八年级数学上册_第四章知识点整理_北师大版
北师大版八年级数学上册 第四章 一次函数 知识点总结及练习

四、一次函数与一元一次方程
由于任何一元一次方程都可以转化为 ax+b=0(a,b 为常数,a≠0)•的形式,所以解一元一次方程可 以转化为:当某个一次函数的值 y=0 时,•求相应的自变量 x 的值,从图象上看,这相当于已知直线 y=ax+b,确定它与 x•轴交点的横坐标的值.
7.解析式与图像上点相互求解的题型 ○1 求解析式:解析式未知,但知道直线上两个点坐标,将点坐标看作 x、y 值代入解析式组成含有 k、 b 两个未知数的方程组,求出 k、b 的值在带回解析式中就求出解析式了。 ○2 求直线上点坐标:解析式已知,但点坐标只知道横纵坐标中得一个,将其代入解析式求出令一个坐 标值即可。
2.一次函数 y=kx+b 的图象是一条直线,我们称它为直线 y=kx+b,它可以看作由直线 y=kx 平移│b│ 个单位长度而得到(当 b>0 时,向上平移;当 b<0 时,向下平移).
3.系数 k 的意义:k 表征直线的倾斜程度,k 值相同的直线相互平行,k 不同的直线相交。 系数 b 的意义:b 是直线与 y 轴交点的纵坐标。
k>0,撇 b>0,与 y 轴交点在 x 轴上方 一二三象限 从左到右上升 Y 随 x 的增大而增大
k>0,撇 b<0,与 y 轴交点在 x 轴下方 一三四象限 从左到右上升 Y 随 x 的增大而增大
K<0,捺 b>0,与 y 轴交点在 x 轴上方 一二四象限 从左到右下降 Y 随 x 的增大而减小
y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数,y 的值称为函 数值. 4.函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法. a、用数学式子表示函数的方法叫做表达式法(解析式法)。 b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。 c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的 方法叫做图像法。 5.求函数的自变量取值范围的方法. (1)要使函数的表达式有意义:a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;
最新北师大版八年级上册数学知识点归纳汇总

最新北师大版八年级上册数学知识点汇总第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件

① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:
①
② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。
北师大版数学八年级上册知识点总结

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a,b,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a ≥0;若|a|=-a,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
北师大版数学八年级上册全册各章知识点总结

北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理(1)直角三角形两直角边a ,b 的平方和等于斜边c的平方,即222c b a =+(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法……(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
#3、勾股数:满足222c b a =+的三个正整数a ,b ,c ,称为勾股数。
常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。
即当a 为奇数且a <b 时,如果b+c=a 2那么a,b,c 就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n >1)都可构成一组勾股数分别是:2n,n 2-1,n 2+1如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状~(4)构建直角三角形解题例1. 已知直角三角形的两直角边之比为3:4,斜边为10。
求直角三角形的两直角边。
解:设两直角边为3x ,4x ,由题意知:()()34100916100251004222222x x x x x x +=+===,,, ∴x=2,则3x=6,4x=8,故两直角边为6,8。
中考突破(1)中考典题例. 如图(1)所示,一个梯子AB 长米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为米,梯子滑动后停在DE 位置上,如图(2)所示,测得得BD=米,求梯子顶端A 下落了多少米]A AEC B C BD (1) (2)思维入门指导:梯子顶端A 下落的距离为AE ,即求AE 的长。
新版北师大版八年级数学上册知识点全面总结

新版北师大版八年级数学上册知识点全面总结第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。
满足222a b c +=的三个正整数称为勾股数。
常见勾股数:(3、4、5)(6、8、10)(5、12、13)(8、15、17)第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a(2)性质:①当a ≥00;当a=aa =。
2.立方根的概念及其性质:(1)概念:若3a ,那么x是a(2a =;②3a = 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
5 (a ≥0,b ≥0) a ≥0,b >0)。
第三章 图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
这点定点称为旋转中心,转动的角称为旋转角。
旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。
八年级数学上册 第四章知识点整理 北师大版

北师大版八上数学第四章知识点整理 一、平行四边形(一)定义和性质:1、定义:两组对边分别平行的四边形叫做平行四边形。
2、性质:平行四边形两对边平行平行四边形对边相等平行四边形的对角相等平行四边形是中心对称图形平行四边形对角线相互平分(二)判定:两组对角线互相平分的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形二、菱形(一)定义和性质:1、定义:一组邻边相等的平行四边形叫做菱形2、性质:菱形的四条边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角,面积等于对角线乘积的一半(二)判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四条边都相等的四边形是菱形三、矩形:(一)定义和性质:1、定义:有一个内角是直角的平行四边形叫做矩形2、性质:矩形的对角线相等,四个角都是直角(二)判定:对角线相等的平行四边形是矩形一个角是直角的平行四边形是矩形四、正方形:(一)定义和性质:1、定义:一组邻边相等的矩形叫做正方形2、性质:正方形具有平行四边形、菱形、矩形的一切性质边:四条边都相等且对边平行角:四个角都是直角对角线:对角线互相平分且垂直、相等(二)判定:一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是90度的菱形是正方形对角线相等的菱形是正方形五、梯形和等腰梯形(一)定义和性质:一组对边平行而另一组对边不平行的四边形叫做梯形,两条腰相等的梯形叫做等腰梯形。
等腰梯形同一底上的两个内角相等,对角线相等。
第 四 章 四 边 形 性 质 探(二)判定:两腰相等的梯形是等腰梯形。
同一底上的两个内角相等的梯形是等腰梯形。
北师大版数学八年级上册重点知识点总结

北师大版《数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
3、勾股数:满足的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“”,读作根号a。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八上数学第四章知识点整理一、平行四边形(一)定义和性质:1、定义:两组对边分别平行的四边形叫做平行四边形。
2、性质:平行四边形两对边平行 平行四边形对边相等 平行四边形的对角相等平行四边形是中心对称图形 平行四边形对角线相互平分(二)判定:两组对角线互相平分的四边形是平行四边形 一组对边平行且相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形 两组对边分别平行的四边形是平行四边形 两组对角分别相等的四边形是平行四边形 二、菱形(一)定义和性质:1、定义:一组邻边相等的平行四边形叫做菱形2、性质:菱形的四条边都相等,两条对角线相互垂直平分,每一条对角线平分一组对角,面积等于对角线乘积的一半(二)判定:一组邻边相等的平行四边形是菱形 对角线互相垂直的平行四边形是菱形 四条边都相等的四边形是菱形 三、矩形:(一)定义和性质:1、定义:有一个内角是直角的平行四边形叫做矩形2、性质:矩形的对角线相等,四个角都是直角 (二)判定:对角线相等的平行四边形是矩形 一个角是直角的平行四边形是矩形四、正方形:(一)定义和性质:1、定义:一组邻边相等的矩形叫做正方形2、性质:正方形具有平行四边形、菱形、矩形的一切性质 边:四条边都相等且对边平行 角:四个角都是直角对角线:对角线互相平分且垂直、相等 (二)判定:一组邻边相等的矩形是正方形 对角线互相垂直的矩形是正方形 有一个角是90度的菱形是正方形 对角线相等的菱形是正方形 五、梯形和等腰梯形(一)定义和性质:一组对边平行而另一组对边不平行的四边形叫做梯形,两条腰相等的梯形叫做等腰梯形。
等腰梯形同一底上的两个内角相等,对第 四 章四 边 形 性 质 探角线相等。
(第四章 相似图形(课本)§1 线段的比(1)如果把大树和小颖的高分别看成如图4 -1所示的两条虚线段AB ,CD ,那么这两条线段的长度比是多少?(2)已知小颖的身高是1.6m ,大树的实际高度是多少? 两条线段长度的比与所采用的长度单有没有关系?通过思考、交流,引导学得出:线段的长度比与所采用的长度单位无关如果选用一个长度单位量得两条线段AB ,CD 的长度分别是m 、n ,那么就说这两条线段的比AB :CD=m :n ,或写成CD AB =nm.其中,线段AB :CD 分别叫做这个线段比的前项和后项.如果把n m 表示成比值k ,那么CDAB =k ,或AB=k ·CD 此处对线段比的前项、后项概念作进一步解析。
例1在某市城区地图(比例尺1:9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm ,10cm.(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢? 解:(1)根据题意,得9000190001==光华大街的实际长度光华大街的图上长度新安大街的实际长度新安大街的图上长度学结合课本进行测量、计算、讨论、交流,尽量给出答案 学交流、探讨学自学,了解“两条线段的比”的概念 注意将本题与所学地理学科进行联系实际长度之比等于图上长度之比,这一结论以后可以直接使用 为成比例线段埋下伏笔随堂练习 因此,新安大街的实际长度是 16×9000=144000(cm ), 144000cm=1440m 光华大街的实际长度是10×9000=90000(cm ) 90000cm=900m(2)新安大街与光华大街的图上长度之比是 16:10=8:5新安大街与光华大街的实际长度使比是14400:90000=8:51、在比例尺为1:8000的某学校地图上,矩形运动场的图上尺寸是1cm ×2cm ,矩形运动场的实际尺寸是多少?2、活中还有哪些利用线段比的事例? 注意单位的换算注意体会利用所求得的结论推导出有用结论 学计算回答通过此问题回答,紧密联系活 §4.2 黄金分割图4-6活中我们见到过许许多多的图形,形态各异,美观大方.那么这些漂亮的图形你能画出来吗?比如,右图是一个五角星图案,如何找点C 把AB 分成两段AC 和BC ,使得画出的图形匀称美观呢?本节课就研究这个问题.Ⅱ.讲授新课在五角星图案中,大家用刻度尺分别度量线段AC 、BC 的长度,然后计算AB AC 、ACBC,它们的值相等吗?相等.所以AC BCAB AC =. 1.黄金分割的定义在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割(golden section ),点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中ABAC≈0.618.投影片(§4.2 A )黄金分割在几何作图上有很多应用,如五角星形的各边是按黄金分割划分的,其中点C 就是线段AB 的一个黄金分割点.作圆的内接正十边形也能归结为黄金分割.黄金分割也被广泛用在建筑设计、美术、音乐、艺术等方面.如在设计工艺品或日用品的宽和长时,常设计成宽与长的比近似为0.618,这样易引起美感;在拍照时,常把主要景物摄在接近于画面的黄金分割点处,会显得更加协调、悦目;舞台上报幕员报幕时总是站在近于舞台的黄金分割点处,这样音响效果就比较好,而且显得自然大方,等等.黄金分割在工厂里也有着普遍的应用.如“优选法”中常用的“0.618法”就是黄金分割的一种应用.既然黄金分割的实用价值这么大,我们就必须把它学好,还要用好,下面我们来学习如何找一条线段的黄金分割点.2.作一条线段的黄金分割点.图4-7如图,已知线段AB ,按照如下方法作图:(1)经过点B 作BD ⊥AB ,使BD =21AB . (2)连接AD ,在DA 上截取DE =DB .(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 你知道为什么吗?若点C 为线段AB 的黄金分割点,则点C 分线段AB 所成的线AC 、BC 间须满足ACBCAB AC =.下面请大家进行验证.自己有困难时可以互相交流.为了计算方便,可设AB =1.证明:∵AB =1,AC =x ,BD =21AB =21 ∴AD =x +21在Rt △ABD 中,由勾股定理,得(x +21)2=12+(21)2∴x 2+x +41=1+41∴x 2=1-x ∴x 2=1·(1-x )∴AC 2=AB ·BC即:ACBC AB AC =即点C 是线段AB 的一个黄金分割点,在x 2=1-x 中整理,得x 2+x -1=0 ∴x =2512411±-=+±- ∵AC 为线段长,只能取正∴AC =215-≈0.618 ∴ABAC≈0.618 ∴黄金比约为0.618. 3.想一想图4-8古希腊时期的巴台农神庙(Parthenom Temple ).把它的正面放在一个矩形ABCD 中,以矩形ABCD 的宽AD 为边在其内部作正方形AEFD ,那么我们可以惊奇地发现,BCABBE BC =,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是黄金比吗?请大家互相交流.因为四边形AEFD 是正方形,所以AD =BC =AE ,又因为BC AB BE BC =,所以AEABBE AE =,即AEBEAB AE =,因此点E 是AB 的黄金分割点,矩形ABCD 宽与长的比是黄金比. 在上面这个矩形中,宽与长的比是黄金比,这个矩形叫做黄金矩形.你学会作了吗?Ⅲ.随堂练习1.解:设AB =a ,根据题意,得AE =2a , 由勾股定理,得EF =EB =22AE AB ++ =422a a +=25a ∴AF =AH =BE -AE =215-a BH =AB -AH =a -a a 253215-=-∴=ABAH215215-=-a a2151553215253-=--=--=a aAH BH ∴AHBH AB AH = ∴点H 是AB 的黄金分割点.§4.3 形状相同的图形(1)如图(1)同一张底片洗出的不同尺寸的照片中,人物的形状改变了吗?(2)如图(2),两个足球的形状相同吗?它们的大小呢?(3)如图(3),两个正方体物体的形状相同吗?(4)如图(4),复印前后纸上对应图形之间分别有什么关系?(1)同一张底片洗出的不同尺寸的照片中,人物的形状没有改变,只是大小不同;(2)两个足球的形状相同,大小不同;(3)两个正方体物体的形状相同;(4)复印前后纸上对应图形之间形状相同,大小不同.发现每一对图形中有什么特点呢?每对图形都是形状相同的图形,从上面的图形中我们大概了解了形状相同的图形的特点,下面我们通过观察,找出形状相同的图形.2.找形状相同的图形在实际活和数学学习中,我们常常会看到许多形状相同的图形,请从下图中找出形状相同的图形.(9)分别是形状相同的图形.3.画形状相同的图形做一做利用下面的方法可以近似地将一个图形放大:1.将2个长短相同的橡皮筋系在一起.2.选取一个图形,在图形外取一个定点.3.将系在一起的橡皮筋的一端固定在定点,把一枚铅笔固定在橡皮筋的另一端.4.拉动铅笔,使2个橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新的图形.这个新图形与已知图形形状相同.请看课本52页中按上述步骤画出的图形.下面请大家自己确定一个图形,然后按照上述步骤画形状相同的图形.如:图4-9。