点O 为位似中心,位似比为1:2,则△DEF 的面积为____.18.(2018安徽一模.18.★★☆)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC 关于点B 成中心对称的图形A.BC 1;(2)以原点O 为位似中心,相似比为1:2,在y 轴的左侧,画出△ABC 放大后的图形△A ₂B ₂C ₂,并直接写出C ₂点的坐标.19.(2018湖南邵阳中考,8,★☆☆)如图所示,在平面直角坐标系中,已知点A(2,4)过点A 作AB⊥x 轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的21,得到△COD.则CD 的长度是()A.2B.1C.4D.2520.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O 为位似中心,相似比为31,把△ABO 缩小,则点A 的对应点A′的坐标是()A.(-1,2)B.(-9,18)C.(-9,18)或(9,-18)D.(-1,2)或(1,-2)21.(2018青海中考,7,★☆☆)如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O,且34 EA OE ,则BCFG=________.22.如图,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的21,可以得到△A′B′O,已知点B′的坐标是(3,0)则点A′的坐标是_________.23.(2018安徽中考.17..★★☆)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B 均为网格线的交点.(1)在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段A ₁B ₁(点A,B 的对应点分别为A ₁,B ₁),画出线段A ₁B ₁;(2)将线段A ₁B ₁绕点B ₁逆时针旋转90º得到线段A ₂B ₁,画出线段A ₂B ₁;(3)以A,A ₁,B ₁,A ₂为顶点的四边形AA ₁B₁A ₂的面积是______个平方单位.24.如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A(-1,2)、B(2,1)、C(4,5).(1)画出△ABC 关于x 轴对称的△A ₁B ₁C ₁;(2)以原点O 为位似中心,在x 轴的上方画出△A ₂B ₂C ₂,使△A ₂B ₂C ₂与△ABC 位似,且位似比为2,并求出△A ₂B ₂C ₂的面积.25.如图,△ABC 中,三个顶点的坐标分别是A(-2,2),B(-4,1),C(-1,-1).以点C 为位似中心,在x 轴下方作△ABC 的位似图形△A′B′C′,并把△ABC 的边长放大为原来的2倍,那么点A′的坐标为()A.(3,-7)B.(1,-7)C.(4,-4)D.(1,-4)26.如图,△OAB 的两个顶点A、B 在反比例函数y=x4的图象上,以点O 为位似中心,把△OAB 的边长缩小为原来的21,得到△OA′B′,若反比例函数xky =经过点A′,则k 的值为________.27.3位似答案1.C 如图,根据位似图形的定义可知第1、2、4组图形是位似图形,而第3组图形对应点的连线不能交于一点,不是位似图形,故位似图形有3组,故选C.2.答案△AFB(答案不唯一)解析如图,以O 为位似中心的位似三角形是△FOD,以点A 为位似中心的位似三角形是△AFB,以平行四边形ABCD 的中心为位似中心的位似三角形是△CPF,以DE 与AC 交点为位似中心的位似三角形是△CED,所以,除△FOD 外,与△AOE 位似的是△AFB、△CPF 或△CED.3.A 由位似变换的性质可知.A′B′∥AB,A′C′∥AC,∴△A′B′C′~△ABC.∵△A′B′C′与△ABC 的面积比为4:9,∴△A′B′C′与△ABC 的相似比为2:3,32′=OB OB .故选A.4.B.∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,OA′:A′A=2:1,∴0A′:OA=2:3,∴四边形ABCD 与四边形A′B′C′D′的面积比为9:4,∵四边形A′B′C′D′的面积为12cm²,∴四边形ABCD 的面积为27cm².故选B.5.答案6解析.∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB:DE=OA:OD.即2:DE=1:3.∴DE=6.6.解析(1)如图所示.(2)如图所示.7.C.∵△ABC 与△A′B′C′的相似比为32,∴△A′B′C′与△ABC 的相似比为23,∵位似中心为原点O,∴A′(23×2,23×3)或A′(-23×2,23×3),即A′(3,29)或A′(-3,-29).故选C.8.答案(4,1)解析点D 的坐标为(8×21,2×21),即D(4,1).9.解析(1)如图所示(2)-2x;-2y.10.B 由题意知,△ABC~△A′B′C′,∵△A′B′C′的周长是△ABC 的一半,∴位似比为2,∴S △ABC =4S △A′B′C′=24cm²,∴AB 边上的高等于6cm.故选B.11.D 如图,∵AC=1,BC=2,∴AB=5,∵△ABC~△A′B′C′,相似比为2,∴21′′ B A AB ,∴A′B′=25,∴BB′=21(A′B′-AB)=25,同理BB"=A"B"-A"B=253,故选D.12.答案3解析∵△OAB 与△OCD 是以点O 为位似中心的位似图形,∴AB∥CD,BDOBAC OA .∵CB 是△OCD 的中线,∴OB=BD,∴OA=AC.又∵AE 是△OAB 的中线,∴AE 是△OBC 的中位线,∴AE∥BC.∵AB∥CD,∴△OAB~△OCD.∵AE∥BC,∴△OAE~△OCB.∴AE∥BC,AB∥CD,∴∠AEB=∠CBD,∠ABE=∠CDB.∴△AEB~△CBD.由题图看出,上述相似图形对应顶点的连线都相交于点O,即它们都是位似图形.13.答案5解析B、C 的坐标分别为(-8,2),(-4,0),则BC=25,则周长是85.根据点B′是点B 的对应点,且点B′的横坐标为-1.所以两个四边形的相似比是8:1,则四边形A′B′C′D′的周长为5.14.A 根据题意可知,C 点横坐标为31×6=2,纵坐标为31×3=1.所以C 的坐标为(2,1),故选A.15.C 根据位似图形的性质得出△ABC 与△DEF 是位似图形,故①②正确;∵将△ABC 的三边缩小为原来的21,∴△ABC 与△DEF 的周长比为2:1,故③错误;根据面积比等于相似比的平方,得△ABC 与△DEF 的面积比为4:1,故④正确.故选C.16.答案3:4解析∵△AOB 与△COD 关于点O 成位似图形,∴△AOB~△COD.∴△AOB 与△COD 的相似比为OB:OD=3:4.17.答案1解析如图所示,△ABC 的面积为21×2×4=4,∵△DEF 与△ABC 位似,且以原点O 为位似中心,位似比为1:2,∴△DEF 与△ABC 的面积比为1:4,则△DEF 的面积为1.18.解析(1)根据题意画出图形,如图所示.(2)△A ₂B ₂C ₂如图所示,C ₂(-6,4).19.A ∵点A(2,4),AB⊥x 轴于点B,∴AB=4.∵△COD 与△AOB 关于原点位似,且位似比为21,∴CD∥AB,∴CD=21AB=2,故选A.20.D分情况讨论:①若点A 与其对应点A′在O 的同侧,则点A′的坐标为(-3×31,6×31),即A′(-1,2);②若点A 与其对应点A′在O 的两侧,则点A′的坐标为(-3×(-31),6×(-31)),即A′(1,-2).故选D.21.答案74解析.∵34=EA OE ,∴74=OA OE ,∵四边形ABCD 与四边形EFCH 位似,位似中心为0,∴△OEF~△OAB,△OFG~△OBC,∴74==OA OE OB OE ,∴74==OB OF BC FG .22.答案(1,2)解析根据位似变换的性质及已知可得,点A′的坐标为(1,2).23.解析(1)如图所示,线段A ₁B ₁即为所求.(2)如图所示,线段A ₂B ₁即为所求.(3)20.24.解析(1)如图所示,△A ₁B ₁C₁即为所求.(2)如图所示,△A ₂B ₂C ₂即为所求.分别过点A ₂、C₂作y 轴的平行线,过点B₂作x 轴的平行线,交点分别为E 、F ,∵A(-1,2),B(2,1),C(4,5),△A ₂B ₂C ₂与△ABC 位似,且位似比为2,∴A ₂(-2,4),B ₂(4,2),C ₂(8,10),∴A ₂E=2,B ₂E=6,B ₂F=4,C ₂F=8,∴S△A ₂B₂C₂=8×10-21×6×2-21×4×8-21×6×10=28.25.B 以点C 为坐标原点建立新平面直角坐标系(图略),则点A 的新坐标为(-1,3),即原横纵坐标都加1.在新坐标系中,△ABC 与△A′B′C′关于原点C 位似,且位似比为-2,所以此时A′的坐标为(2,-6),将(2,-6)横纵坐标都减去1得(1,-7),即A′(1,-7).故选B.26.答案1解析因为点A 在反比例函数y=x 4的图象上,所以设A 的坐标为(x,x4).因为△OAB 与△OA′B′是以点O 为位似中心,位似比为21的位似图形,所以点A’的坐标为(x x 2,2)或(xx 2-,2-),所以k=12-2-22=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛=⨯x x x x .。
人教版九年级数学下 27.3 位似练习(含解析)

27.3 位似一、选择题1.下列说法:①有一个锐角相等的两个直角三角形相似;①顶角相等的两个等腰三角形相似;①任意两个菱形一定相似;①位似图形一定是相似图形;其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①中两个角对应相等||,为相似三角形||,①对;①顶点相等且为等腰三角形||,即底角也相等||,是相似三角形||,①对;①菱形的角不确定||,所以不一定相似||,①错;①如果两个图形是位似图形||,那么这两个图形必是相似图形||,但是相似的两个图形不一定是位似图形||,题中所述正确||,①对;所以①①①正确||,故选C.2.如图||,△①′①′①′是△①①①以点O为位似中心经过位似变换得到的||,若△①′①′①′的面积与△①①①的面积比是4:9||,则①①′:OB为( )A. 2:3B. 3:2C. 4:5D. 4:9【答案】A【解析】解:由位似变换的性质可知||,①′①′//①①||,①′①′//①①||,∴△①′①′①′∽△①①①.与△①①①的面积的比4:9||,与△①①①的相似比为2:3||,∴①①′①①=23故选:A.第1页/共10页3.如图||,线段AB两个端点的坐标分别为①(4||,4)||,①(6||,2)||,以原点O为位似中心||,在第一象限内将线段AB缩小为原来的1后得到线段CD||,则端点C和D的2坐标分别为( )A. (2||,2)||,(3||,2)B. (2||,4)||,(3||,1)C.(2||,2)||,(3||,1)D. (3||,1)||,(2||,2)【答案】C【解析】解:∵线段AB两个端点的坐标分别为①(4||,4)||,①(6||,2)||,以原点O为位似中心||,在第一象限内将线段AB缩小为原来的1后得到线段CD||,2∴端点的坐标为:(2||,2)||,(3||,1).故选:C.4.如图||,△①①①中||,A、B两个顶点在x轴的上方||,点C的坐标是(1||,0)||,以点C位似中心||,在x轴的下方作△①①①的位似图形△①′①′①||,并把△①①①的边长放大到原来的2倍||,设点B的横坐标是a||,则点B的对应点①′的横坐标是( )A.−2①B.B. 2①−2C.C. 3−2①D.D. 2①−3【答案】C【解析】解:设点①′的横坐标为x||,则B、C间的横坐标的长度为①−1||,①′、C间的横坐标的长度为−①+1||,∵△①①①放大到原来的2倍得到△①′①′①||,∴2(①−1)=−①+1||,解得:①=−2①+3||,故选:C5.如图||,矩形EFGO的两边在坐标轴上||,点O为平面直角坐标系的原点||,以y轴上的某一点为位似中心||,作位似图形ABCD||,且点①||,①的坐标分别为(−4||,4)||,(2||,1)||,则位似中心的坐标为( )A.(0||,3)B.B. (0||,2.5)C.C. (0||,2)D.D. (0||,1.5)【答案】C【解析】解:如图||,连接BF交y轴于P||,∵四边形ABCD和四边形EFGO是矩形||,点①||,①的坐标分别为(−4||,4)||,(2||,1)||,∴点C的坐标为(0||,4)||,点G的坐标为(0||,1)||,∴①①=3||,∵①①//①①||,∴①①①①=①①①①=12||,∴①①=1||,①①=2||,∴点P的坐标为(0||,2)||,故选:C.第3页/共10页6.如图||,在平面直角坐标系xOy中||,点A的坐标为(−1||,2)||,①①⊥①轴于点①.以原点O为位似中心||,将△①①①放大为原来的2倍||,得到△①①①1||,且点①11的坐标为( )在第二象限||,则点①1A.(−2||,4)||,1)B.B. (−12C.C. (2||,−4)D.D. (2||,4)【答案】A【解析】解:∵点A的坐标为(−1||,2)||,以原点O为位似中心||,将△①①①放大为原来的2倍||,得到△①①①1||,且点①1在第二象限||,1∴点①1的坐标为(−2||,4).故选:A.7.如图||,△①①①与△①′①′①是位似图形||,其中①①//①′①′||,那么①′①′的长y与AB的长x之间函数关系的图象大致是( )A.B.C.D.【答案】C【解析】解:∵①①//①′①′||,∴△①①①∽△①①′①′||,∴①①①′①′=3612||,即①①=3∴①=13①(①>0)||,是正比例函数||,图象为不包括原点的射线.故选:C.8.在平面直角坐标系中||,点①(6||,3)||,以原点O为位似中心||,在第一象限内把线段OA缩小为原来的13得到线段OC||,则点C的坐标为( )A. (2||,1)B. (2||,0)C. (3||,3)D. (3||,1)【答案】A【解析】解:以原点O为位似中心||,在第一象限内将其缩小为原来的13||,则点A的对应点C的坐标为(6×13||,3×13)||,即(2||,1)||,故选:A.9.如图||,正方形OABC与正方形ODEF是位似图形||,O为位似中心||,相似比为1:2||,点A的坐标为(1||,0)||,则E点的坐标为( )A. (2||,0)B. (1||,1)C. (√2||,√2)第5页/共10页D. (2||,2)【答案】D【解析】解:∵四边形OABC是正方形||,点A的坐标为(1||,0)||,∴点B的坐标为(1||,1)||,∵正方形OABC与正方形ODEF是位似图形||,O为位似中心||,相似比为1:2||,∴①点的坐标为(2||,2)||,故选:D.10.小华同学自制了一个简易的幻灯机||,其工作情况如图所示||,幻灯片与屏幕平行||,光源到幻灯片的距离是30cm||,幻灯片到屏幕的距离是1.5①||,幻灯片上小树的高度是10cm||,则屏幕上小树的高度是( )A. 50cmB. 500cmC. 60cmD. 600cm【答案】C【解析】解:1.5①=150①①||,150+30=180①①.设屏幕上小树的高度是x米.则10:①=1:6;∴①=60①①.故选C.二、填空题11.已知在平面直角坐标系中||,点①(−3||,−1)、①(−2||,−4)、①(−6||,−5)||,以原点为位似中心将△①①①缩小||,位似比为1:2||,则点B的对应点的坐标为______ .【答案】(1||,2)或(−1||,−2)【解析】解:∵点B的坐标为(−2||,−4)||,以原点为位似中心将△①①①缩小||,位似比为1:2||,∴点B的对应点的坐标为(1||,2)或(−1||,−2)||,故答案为:(1||,2)或(−1||,−2).12.如图||,△①①①三个顶点的坐标分别为①(2||,4)||,①(6||,0)||,①(0||,0)||,以原点O为位似中心||,把这个三角形缩小为原来的12||,可以得到△①′①′①||,已知点①′的坐标是(3||,0)||,则点①′的坐标是______.【答案】(1||,2)【解析】解:∵点A的坐标为(2||,4)||,以原点O为位似中心||,把这个三角形缩小为原来的12||,∴点①′的坐标是(2×12||,4×12)||,即(1||,2)||,故答案为:(1||,2).13.如图||,在直角坐标系中||,每个小方格的边长均为1||,△①①①与△①′①①′是以原点O为位似中心的位似图形||,且相似比为3:2||,点①||,①都在格点上||,则点①′的坐标是______.【答案】(−2||,43)【解析】解:由题意得:△①′①①′与△①①①的相似比为2:3||,又∵①(3||,−2)∴①′的坐标是[3×(−23)||,−2×(−23)]||,即①′的坐标是(−2||,43);故答案为:(−2||,43).14.已知△①①①是正三角形||,正方形EFPN的顶点E、F在边AB上||,顶点N在边AC上.15.(1)如图||,在正三角形ABC及其内部||,以点A为位似中心||,画出正方形EFPN的位似正方形①′①′①′①′||,且第7页/共10页使正方形①′①′①′①′的面积最大(不写画法||,但要保留画图痕迹);16.(2)若正三角形ABC的边长为3+2√3||,则(1)中画出的正方形①′①′①′①′的边长为______.【答案】3【解析】解:(1)如图①||,正方形①′①′①′①′即为所求.(2)设正方形①′①′①′①′的边长为x||,∵△①①①为正三角形||,∴①①′=①①′=√33①.∵①′①′+①①′+①①′=①①||,∴①+√33①+√33①=3+2√3||,∴解得:①=3||,故答案为:3.17.将一个三角形经过放大后得到另一个三角形||,如果所得三角形在原三角形的外部||,这两个三角形各对应边平行且距离都相等||,那么我们把这样的两个三角形叫做“等距三角形”||,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”||,它们的“等距”是1||,那么它们周长的差是______.【答案】6√3【解析】解:设等边三角形△①①①和△①①①的边长分别为a、b||,点O为位似中心||,作①①⊥①①交EF于G||,如图||,根据题意||,△①①①与△①①①的位似图形||,点O、E、B共线||,在①①△①①①中||,①①①①=30∘||,①①=12①||,∴①①=√3=√36①||,同理得到①①=√36①||,而①①−①①=1||,∴√36①−√36①=1||,∴①−①=2√3||,∴3(①−①)=6√3.故答案为6√3.三、解答题18.如图||,在平面直角坐标系中||,△①①①的三个顶点坐标分别为①(−2||,1)、①(−3||,2)、①(−1||,4).19.(1)以原点O为位似中心||,在第二象限内画出将△①①①放大为原来的2倍后的△①1①1①1.20.(2)画出△①①①绕C点逆时针旋转90∘后得到的△①2①2C.【答案】解:(1)如图||,△①1①1①1为所作;(2)如图||,△①2①2①为所作;21.在12×12的正方形网格中||,△①①①的顶点坐标为①(1||,1)、①(2||,3)、①(4||,2)22.(1)以原点(0||,0)为位似中心||,相似比2:1在位似中心的同侧将△①①①放大为△①①′①′||,放大后点A、B的对应点分别为①′、①′.画出△①①′①′||,并写出点①′、①′的坐标;23.(2)在(1)中||,若①(①||,①)为线段AB上任一点||,写出变化后点C的对应点①′的坐标______ .【答案】(3①−2||,3①−2)【解析】解:(1)如图所示:||,△①①′①′即为所求||,①′(4||,7)||,①′(10||,4);第9页/共10页(2)变化后点C的对应点①′的坐标为:①′(3①−2||,3①−2).故答案为:(3①−2||,3①−2).。
人教版九年级数学下册27.3 位似 同步练习附答案【选新】

练习 位 似一、自主学习1.位似图形上某一对对应顶点到位中心的距离分别为5 cm 和15 cm ,则它们的相似比为_________2.如图27-33,蜡烛与成像板之间的距离为3m ,小孔纸板距蜡烛1m ,若蜡烛AB 长20cm ,则所成的像长为_________cm.图27-333.四边形ABCD 和四边形A 'B 'C 'D '是位似图形,O 为位似中心,若OA ∶OA ',=1∶2,那么AB ∶A 'B '=________,S 四边形ABCD ∶S 四边形A 'B 'C 'D '=________. 二、基础巩固4.如图27-34所示,点O 是等边△PQR 的中心,P ,Q ',R '分别是OP 、OQ 、OR 的中点,则△P 'Q 'R '与△PQR 是________,点O 是_____,相似比是________.图27-34 图27-355.如图27-35所示,矩形AOBC 与DOEF 是位似图形,且O 为位似中心,相似比为1∶2,若A(0,1)、B(2,0),则F 点的坐标为________.6.下列两个图形不是位似图形的是( )7.把△ABC 三点坐标A(0,1)、B(2,0)、C(3,2)分别乘以3得△A 'B 'C ',的坐标A ',(0,3)、B '(6,0)、C(9,6),那么△ABC 与△A 'B 'C '是______图形,位似中心是_______,相似比为________8.把△ABC 三点坐标A(0,1)、B(2,0)、C(3,2)分别乘以-3,得△A 'B 'C ',的坐标A '(0,-3)、B (-6,0)、C '(-9,-6),那么△ABC 与△A 'B 'C '是_____图形,位似中心是_____,相似比为_____.9.如图27-36所示,按如下方法将△ABC 的三边缩小为原来的21,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,则下列说法: (1)△ABC 与△DEF 是位似形. (2)△ABC ∽△DEF.(3)△ABC 与△DEF 周长的比为2∶1(4)△ABC 与△DEF 面积的比为4∶1.其中正确的个数是( )图27-36A.1B.2C.3D.410.图27-36中,△ABC 与△DEF 是位似图形.那么,DE 与AB 平行吗?为什么?EF 与BC 呢?DF 与AC 呢?11.如图27-37所示,O 为四边形ABCD 上一点,以O 为位似中心,将四边形ABCD 放大为原来的2倍.12.如图27-38所示,O 为位似中心,将△ABC 缩小为原来的32(要求对应顶点在位似中心的同旁). 13.如图27-39所示,O 为位似中心,将△ABC 放大为原来的2倍(要求对应顶点在位似中心的两旁).图27-37 图27-38 图27-39三、能力提高14.有一个正六边形,将其按比例缩小,使得缩小后的正六边形的面积为原正六边形面积的31,已知原正六边形一边为3,则后来正六边形的边长为( )A.9B.3C.3D.332 15.在任意一个三角形内部,画一个小三角形,使其各边与原三角形各边平行,则它们的位似中心是( )A.一定点B.原三角形三边垂直平分线的交点C.原三角形角平分线的交点D.位置不定的一点 16.下列说法正确的个数是( )①位似图形一定是相似图形; ②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的且相似比相等.A.1个B.2个C.3个D.4个17.若两个图形位似,则下列叙述不正确的是( )A.每对对应点所在的直线相交于同一点;B.两个图形上的对应线段之比等于相似比C.两个图形上对应线段必平行D.两个图形的面积比等于相似比的平方18.如图27-40所示,在直角坐标系中,A(1,2),B(2,4),C(4,5),D(3,1)围成四边形ABCD.作出四边形ABCD的位似图形,使得新图形与原图形对应线段的比为2∶1,位似中心是坐标原点.图27-4019.(1)如图27-41所示,作山四边形ABCD的位似图形A'B'C'D',使四边形ABCD与四边形A'B'C'D'的相似比为2∶1;(2)若已知AB=2cm,BC=3cm,∠A=60°,AB⊥BC,CD⊥DA,求四边形A'B'C'D'的面积.图27-4120.正方形ABCD各顶点的坐标分别为A(1,1),B(-1,1),C(-1,2),D(1,2),以坐标原点为位似中心,将正方形ABCD放大,使放大后的正方形A'B'C'D'的边是正方形边的3倍。
273位似图形的概念及画法课文练习新人教版九年级下初三数学试题试卷.doc

基础题知识点1位似图形及位似中心1. 下图屮的两个图形不是位似图形的是(2. (东营中考)下列关于位•似图形的表述:① 相似图形一定是位似图形,位似图形一定是相似图形;② 位似图形一定有位似屮心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两 个图形是位似图形:④ 位似图形上任意两点与位似中心的距离之比等于位似比.其屮正确命题的丿芋号是()A. (2X3)B.①②C.③④D.②③④3. 图屮的两个四边形是位似图形,它们的位似中心是(A.点MB.点NC.点 OD.4. 如图,在平行四边形ABCD 中,找出一对是位似图形的三角形:第1课时 27. 3位似 位似图形的概念及画法)知识点2位似图形的性质5.两个图形中,对应点到位似屮心的线段比为2: 3,贝9这两个图形的相似比为()A. 2 : 3B.. 4 : 9C.A/2:书D. 1 : 26.如图,ADEF与AABC是位似图形,点0是位似中心,点D, E, F分别是OA, OB, 0C的中点,贝IJADEF与AABC的面积比是()A. 1 : 6B. 1 : 5C. 1 : 4D. 1 : 27. 如图,四边形ABCD 与四边形AEFG 是位似图形,H AC : AF=2 : 3,则下列结论不正确的是A.四边形ABCD 与四边形AEFG 是相似图形 B.AD 与AE 的比是2 : 3 C.四边形ABCD 与四边形AEFG 的周长比是2 : 3 D. 四边形ABCD 与四边形AEFG 的面积比是4: 9 知识点3位似图形的画法8. 如图,以O 为位似中心,将四边形ABCD 缩小为原来的一半..9. 如图,边长为1的正方形网格纸屮,AABC 为格点三角形(顶点都在格点上).在网格纸屮,以 O 为位似中心画出AABC 的一个位似图形厶A*BV,使AABC 与△A ,BC 的相似比为1 : 2.(不要求 写画法)中档题10. 用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在()A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置11. (玉林中考)AABC 与厶ABC ,是位似图形,A ABC 与厶ABC 啲相似比是1 : 2,己知ZXABC 的面积是3,.则厶A f B f C f 的面积是()A ・ 3 B. 6 C ・ 9 D ・ 12 13. (沈阳中考)如图,AABC 与ADEF 位似,位似中心为点6 且AABC 的面积等于ADEF 面积4CA. 1个B. 2个C. 3个D.12.的彳贝lj AB : DE= ________ •14. ____ 如图,AABC 与厶ABC 是位似图形,且位似比是1 : 2,若AB = 2 cm,则A' B‘ = cm,并在图中画出位似中心O.15. 如图,0点是AABC 与厶D|E|F|的位似中心,AABC 的周长为1 •若口、E 】、F 】分别是线段 OA 、OB 、.0C 的中点,RiJADiEiF ]的周长为*;若 OD 2=jOAs OE 2=|()B> OF 2=|oC,则AD 2E 2F 2的周长为I ;…若ODn=»)A 、OEn=》)B 、OF n =^OC,则△酢几的周长为_______ .(用正整数n 表示)16. 如图,图屮的小方格都是边长为1的正方形,AABC 与厶A r B r C r 是以点O 为位似屮心的位似 图形,它们的顶点都在小止方形的顶点上.(1)画出位似中心O ;⑵求出△ ABC 与厶ABC 的相似比;⑶以点O 为位似中心,再训一个厶ABC 】,使它与AABC 的相似比等于1.5.综合题17. 如图,已知 B ,C 〃BC, C' D‘ 〃CD, D‘ E‘ 〃DE.(1)求证:四边形BCDE 位似于四边形B‘ C‘ D z E z ;DC AD参考答案1. D2.A3.D 4•答案不唯一,如 AAOB 与厶COD 或厶AOD 与厶COB 5.A 6.C 7.B&图略. 9•图略. 10・D ll.D 12.D 13.2 : 3 14.4 图略. 15.^OA16. (1)图略.⑵丁而二刁「•△ABC 与厶AEC 的相似比为1 : 2•⑶图略.17. (1)证明:TB'C ‘〃BC, C' D' //CD, D' E' 〃DE, .•.需=等=黑=需=器=器,又四边形BCDE 与四边形BCDE 对应顶点相交于一点A,二四边形BCDE 位似于四边形BCDE.(2)°・°晋'=3,・••昔■=#.・•・四边形BCDE 与四边形BCDE 位似之比为扌.AB Z丽 -3? S 四边形BCDE =20,求 S 四边形BCD'E'・ ⑵若20 四边形BCDE—-=20X22=空T6=T。
人教版初中数学第二十七章第3节《位似》单元测试题 (6)(含答案解析)

第二十七章第3节《位似》单元测试题 (6)一、单选题1.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(2,1)B .(-1,-2)C .(2,1)或(-2,-1)D .(1,2)或(-1,-2)2.下列命题是假命题的是( )A .位似比为1:2的两个位似图形的面积比为1:4B .点P (﹣2,﹣3)到x 轴的距离是2C .n 边形n≥3的内角和是180°n ﹣360°D .2、3、4这组数据能作为三角形三条边长3.如图,在平面直角坐标系中,已知点A (2,4),B (4,1),以原点O 为位似中心,将△OAB 扩大为原来的4倍,则点A 的对应点的坐标是( )A .(12,1) B .(-12,-1) C .(8,16)或(﹣16,﹣8) D .(8,16)或(﹣8,﹣16)4.如图,在56 的网格中,每个小正方形边长均为1,ABC 的顶点均为格点,D 为AB 中点,以点D 为位似中心,相似比为2,将ABC 放大,得到'''A B C ,则'BB =( )AB C D5.将OAB 以点O 为位似中心放大为原来的2倍,得到''OA B ,则'':OABOA B S S等于( )A .1:2B .1:3C .1:4D .1:86.下列语句中,不正确的是( ) A .位似的图形都是相似的图形 B .相似的图形都是位似的图形 C .位似图形的位似比等于相似比D .位似中心可以在两个图形外部,也可以在两个图形内部7.如图,在平面直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,边 OA 在 x 轴上, OC 在 y 轴上, 如果矩形OA B C '''与矩形 OABC 关于点 O 位似,且矩形OA B C '''的面积等于矩形 OABC 面积的14,那么点 B ' 的坐标是( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .3,12⎛⎫-- ⎪⎝⎭D .(3,2)或(-3,-2)8.如图,ABC ∆与A B C '''∆是位似图形,点O 是位似中心,若2OA AA '=,4ABC S ∆=,则A B C S '''∆等于( )A .6B .8C .9D .12二、解答题9.如图,在平面直角坐标系xOy 中,已知△ABC 和△DEF 的顶点分别为A (1,0)、B (3,0)、C (2,1)、D (4,3)、E (6,5)、F (4,7).按下列要求画图:以点O 为位似中心,将△ABC 向y 轴左侧按比例尺2:1放大得△ABC 的位似图形△A 1B 1C 1,并解决下列问题:(1)顶点A 1的坐标为 ,B 1的坐标为 ,C 1的坐标为 ;(2)请你利用旋转、平移两种变换,使△A 1B 1C 1通过变换后得到△A 2B 2C 2,且△A 2B 2C 2恰与△DEF 拼接成一个平行四边形(非正方形),写出符合要求的变换过程.10.如图,图中的小方格都是边长为1的正方形,点E 、A 、B 、C 都在小正方形的顶点上.(1)以点E 为位似中心,画111A B C △使它与ABC 的相似比为2(要求:画出所有图形,保留画图痕迹,不写画法)(2)若建立平面直角坐标系,使点A 在直角坐标系的坐标为(-2,0),请画出平面直角坐标系, 则点A 1的坐标是(3)三角形ACB 与三角形A 1C 1B 1的面积比为11.如图所示,在边长为1个单位长度的小正方形组成的网格中,ABC 的顶点A ,B ,C 在格点(网格线的交点)上.(1)将ABC 绕点B 逆时针旋转90 ,得到11A BC ,画出11A BC ;(2)以点A 为位似中心放大ABC ,得到22AB C △,使22AB C △与ABC 的位似比为2:1,请你在网格内画出22AB C △.12.如图,在平面直角坐标系中,已知ABC ∆的三个顶点的坐标分别为()()()4,3,3,1,1,3A B C ---,请按下列要求画图:(1)将ABC ∆先向右平移4个单位长度、再向下平移5个单位长度,得到111A B C ∆,画出111A B C ∆,并写出点B 的坐标;(2)以点A 为位似中心将ABC ∆放大2倍,得到222A B C ∆,画出222A B C ∆并写出点B 的坐标. 13.如图,ABC 在方格纸中(1)请在方格纸上建立平面直角坐标系,使()2,3A ,()6,2C ,并写出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将ABC 放大,画出放大后的图形A B C '''.14.如图,在边长为1的正方形网中建立平面直角坐标系,已知ABC 三个顶点分别为A (1-,2)、B (2,1)、C (4,5).(1)画出ABC 关于x 对称的111A B C △;(2)以原点O 为位似中心,在x 轴的上方画出222A B C △,使222A B C △与ABC 位似,且位似比为2,并求出222A B C △的面积.15.如图,图中的小方格都是边长为1的正方形,ABC 的顶点都在小正方形的顶点上.若点P 的坐标为()1,0-,点B 的坐标为()50,(1)则点A 的坐标是________.点C 的坐标是________.(2)画出ABC 关于点P 为位似中心的一个位似'''A B C ,且ABC 与'''A B C 的相似比为2;并写出下面三个点的坐标.点'A 的坐标是________,'B 的坐标是________,点'C 的坐标是________.16.如图,ABC 在坐标平面内三顶点的坐标分别为()0,2A ,()3,3B ,()2,1C .以点B 为位似中心,在图中画出11A BC ,使它与ABC 相似,且相似比为2,并写出11A BC 各顶点的坐标.(只需画出一种情况1:1:2=AB A B );1(A ________,________),1(B ________,________),1(C ________,________)17.如图,ABC 与111A B C △是位似图形.在网格上建立平面直角坐标系,使得点A 的坐标为()1,6-.()1在图上标出点,ABC 与111A B C △的位似中心.P 并写出点P 的坐标为________;()2以点A 为位似中心,在网格图中作22AB C △,使22AB C △和ABC 位似,且位似比为1:2,并写出点2C 的坐标为________.18.如图,在平面直角坐标系中,OAB 的顶点坐标分别为()0,0O ,()2,4A ,()4,0B ,分别将点A 、B 的横坐标、纵坐标都乘以1.5,得相应的点A '、B '的坐标.(1)画出OA B '';(2)OA B ''△与AOB ________位似图形;(填“是”或“不是”)(3)若线段AB 上有一点()00,D x y ,按上述变换后对应的A B ''上点的坐标是________. 19.画图:点()12A ,,()2,0B 把ABO 以点O 为位似中心放大到原来的2倍,且写出对应顶点的坐标.20.如图,在平面直角坐标系中,给出了格点△ABC (顶点均在正方形网格的格点上),已知点A 的坐标为(﹣4,3).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1.(2)以点O 为位似中心,在给定的网格中画△A 2B 2C 2,使△ABC 与△A 2B 2C 2位似,且点A 2的坐标为(8,﹣6).(3)△ABC与△A2B2C2的位似比是.21.按下列要求在如图格点中作图:(1)作出△ABC关于原点成中心对称的图形△A'B'C';(2)以点B为位似中心,作出△ABC放大2倍的图形△BA″C″.22.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O′A′B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.23.如图,已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似三角形OCD,使新图与原图的相似比为2:1;(2)分别写出A,B的对应点C、D的坐标;(3)求△OCD的面积.三、填空题24.△ABC 与△DEF 是位似图形,且△ABC 与△DEF 的位似比是1:3,已知△ABC 的面积是2,则△DEF 的面积是_______.25.已知:如图,()6,2-E ,()2,2--F ,以原点O 为位似中心,相似比1:2,把EFO △在点O 另一侧缩小,则点E 的对应点'E 的坐标为________.26.画位似图形的依据是________.27.如图,'''A B C 是将ABC 放大后的图形,若图中线段1'2=AA OA ,且2'''18=A B C S cm ,则ABCS的面积是________.28.如图,ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(−1,0).以点C 为位似中心,在x 轴的下方作ABC 的位似图形,并把ABC 的边长放大到原来的2倍,记所得的像是A B C '''.设点A 的横坐标是a ,则点A 对应的点A '的横坐标是_________.29.如图,四边形OABC 为矩形,AB =1,矩形OA B C '''与矩形OABC 是位似图形,O 为位似中心,位似比为k ,过点B 的反比例函数y =kx(k≠0)的图象与A B '' 、B C ''分别交于点D ,E ,若ADA '的面积为3,则k 的值为________.30.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,在点O的异侧将△OAB缩小为原来的12,则点B的对应点的坐标是________.【答案与解析】1.C 【解析】利用位似图形的性质得出位似比,进而得出对应点的坐标. 解:∵矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴两矩形面积的相似比为:1:2, ∵B 的坐标是(4,2),∴点B′的坐标是:(2,1)或(-2,-1). 故选:C .本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况. 2.B 【解析】根据位似的性质和相似三角形的性质对A 进行判断;根据点的坐标的意义对B 进行判断;根据多边形的内角和定理对C 进行判断;根据三角形三边的关系对D 进行判断. 解:A 、位似比为1:2的两个位似图形的面积比为1:4,所以A 选项为真命题; B 、点P (﹣2,﹣3)到x 轴的距离是3,所以B 选项为假命题; C 、n 边形n≥3的内角和为180°(n ﹣2),所以C 选项为真命题;D 、因为2+3>4,则2、3、4这组数据能作为三角形三条边长,所以D 选项为真命题. 故选:B .本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 3.D 【解析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k 解答.∵以原点O 为位似中心,将△OAB 放大为原来的4倍,得到△OA'B',A (2,4),∴点A 的对应点A′的坐标是:(24⨯,44⨯)或()()2444⎡⎤⨯-⨯-⎣⎦,,即(8,16)或(8-,16-). 故选:D .本题考查了位似变换的性质,平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 4.D 【解析】根据△A′B′C′和△ABC 以D 为位似中心,且位似比为1:2或2:1,得出对应点位置进而得出答案. ∵ AC =1,BC =2,∴ AB = ∵ ''ABC AB C ∽,相似比为2,∴12AB AB '=,∴ ''A B =∴ ()1'''2BB A B AB =-=同理:BB ″=A ″B ″A -″2B = 故选:D此题主要考查了位似变换,根据题意得出对应点位置是解题关键. 5.C 【解析】利用位似图形的性质得出位似比进而得出面积比.∵ 将OAB 以点O 为位似中心放大为原来的2倍,得到''OA B , ∴ OAB 与''OA B 的位似比为1:2, 则'':OABOA B SS=1:4.故选:C此题主要考查了位似变换,正确得出位似比和面积比是解题关键. 6.B 【解析】利用位似图形的性质分别判断得出即可.A 、位似的图形都是相似的图形,正确,不合题意;B 、相似的图形不一定是位似的图形,错误,符合题意;C、位似图形的位似比等于相似比,正确,不合题意;D、位似中心可以在两个图形外部,也可以在两个图形内部,正确,不合题意.故选:B.此题主要考查了位似图形的性质,正确掌握位似图形的相关性质是解题关键.7.B【解析】根据位似图形的位似比求得相似比,然后根据B点的坐标确定其对应点的坐标即可.解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,∴两矩形的相似比为1:2,∵B点的坐标为(3,2),∴点B′的坐标是(32,1)或(32-,-1),故选:B.本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的面积的比确定其位似比,注意有两种情况.8.C【解析】△ABC与△A′B′C′是位似图形,由OA=2AA′可得两个图形的位似比,利用面积的比等于位似比的平方即可求解.解:△ABC与△A′B′C′是位似图形且由OA=2AA′可得2'3OA OA,∴两位似图形的位似比为2:3,所以两位似图形的面积比为4:9,又S△ABC=4,∴S△A'B'C'=44=99÷.故选:C本题考查位似图形,理解位似图形的面积比即是对应线段比的平方是解题关键.9.见解析【解析】解:作图如下:(1)(-2,0),(-6,0),(-4,-2). (2)符合要求的变换有两种情况: 情况1:如图1,变换过程如下:将△A 2B 2C 2向右平移12个单位,再向上平移5个单位;再以B 1为中心顺时针旋转900. 情况2:如图2,变换过程如下:将△A 2B 2C 2向右平移8个单位,再向上平移5个单位;再以A 1为中心顺时针旋转900.(1)作位似变换的图形的依据是相似的性质,基本作法是:①先确定图形的位似中心;②利用相似图形的比例关系作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意有两种情况,图形在位似中心的同侧或在位似中心的两侧.(2)作平移变换时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形. 作旋转变换时,找准旋转中心和旋转角度 10.(1)见解析;(2)()4,3,()4,1-;(3)1:4 【解析】(1)根据位似的知识点作图即可;(2)建立平面直角坐标系,求出点的坐标即可; (3)根据相似图形的性质即可得出结果;(1)根据位似比是2可画出相对应的点,连接即可,如图所示;(2)因为点A 在直角坐标系的坐标为(-2,0),建立平面直角坐标系如图所示,可得()14,3A 和()4,1-;(3)根据面积比是相似比的平方可得面积比是1:4. 本题主要考查了位似的知识点,准确画图计算是解题的关键. 11.(1)见详解;(2)见详解 【解析】(1)分别作出点A 、C 绕点B 逆时针旋转90°所得的对应点,再顺次连接,即可; (2)分别作出点B 、C 变换后的对应点,再顺次连接,即可. (1)如图所示,11A BC 即为所求;(2)如图所示,22AB C △即为所求.本题主要考查图形的旋转变换以及位似变换,掌握旋转变换和位似变换的定义和性质,是解题的关键.12.(1)详见解析()11,4B -;(2)详见解析()22,1B -- 【解析】(1)根据题目中给出的平移方式,描点画图即可; (2)根据相似比找到对应点2B 和2C 即可. (1)根据题意可得:∴()11,4B -(2)根据题意可得:∴()22,1B --本题主要考查了图形的平移变换,位似图形的性质,熟练掌握位似图形的性质是解题的关键. 13.(1)见解析,()2,1B ;(2)见解析 【解析】(1)根据点()2,3A ,()6,2C 可确认出坐标原点O 的位置,从而可建立平面直角坐标系,再根据点B 的位置即可得出其坐标; (2)根据位似的定义画图即可.(1)由点()2,3A ,()6,2C 确认出坐标原点O 的位置,由此画出x 轴和y 轴,建立平面直角坐标系,如图所示:由点B 在平面直角坐标系中的位置得:点B 坐标为()2,1B ;(2)根据位似的定义,分别连接,,OA OB OC ,将它们分别延长至点,,A B C ''',使得2,2,2OA OA OB OB OC OC '''===,然后顺次连接点,,A B C ''',即可得到A B C '''∆,如图所示:本题考查了建立平面直角坐标系、画位似图形,依据点A 、C 坐标正确建立平面直角坐标系是解题关键.14.(1)见解析;(2)如图所示, 222A B C △就是所求三角形,见解析;222A B C S △=28. 【解析】(1)分别找出A 、B 、C 关于x 对称点111A B C 、、,然后连接111111A B AC B C 、、即可;(2)连接OA 并延长至1A ,使1AA =OA ;连接OB 并延长至1B ,使1BB =OB ;连接OC 并延长至1C ,使1CC =OC ;连接222222A B A C B C 、、即可得到222A B C △,然后用矩形将222A B C △框住,然后利用矩形的面积减去三个直角三角形的面积即可.解:(1)分别找出A 、B 、C 关于x 对称点111A B C 、、,然后连接111111A B AC B C 、、,如图所示,111A B C △就是所求三角形;(2)连接OA 并延长至1A ,使1AA =OA ;连接OB 并延长至1B ,使1BB =OB ;连接OC 并延长至1C ,使1CC =OC ;连接222222A B A C B C 、、,如图所示, 222A B C △就是所求三角形如图,用矩形将222A B C △框住,∵A (−1,2),B (2,1),C (4,5), 222A B C △与ABC 位似,且位似比为2, ∴A 2(−2,4),B 2(4,2),C 2(8,10), ∴222A B C S △=8×10−12×6×2−12×4×8−12×6×10=28.此题考查的是作关于x 轴对称的图形和作位似图形,掌握位似图形的性质是解决此题的关键. 15.(1)()1,4,()7,6;(2)见解析,()0,2,()20,,()3,3. 【解析】(1)先根据点P 、B 的坐标建立平面直角坐标系,然后即可写出点A 、C 的坐标;(2)连接PA 、PB 、PC ,分别取各边中点为A '、B '、C ',然后顺次连接即可,再根据平面直角坐标系即可写出各点的坐标.解:(1)建立平面直角坐标系如图,()1,4A ,()7,6C ;(2)A B C '''如图所示,()0,2A ',()2,0B ',()3,3C '. 故答案为:()0,2,()20,,()3,3.本题主要考查了位似作图,属于常见题型,熟练掌握网格特点和位似变换的性质、正确确定出对应点的位置是解题关键.16.作图见解析,()13,1-A ,()13,3B ,()11,1-C . 【解析】先根据A 、B 、C 三点的坐标确定三点的位置,再以点B 为位似中心画位似三角形11A BC ,使相似比为2,最后写出11A BC 各顶点的坐标.先根据A 、B 、C 三点的坐标确定三点的位置,再以点B 为位似中心画位似三角形11A BC ,使相似比为2,如图所示:设()1,A a b ,()1,C m n ,由画图过程和相似比可知,点1B 与点B 重合,则()13,3B ,点A 为1A B 的中点,点C 为1C B 的中点,则302322a b +⎧=⎪⎪⎨+⎪=⎪⎩和322312m n +⎧=⎪⎪⎨+⎪=⎪⎩, 解得31a b =-⎧⎨=⎩和11m n =⎧⎨=-⎩,即()13,1-A ,()11,1-C .本题考查了作图-位似变换,熟练掌握位似图形的画法和性质是解题关键.17.(1)见解析,()12--,;(2)见解析,()13-,. 【解析】(1)将位似图形对应的点连接起来,连线的交点就是它们的位似中心,然后写出坐标; (2)根据题意,在线段AC 和AB 上取中点2C 和2B ,就可以画出22AC B . 解:(1)将1AA ,1BB ,1CC 连结起来, 交点即为位似中心P , 如图所示:()12P ,--,故答案为:()12--,. (2)∵位似比为1:2, ∴所图如下:则点2C 的坐标为()13-,, 故答案为:()13-,. 本题考查位似中心和位似图形的作图,解题的关键是掌握位似图形的相应概念并根据题目要求画出图象.18.(1)见解析;(2)是;(3)()001.5,1.5x y .【解析】(1)直接利用将点A 、B 的横坐标、纵坐标都乘以1.5,得相应的点A '、B '的坐标,即可得出答案;(2)利用位似图形的定义得出答案;(3)利用位似图形的性质即可得出对应点坐标.解:(1)如图所示:OA B ''△,即为所求;(2)OA B ''△与AOB 是位似图形;(3)若线段AB 上有一点()00,D x y ,按上述变换后对应的A B ''上点的坐标是:()001.5,1.5x y .本题考出来位似变换以及位似图形的性质,正确得到图形对应点的坐标是解题关键.19.作图见解析,()0,0O ,()2,4A ',()4,0B '或()0,0O ,()2,4A ''--,()4,0B ''-.【解析】根据作位似变换图形的要求可知以O 点为位似中心放大到原来2倍,延长OA 到A ',使2OA OA '=,得到点A 的对应点A ',同法得到点B 的对应点B ',点O 的对应点不变,连接A B '',OA B ''△就是所求的三角形;也可以反向延长AO 或BO ,由同样的方法得到,A B 的对应点,,A B ''''连接,A B ''''OA B ''''△就是所求的三角形;再由所画的位似图形点的横纵坐标均为原来各对应点横纵坐标的2±倍,即可得到答案.解:延长OA 到'A ,使'2OA OA =,得到点A 的对应点'A ,同法得到点B 的对应点'B ,点O 的对应点不变,连接''A B ,''OA B 就是所求的三角形;或反向延长AO 或BO ,由同样的方法得到,A B 的对应点,,A B ''''连接,A B ''''OA B ''''△就是所求的三角形;由()()0,0,12O A ,,()2,0B ∴ ()0,0O ,()2,4A ',()4,0B '.或()0,0O ,()2,4A ''--,()4,0B ''-.主要考查画位似图形;用到的知识点为:新图形的各顶点到位似中心的距离与原图形到位似中心的距离的比等于位似比,掌握两个位似图形的点的坐标规律是解题的关键.20.(1)如图所示:△A 1B 1C 1,即为所求;见解析;(2)如图所示:△A 2B 2C 2,即为所求;见解析;(3)1:2.【解析】(1)直接利用关于y 轴对称点的性质得出答案;(2)直接利用对应点的坐标变化得出对应点位置进而得出答案;(3)直接利用(2)中对应点变化进而得出位似比.(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)△ABC与△A2B2C2的位似比是:1:2.故答案为:1:2.本题主要考查了位似变换以及关于y轴对称点的性质,正确得出对应点位置是解题关键.21.(1)见解析;(2)见解析.【解析】(1)直接利用关于原点对称图形的性质即可画出对应图形;(2)直接利用位似图形的性质得出对应点位置进而画出对应图形.解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:△BA″C″,即为所求.此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.22.(1)详见解析;(2)详见解析;(3)(2,7)【解析】(1)根据旋转的性质即可画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)根据位似变换即可以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O′A′B;(3)点M是OA的中点,在(1)和(2)的条件下,即可得M的对应点M′的坐标.(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴经过(1)旋转后坐标变为(52,92)∴经过(1)位似变换后,M的对应点M′的坐标为(2,7).故答案为:(2,7).本题考察了画旋转图形和位似图形,中点坐标公示,严格按照旋转和位似图形的性质,做出正确的图形,是解决本题的关键.23.(1)详见解析;(2)C(﹣6,﹣2),D(﹣4,2);(3)10.【解析】(1)延长AO到C使得OC=2OA,延长BO到D,使得OD=2OB,连接CD,△OCD即为所求;(2)根据C,D的位置写出坐标即可;(3)利用分割法求出三角形的面积即可.解:(1)如图,△OCD即为所求.(2)由图可得:C(﹣6,﹣2),D(﹣4,2),(3)S △OCD =24﹣12×4×2﹣12×6×2﹣12×2×4=10.本题考查作图-位似变换,解题的关键是熟练掌握基本知识,属于中考常考题型.24.18【解析】根据相似三角形中,面积比等于相似比的平方直接进行求解即可.设所求三角形的面积为S ,可以得到2123S⎛⎫ ⎪⎝⎭= 解得:S =18.故答案为18.本题主要考查相似三角形,关键是根据相似三角形的面积比等于相似比的平方.25.()31-,【解析】根据题意,可得2'OE OE =,且点'E 在第四象限,又由E 的坐标,计算可得答案.解:根据题意,可得2'OE OE =,且点'E 在第四象限;又由E 的坐标为()6,2-,则对应点'E 的坐标为()3,1-.故答案是:()3,1-本题主要考查位似图形的坐标特征,熟练掌握坐标系中位似图形对应点的坐标特征,是解题的关键.26.两边对应成比例且夹角相等的两个三角形相似【解析】由位似图形的定义:两个图形是相似图形,而且每组对应点所在的直线经过同一点,结合相似三角形的判定解答即可.解:画位似图形的依据是:两边对应成比例且夹角相等的两个三角形相似.故答案为:两边对应成比例且夹角相等的两个三角形相似.本题考查了位似图形的有关知识,如果两个图形不仅是相似图形,而且每组对应点所在的直线经过同一点,那么这两个图形叫做位似图形,熟知位似图形的概念是关键.27.28cm【解析】 利用位似图形的性质首先得出2'3OA OA =,进而得出三角形面积比,即可得出答案. ∵'''A B C 是将ABC 放大后的图形,图中线段1'2=AA OA , ∴2'3OA OA =, ∴'''49ABC A B C S S =, ∵2'''18=A B C Scm , ∴ABC S =28cm .故答案为:28cm .此题主要考查了位似图形的性质,得出相似比是解题关键.28.32a --【解析】△A′B′C 的边长是△ABC 的边长的2倍,过A 点和A′点作x 轴的垂线,垂足分别是D 和E ,因为点A 的横坐标是a ,则DC=-1-a .可求EC=-2-2a ,则OE=CE-CO=-2-2a-1=-3-2a解:如图,过A 点和A′点作x 轴的垂线,垂足分别是D 和E ,∵点A的横坐标是a,点C的坐标是(-1,0).∴DC=-1-a,OC=1又∵△A′B′C的边长是△ABC的边长的2倍,∴CE=2CD=-2-2a,∴OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.29.7【解析】利用位似图形相似且相似比为k,可得到OA与OA'的比值,设设OA=x,则OA'=kx,可得到AA'的长,再结合反比例函数的性质可以表示出DA';然后根据ADA'的面积为3,建立方程求出k 的值.∵矩形OA B C'''与矩形OABC是位似图形,O为位似中心,位似比为k∴OC OAk OC OA==''设OA=x则OA'=kx∴AA'=kx-x∵点D在反比例函数图像上,∴点D1,kxx ⎛⎫ ⎪⎝⎭∴1 A Dx '=∵ADA'的面积为3∴11 ()3 2kx xx-⨯=∴k=7故答案为:7.本题考察了位似变换、反比例函数的知识;求解的关键是熟练掌握位似变换的性质和反比例函数图象上点的坐标特征,从而完成求解.30.(-2,1 2 -)【解析】平面直角坐标系中,如果位似变换是以原点为位似中心且在点O 的异侧,相似比为k ,那么位似图形对应点的坐标的比等于 k -解答.以O 为位似中心且在点O 的异侧,把△OAB 缩小为原来的12, 则点B ()41,的对应点的坐标为114122⎡⎤⎛⎫⎛⎫⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,, 即122⎛⎫-- ⎪⎝⎭,, 故答案为:122⎛⎫-- ⎪⎝⎭,. 本题考查的是位似变换的性质,平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.3 位似
1.如图(1)火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的长度BD =2 cm ,OA =60 cm,OB =15 cm ,则火焰的长度为________.
(1) (2) 2. 如图(2),五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,且位似比为2
1. 若五边形ABCDE 的面积为17 cm 2, 周长为20 cm ,那么
五边形A ′B ′C ′D ′E ′的面积为________,周长为________.
3.已知,如图2,A ′B ′∥AB ,B ′C ′∥BC ,且OA ′∶A ′A =4∶3,则△ABC 与________是位似图形,位似比为________;△OAB 与________是位似图形,位似比为________.
图2
4.下列说法中正确的是( )
A.位似图形可以通过平移而相互得到
B.位似图形的对应边平行且相等
C.位似图形的位似中心不只有一个
D.位似中心到对应点的距离之比都相等
5.小明在一块玻璃上画上了一幅画,然后用手电筒照着这块玻璃,将画映到雪白的墙上,这时我们认为玻璃上的画和墙上的画是位似图形.请你再举出一些生活中的位似图形来?并说明一对对应线段的位置关系.
6.将有一个锐角为30°的直角三角形放大,使放大后的三角形的边是原三角形对应边的3倍,并分别确定放大前后对应斜边的比值、对应直角边的比值.
7.一三角形三顶点的坐标分别是A (0,0),B (2,2),C (3,1),试将△ABC 放大,使放大后的△DEF 与△ABC 对应边的比为2∶1.并求出放大后的三角形各顶点坐标.
8、经过不同位似中心将同一图形进行放大和缩小,试问放大后的图形和缩小后的图形能否也是位似图形?谈谈你的看法.
参考答案:
1、8 cm
2、4
17 cm 2 10 cm 3、△A ′B ′C ′ 7∶4 △OA ′B ′ 7∶4 4、D 5、略 6、(1)1∶3 1∶3
7、 位似中心取点不同,所得D 、E 、F 各点坐标不同,即答案不惟一.
8、由放大或缩小猴图形中对应线段与原图形中对应线段互相平行,故而放大后的图形和缩小后的图形的对应线段也互相平行,因而它们也是位似图形.。