智能制造整体模型
智能制造体系架构、参考模型与标准化框架研究

收 稿 日期 :2016—11—14;修 订 日期 :2017~05—02。Received 14 Nov.2016;accepted 02 May 2017. 基金项 目:国家 863计 划资助项 目(2001AA415340,2007AA04ZIA6);国家 自然科 学基金 资助项 目(61174168,61771281);中国航 空科学基 金
智能制造系统建模与仿真阅读笔记

《智能制造系统建模与仿真》阅读笔记目录一、内容概要 (2)1.1 背景与意义 (2)1.2 国内外研究现状及发展趋势 (3)二、智能制造系统基本概念 (5)2.1 智能制造系统的定义 (6)2.2 智能制造系统的组成 (8)2.3 智能制造系统的功能 (9)三、智能制造系统建模与仿真的基本方法 (10)3.1 建模方法 (12)3.2 仿真方法 (13)四、智能制造系统建模与仿真的关键技术 (15)4.1 预测模型 (16)4.2 决策模型 (18)4.3 优化模型 (19)五、智能制造系统建模与仿真的应用案例 (20)5.1 案例一 (21)5.2 案例二 (22)六、智能制造系统建模与仿真的挑战与未来趋势 (23)七、结论与展望 (25)7.1 主要结论 (26)7.2 研究展望 (27)一、内容概要《智能制造系统建模与仿真》一书对智能制造系统建模与仿真的相关概念、方法、技术和应用进行了全面而深入的阐述。
书中首先概述了智能制造系统建模与仿真的主要内容,包括智能制造系统的基本概念、建模与仿真的目的和意义、以及建模与仿真的关键技术。
书中详细讨论了智能制造系统建模与仿真的各个环节,包括系统建模、仿真模型开发、仿真验证与优化等。
还介绍了智能制造系统仿真平台的设计与开发,以及仿真技术在智能制造中的应用案例。
通过阅读本书,读者可以深入了解智能制造系统建模与仿真的理论和方法,掌握相关的建模与仿真技术,并将其应用于实际智能制造系统中,以提高系统的性能和效率。
1.1 背景与意义随着科技的飞速发展,智能制造已经成为全球制造业的重要发展趋势。
智能制造系统建模与仿真作为一种重要的研究方法和工具,旨在通过对制造过程进行建模和仿真,实现对制造系统的优化设计、性能分析和故障诊断。
深入研究智能制造系统建模与仿真具有重要的理论意义和实际应用价值。
智能制造系统建模与仿真有助于提高制造业的整体水平,通过对制造过程的建模和仿真,可以更好地理解制造系统的基本结构和工作原理,从而为制造系统的优化设计提供理论支持。
智能制造能力成熟度模型

智能制造能力成熟度模型研
05
究展望
研究不足与局限性分析
01
智能制造能力成熟度模型的应 用范围尚不够广泛,需要进一 步拓展。
02
当前研究主要集中在制造业领 域,对其他行业(如服务业等 )的智能制造能力成熟度评估 缺乏深入研究。
03
在评估指标体系方面,仍存在 主观因素和经验判断,影响了 评估结果的客观性和准确性。
案例二:航空航天产业的智能制造转型
总结词
航空航天产业是一个高技术、高附加值的产业,具有产品复杂度高、生产周期长、制造过程成本高等 特点。智能制造能力成熟度模型在该产业的转型中发挥了重要作用。
详细描述
航空航天产业的产品复杂度高,生产周期长,制造过程成本高。引入智能制造能力成熟度模型后,该 产业实现了从传统制造向数字化、网络化、智能化转型,提高了制造效率和质量,降低了制造成本。
智能制造能力成熟度模型应
03
用
企业智能制造能力评估
评估企业智能制造能力水平
通过应用智能制造能力成熟度模型,企业可以评估自身在智能制造 领域的成熟度水平,了解自身的优势和不足。
确定企业智能制造能力提升方向
基于评估结果,企业可以明确未来需要改进和提升的领域,以及具 体的实施方向。
指导企业智能制造能力建设
结合行业特点
在借鉴国际标准的基础上,结合国内不同行业的生产特点、技术要求、产业链结构等要素,制定符合行业实际需求的智能制造评估标准。
模型框架与指标体系
要点一
模型框架
智能制造能力成熟度模型应包括4个层级,分别是战略 层、组织层、技术层、设施层。战略层关注企业战略 规划与智能制造的契合度;组织层关注企业组织结构 、管理制度等与智能制造的适应性;技术层关注企业 研发设计、生产制造、供应链管理等环节的智能化水 平;设施层关注企业生产设备、工装工具、信息系统 等基础设施的智能化程度。
智能制造系统的建模与仿真研究

智能制造系统的建模与仿真研究智能制造系统的建模与仿真研究摘要:随着智能制造技术的不断发展,建立一个可靠的智能制造系统模型并进行仿真研究变得至关重要。
本文综述了智能制造系统的特点,并介绍了智能制造系统建模与仿真的意义。
然后,详细讨论了智能制造系统的建模方法和仿真技术,包括离散事件模型、系统动力学模型、Agent Based模型以及虚拟现实技术等。
接下来,介绍了智能制造系统建模与仿真的挑战,并提出了几个潜在的解决方案。
最后,总结了目前的研究现状,并对未来的研究方向进行了展望。
关键词:智能制造系统、建模与仿真、离散事件模型、系统动力学模型、Agent Based模型、虚拟现实1.引言随着信息技术的不断发展,智能制造系统的概念逐渐被提出并得到广泛应用。
智能制造系统是基于信息技术和先进制造技术的一种生产方式,具有高度自动化和智能化的特点。
为了更好地理解和优化智能制造系统的运行,建立一个可靠的系统模型并进行仿真研究变得至关重要。
2.智能制造系统的特点智能制造系统具有以下特点:1)高度集成:智能制造系统是由多个物理设备、传感器、通信网络等组成的系统,各个组成部分之间高度集成;2)自适应性:智能制造系统具有自我学习和自我调整的能力,可以根据不同的环境和任务自适应地改变自身的行为;3)高度自动化:智能制造系统借助先进制造技术,实现了生产过程的高度自动化,大大提高了生产效率和产品质量;4)高效能性:智能制造系统通过提高生产效率和资源利用率,实现了生产过程的高效能化;5)高度可靠性:智能制造系统具有可靠的通信和控制机制,可以保证生产过程的可靠运行。
3.智能制造系统建模方法智能制造系统的建模方法主要包括离散事件模型、系统动力学模型、Agent Based模型以及虚拟现实技术等。
离散事件模型是一种描述生产过程中事件的先后发生顺序的模型,可以更好地模拟生产过程中的时间延迟和不确定性。
系统动力学模型是一种描述系统中各个部分之间相互作用关系的模型,可以用来分析和优化系统的稳定性和动态特性。
智能制造能力成熟度模型白皮书

目 录一、概述二、智能制造能力成熟度模型(一)智能制造能力成熟度模型的提出(二)模型架构与能力成熟度矩阵1、维度2、类和域3、等级4、成熟度要求(三)智能制造能力成熟度要求1、设计2、生产3、物流4、销售5、服务6、资源要素7、互联互通8、系统集成9、信息融合10、新兴业态四、相关理论的对比分析(一)软件能力成熟度模型(二)智能制造系统架构(三)工业4.0就绪度(四)制造成熟度模型(五)罗兰贝格模型001005 005 007 008 008 009 010 011 011 013 017031 031三、模型的应用(一)整体成熟度模型分级(二)单项能力模型分级(三)模型的应用018 018 020 023 024 025 026028 028 029 029032 032 033 034五、总结与展望035附录基于智能制造能力成熟度模型的评价方法036(一)模型与评价(二)评价过程036 0361、选择模型2、选择评价域3、基于问题的评价4、给出分值与等级037 037 038 039(三)评价示例040参考文献致 谢一、概 述(一)智能制造是当前制造业转型升级的必经之路制造业是国民经济的支柱,是一国经济增长的源动力。
没有一个强大而具有创新性的制造业体系,任何一个经济体都不可能实现繁荣发展。
然而,自国际金融危机爆发以来,世界各国制造业均面临着市场需求萎缩、产值下降等困境,客户个性化需求增加、交货期要求越来越短、低能耗高资源利用率等挑战倒逼制造业要转型升级。
与此同时,云计算、大数据、物联网等新兴技术逐渐兴起,给各国制造业企业带来了新的转型思路。
因此,主要经济体纷纷提出了利用信息技术提升传统制造业发展的国家级战略和规划,如美国的“先进制造业国家战略计划”、德国的“工业4.0”、日本的“科技工业联盟”、英国的“工业2050战略”、中国的“中国制造2025”等,制造业已成为各国在新一轮技术革命和产业变革中占据制高点的必争战场。
智能制造新模式关键要素

附件1智能制造新模式关键要素一、离散型智能制造模式1、工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。
2、应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。
建立产品数据管理系统(PDM),实现产品数据的集成管理。
3、实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备在生产管控中的互联互通与高度集成。
4、建立生产过程数据采集和分析系统,充分采集生产进度、现场操作、质量检验、设备状态、物料传送等生产现场数据,并实现可视化管理。
5、建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效的全过程闭环管理。
建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理的优化。
6、建立车间内部互联互通网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及与制造执行系统(MES)和企业资源计划系统(ERP)的高效协同与集成,建立全生命周期产品信息统一平台。
7、建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。
建有功能安全保护系统,采用全生命周期方法有效避免系统失效。
通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的集成优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。
二、流程型智能制造模式1、工厂总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现生产流程数据可视化和生产工艺优化。
2、实现对物流、能流、物性、资产的全流程监控与高度集成,建立数据采集和监控系统,生产工艺数据自动数采率达到90%以上。
3、采用先进控制系统,工厂自控投用率达到90%以上,关键生产环节实现基于模型的先进控制和在线优化。
4、建立制造执行系统(MES),生产计划、调度均建立模型,实现生产模型化分析决策、过程量化管理、成本和质量动态跟踪以及从原材料到产成品的一体化协同优化。
智能制造能力成熟度模型( CMMM )介绍及评估方法分享

智能制造行动计划——《“十四五”智能制造发展规划》六大行动
11
智能制造标准化工作及主要成效(2015-2022年)
12
发布智能制造标准体系建设指南
B关键技术
通用
安全
可靠性
评价
人员能力
A 基础共性
AA通用
AB安全
AC可靠性
AD检测
AE评价
A 基础共性
B关键技术
大规模个性化定制
运维服务
网络协同制造
可裁剪
可裁剪
注:流程型企业不需评价工艺设计及产品服务
智能制造成能力熟度模型——五个等级
不要在落后的工艺基础上搞自动化不要再落后的管理基础上搞信息化不要在不具备数字化网络化基础上搞智能化
能力域-人员成熟度
能力域-技术成熟度
能力域-资源成熟度
能力域-设计成熟度
能力域-技术成熟度
能力域-生产成熟度
对外贸易规模不断扩大制造业增加值高速增长
走创新发展,质量提升道路“一带一路”倡议书“中国制造2025”的实施
5
中国制造业转型升级
工业化和信息化同步发展的新型道路
党的十五大(1997年)提出“大力推进国民经济和社会信息化”,首次将“信息化”写入国家战略;党的十六大(2002年)提出“以信息化带动工业化、以工业化促进信息化,走新型工业化的道路”党的十七大(2007年)提出“大力推进信息化与工业化融合”;党的十八大(2012年)进一步提出“坚持走中国特色新型工业化、信息化、城镇化、农业现代化道路推动信息化和工业化深度融合、工业化和城镇化良性互动、城镇化和农业现代化相互协调,促进工业化、信息化、城镇化、农业现代化同步发展”;党的十九大(2017年)进一步明确提出“推动互联网、大数据、人工智能和实体经济深度融合”;党的二十大(2022年)提出“建设现代化产业体系,坚持把发展经济的着力点放在实体经济上,推进新型工业化,加快建设制造强国、质量强国、航天强国、交通强国、网络强国、数字中国”。
智能制造能力成熟度模型(1.0版)

CPS
001
China Manufacturing Maturity Model 智能制造能力成熟度模型白皮书
(二)对智能制造的理解与认识
针对智能制造内涵,各国各机构都有不同的定义,表1-1对不同国家或机构对智能制造的理解
定义
侧重点
德国工业4.0
通过广泛应用互联网技术,实时感知、监控生 产过程中产生的海量数据,实现生产系统的智 能分析和决策,生产过程变得更加自动化、网 络化、智能化,使智能生产、网络协同制造、 大规模个性化制造成为生产新业态。
工业4.0就绪度可以视作是解决此矛盾一 个有效的参考方案。工业4.0就绪度是由德国 机械设备制造业联合会(VDMA)提出,旨在 解决德国制造业面临的两大问题:一是当前德
国的机械制造工业处于工业4.0的哪一阶 段;二是要想在企业中成功实施工业4.0必须 具备的条件以及企业当前哪些情况需要进行相 应的改变。VDMA于2015年4月至8月间对德 国雇员在20人以上的234家机械和装备工程企 业的工业4.0就绪度现状进行调研,调研结果 (图1-2示)显示德国机械和装备工程领域仅 有5.6%的企业处于3级以上,约80%的企业还 处于门外汉或初学者的水平。
(一)智能制造能力成熟度模型的提出 (二)模型架构与能力成熟度矩阵
1、维度 2、类和域 3、等级 4、成熟度要求 (三)智能制造能力成熟度要求 1、设计 2、生产 3、物流 4、销售 5、服务 6、资源要素 7、互联互通 8、系统集成 9、信息融合 10、新兴业态
三、模型的应用
(一)整体成熟度模型分级 (二)单项能力模型分级 (三)模型的应用
一、概 述
(一)智能制造是当前制造业转型升级的必经之路
制造业是国民经济的支柱,是一国经济增 长的源动力。没有一个强大而具有创新性的制 造业体系,任何一个经济体都不可能实现繁荣 发展。然而,自国际金融危机爆发以来,世界 各国制造业均面临着市场需求萎缩、产值下降 等困境,客户个性化需求增加、交货期要求越 来越短、低能耗高资源利用率等挑战倒逼制造 业要转型升级。与此同时,云计算、大数据、 物联网等新兴技术逐渐兴起,给各国制造业企 业带来了新的转型思路。因此,主要经济体纷 纷提出了利用信息技术提升传统制造业发展的 国家级战略和规划,如美国的“先进制造业国 家战略计划”、德国的“工业4.0”、日本的 “科技工业联盟”、英国的“工业2050战 略”、中国的“中国制造2025”等,制造业 已成为各国在新一轮技术革命和产业变革中占 据制高点的必争战场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能制造整体模型
以上认识了各系统位阶,那么就可以很清晰的描绘出智能制造模型,智能制造模型分为以下四个部分:
第一部是以本质贯标的两化融合管理体系为基础,进行智能制造体系模型构建,此部分请参照两化融合管理体系的贯标、评定等,在此不做阐述。
第二部分为智能制造基础部分,分别为:通过把传统管理技术进行智能升级,使之工具化,形成智能管理综合体,贯穿整个制造过程;通过智能技术将设备设施自动化、智能化,当与信息技术、设备管理技术、设备如新管理思维集成和融合后,使之具有自我感知、自主分析、自主推理、自主诊断、自主决策决策和控制功能;建立适应智能制造的网络架构。
第三部分为以动作分析为基础,制造工艺为主线:集成设备、控制、操作建立智能工序,通过工序和运载集成,建立智能生产线,智能生产线通过工艺集成,形成智能车间,智能车间和执行层系统的融合,构建智能工厂;建立以BOM为核心的运营数据流和流程管理的管理模型;建立基于大数据分析的决策模型;建立以智能产品、智能服务、智能商业构成商业模型。
第四部分是信息安全,信息安全是智能制造的重要部分,企业需参照ISO27001信息安全管理体系标准,制定自身的信息安全体系,用以规范企业员工行为,是各种信息技术实施的有效保证,从企业层面统筹安排软硬件系统,保证信息安全体系协同工作高效、有序进行;通过信息安全管理体系实施,不仅对安全事故及时采取有效措施,更重要的是通过过程管理预防和避免更多的信息安全事件,避免因信息安全造成经济损失。
此部分在本书中不做详细阐述。
图2-2 智能制造整体模。