完整word版数字图像处理实验报告6

合集下载

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。

在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。

2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。

3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。

以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。

4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。

(完整word版)数字图像处理 实验报告(完整版)

(完整word版)数字图像处理 实验报告(完整版)

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。

6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。

7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。

其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。

数字图像处理实验报告Word版

数字图像处理实验报告Word版

《数字图像处理上机》实验报告班级:电信1101姓名:XXXXXX学号:0703110107数字图像处理上机实验1、实验目的了解matlab软件/语言,学会使用matlab的图像处理工具箱(Image Processing Toolbox),使学生初步具备使用该软件处理图像信息的能力,并能够利用该软件完成本课程规定的其他实验和作业。

熟悉常用的图像文件格式与格式转换;熟悉图像矩阵的显示方法(灰度、索引、黑白、彩色);熟悉图像矩阵的格式转换。

,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。

了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力.2、实验要求学生应当基本掌握matlab的操作,掌握matlab图像处理工具箱中最常用的函数用法。

练习图像读写命令imread和imwrite并进行图像文件格式之间的转换。

学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。

3、实验内容及步骤1、图像的显示与格式转换(1)学习matlab的基本操作;(2)使用imread函数读入图像;(3)使用figure函数创建窗口;(4)使用image或imshow函数显示图像;(5)使用colorbar函数在图像的右侧显示图像的亮度条。

2、图像的滤波(1) 考察平均滤波器对高斯噪声污染的图象去噪效果;(2) 考察中值滤波器对高斯噪声污染的图象去噪效果;(3) 考察平均滤波器对椒盐噪声污染的图象去噪效果;(4) 考察中值滤波器对椒盐噪声污染的图象去噪效果。

(5) 考察滤波器模板大小对平均滤波器滤波效果的影响;(6) 考察滤波器模板大小对中值滤波器滤波效果的影响;3、图像的频域变换在Matlab workspace中生成一幅大小为256×256像素的8位灰度图, 背景为黑色,中心有一个宽80像素高40像素的白色矩形。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。

2.掌握数字图像处理的基本方法。

3.掌握常用数字滤波器的性质和使用方法。

4.熟练应用数字图像处理软件进行图像处理。

实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。

% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。

图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。

在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。

RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。

% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。

数字图像处理中的滤波是一种常用的图像增强方法。

滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。

% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。

这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。

下面是数字图像处理在人脸识别应用中的一个简单例子。

% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。

数字图像处理实验6 形态学图像处理

数字图像处理实验6 形态学图像处理

实验6 形态学图像处理一.实验目的:1.掌握形态学图像处理的基本算法:膨胀、腐蚀。

2.掌握MATLAB函数中用于构建结构元的标准函数。

3.掌握开运算、闭运算。

二.实验内容:1.利用MATLAB标准函数构建结构元。

2.运用MATLAB标准函数进行膨胀、腐蚀运算,以及开运算、闭运算三.实验原理:1.构建结构元MATLAB标准函数strel运用各种形状和大小构造结构元素,其基本语法为:se = strel(shape, parameters)其中,shape是指定的希望形状的字符串,而parameters是指定形状信息(如其大小)的一系列参数。

语句形式描述se = strel(‘diamond’, R) 创建一个菱形结构元,其中R是从结构原点到菱形最远点的距离se = strel(‘disk’, R) 创建一个圆盘形结构元,其半径为Rse = strel(‘square’, R) 创建一个方形结构元,其边长为R例:>> se = strel(‘diamond’, 5) //返回一个沿水平和垂直轴扩展5个像素的菱形结构元2.膨胀、腐蚀运算,开运算、闭运算膨胀:MATLAB标准函数imdilate(f, se),f是输入的二值图像,se是用于膨胀的结构元,函数的输出即为膨胀后的二值图像。

腐蚀:MATLAB标准函数imerode(f, se),f是输入的二值图像,se是用于腐蚀的结构元,函数的输出即为腐蚀后的二值图像。

开运算(先腐蚀再膨胀):MATLAB标准函数imopen(f, se),f是输入的二值图像,se是结构元,函数的输出即为开运算后的二值图像。

闭运算(先膨胀再腐蚀):MATLAB标准函数imclose(f, se),f是输入的二值图像,se是结构元,函数的输出即为闭运算后的二值图像。

例:>>f = imread('E:\医学图像处理实验讲义\实验六\mask.bmp')>>se = strel('diamond', 5)>> fd = imdilate(f, se) //膨胀运算>>imshow(f)>>figure, imshow(fd)>>se = strel('diamond', 25)>>fd = imdilate(f, se)>>figure, imshow(fd)四.实验报告:1.创建一个parameters = 1的菱形结构元,在报告中画出该结构元的形状及元素值,并用该结构元对图像text.bmp进行膨胀运算。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

(完整word版)数字图像处理实验报告6

(完整word版)数字图像处理实验报告6

(完整word版)数字图像处理实验报告6数字图像处理与分析实验报告学院:班级:姓名:学号:实验六细胞图像的分割与测量一、实验目的1. 通过分析细胞图像特点,完成细胞图像的分割和测量,并分析测量结果。

2. 将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。

二、实验要求1. 对比中值、均值和形态学开闭运算对细胞图像的滤波效果,选择适用于细胞图像的滤波方法2. 运用大津阈值对细胞图像分割,观察分割后噪声情况,观察目标边缘处的分割效果;(使用函数:im2bw)3. 实现连通区域的编号;(使用函数:bwlabel)4. 计算各连通区域的相关信息,如面积、重心等。

(使用函数:regionprops )三、实验步骤1、预处理去噪x=imread('C:\Documents and Settings\Administrator\桌面\CHEN2-7.BMP');y=medfilt2(rgb2gray(h));subplot(2,2,1)imshow(x)title('原图像');subplot(2,2,2)imshow(y)title('中值滤波处理');I=fspecial('average')z=imfilter(rgb2gray(x),I);subplot(2,3,4)imshow(z)title('均值滤波处理');se = strel('ball',5,5);m = imopen(rgb2gray(x),se);subplot(2,3,5)imshow(m)title('形态学开运算处理');se = strel('ball',5,5);n = imclose(rgb2gray(x),se);subplot(2,3,6)imshow(n)title('形态学闭运算处理');2、大津阈值分割先做出灰度图像的直方图,根据直方图选取合适的分割灰度值x=imread('C:\Documents and Settings\Administrator\桌面\CHEN2-7.BMP');b=rgb2gray(x);imhist(b);title('灰度直方图');由上图可知,选择阈值在185/255附近可以达到最好的分割效果,则有:x=imread('C:\Documents and Settings\Administrator\桌面\CHEN2-7.BMP'); b=rgb2gray(x);y1=medfilt2(b);w1=im2bw(y1,185/255);h=fspecial('average') ;y2=imfilter(b,h);w2=im2bw(y2, 185/255);se=strel('line',11,90);y3=imopen(b,se);w3=im2bw(y3, 185/255);y4=imclose(b,se);w4=im2bw(y4, 185/255);figuresubplot(2,2,1)imshow(w1)title('中值大津阈值分割');subplot(2,2,2)imshow(w2)title('均值大津阈值分割');subplot(2,2,3)imshow(w3);title('开运算大津阈值分割');subplot(2,2,4)imshow(w4);title('闭运算大津阈值分割');3、目标编号标记x=imread('C:\Documents and Settings\Administrator\桌面\CHEN2-7.BMP'); b=rgb2gray(x);se=strel('ball',5,5);y4=imclose(b,se);w4=im2bw(y4, 185/255);z=imcomplement(w4);subplot(2,2,1)imshow(z);title('取反后图像')z=bwareaopen(z,200);subplot(2,2,2);imshow(z);title('去除像素点小于200的部分')BW = logical(z);L = bwlabel(BW,4);subplot(2,2,3);imshow(L);title('四连通')M=bwlabel(BW,8);Subplot(2,2,4)imshow(M);title('八连通')4、测量各个细胞的面积等参数x=imread('C:\Documents and Settings\Administrator\桌面\CHEN2-7.BMP'); b=rgb2gray(x);se = strel('ball',5,5);I0=imclose(b,se);I11=im2bw(I0,185/256);I12=imcomplement(I11);I13= bwlabel(I12);s = regionprops(I13, 'centroid');centroids = cat(1, s.Centroid);figure(1);imshow(I13)title('重心标记图');hold onplot(centroids(:,1), centroids(:,2), 'r*')hold offm=regionprops(I13,'Area');areas=cat(1, m.Area);figure(3);plot(areas)如图为重心标记和各区域面积分布图:1.为何需要预处理?直接分割的效果如何?答:如果不进行预处理,在后续处理时如进行阈值分割会产生边缘毛刺,使效果不明显;2.选择何种预处理方法?a) 中值适合于去除脉冲噪声和图像扫描噪声,同时不会使图像变模糊,但对消除细节较多的图像不适合用中值滤波;b) 均值可以有效的是噪声得到消除,但同时图像变得模糊,丢失了一些图像的细节部分;c) 形态学开运算对于消除背景噪声有很好的效果,尤其是一些胡椒噪声;d) 形态学闭运算对消除前景噪声效果较好,如:沙眼噪声;通过以上分析及结合图像处理效果可以得出,利用形态学开闭运算对滤除图像中的沙眼噪声和胡椒噪声效果较好;3.分析预处理的目的,有针对性的选择合适的方法答:预处理的目的是为了事先消除图像的噪声,好为后处理做准备;四、思考题1.若将预处理去噪的步骤省掉,则如何在目标编号的过程中加入滤波处理;答:若预处理中没有去噪步骤,从图像处理结果可以看出,经过阈值分割后,图像中还有很多椒盐噪声,要在编号中滤除这些噪声,可通过形态学开运算后,再进行取反操作等后续操作;2.将去噪过程与阈值分割前后调换,选择哪种滤波方法可以滤除二值图像上的噪声;答:通过阈值分割之后,图像中有很多胡椒噪声,可通过形态学开操作将其去除;3.总结大津阈值在细胞图像分割中存在的问题,想一想你所学的算法中哪种算法更适合于细胞图像的分割。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理与分析




学院:
班级:
姓名:
学号:
实验六细胞图像的分割与测量
一、实验目的
1. 通过分析细胞图像特点,完成细胞图像的分割和测量,并分析测量结果。

2. 将图像预处理、分割、分析等关键技术结合起来,理论与实践相结合,提高图像处理关键技术的综合应用能力。

二、实验要求
1. 对比中值、均值和形态学开闭运算对细胞图像的滤波效果,选择适用于细胞图像的滤波方法
2. 运用大津阈值对细胞图像分割,观察分割后噪声情况,观察目标边缘处的分割效果;(使用函数:im2bw)
3. 实现连通区域的编号;(使用函数:bwlabel)
4. 计算各连通区域的相关信息,如面积、重心等。

(使用函数:regionprops )
三、实验步骤
预处理去噪大津阈值分割目标编号标记测量各个细胞的面积等参数输出测量结果
、预处理去噪1
); x=imread( \CHEN2-7.BMP'桌面Settings\Administrator\'C:\Documents and
y=medfilt2(rgb2gray(h));
subplot(2,2,1)
imshow(x)
); title(''原图像subplot(2,2,2)
imshow(y)
);
title('中值滤波处理'
I=fspecial() 'average'z=imfilter(rgb2gray(x),I);
subplot(2,3,4)
imshow(z)
title(); ''均值滤波处理se = strel(,5,5);
'ball'm = imopen(rgb2gray(x),se);
subplot(2,3,5)
imshow(m)
title(); '形态学开运算处理'se = strel(,5,5); 'ball'n = imclose(rgb2gray(x),se);
subplot(2,3,6)
imshow(n)
title(); ''形态学闭运算处理
2、大津阈值分割
先做出灰度图像的直方图,根据直方图选取合适的分割灰度值
);桌面\CHEN2-7.BMP'x=imread('C:\Documents and
Settings\Administrator\b=rgb2gray(x);
imhist(b);
title('灰度直方图');
由上图可知,选择阈值在附近可以达到最好的分割效果,则有:
185/255);\CHEN2-7.BMP''C:\Documents and Settings\Administrator\桌面
x=imread(b=rgb2gray(x);
y1=medfilt2(b);w1=im2bw(y1,185/255);
) ;h=fspecial('average'y2=imfilter(b,h);w2=im2bw(y2, 185/255);
,11,90);se=strel('line'y3=imopen(b,se);w3=im2bw(y3, 185/255);
y4=imclose(b,se);w4=im2bw(y4, 185/255);
figure subplot(2,2,1)imshow(w1));''中值大津阈值分割title(subplot(2,2,2) imshow(w2));'均值大津阈值分割title('subplot(2,2,3)imshow(w3););开运算大津阈值分割'title('subplot(2,2,4)imshow(w4);); 闭运算大津阈值分割title(''
3、目标编号标记
);桌面\CHEN2-7.BMP'x=imread('C:\Documents and Settings\Administrator\
b=rgb2gray(x);,5,5);'ball'se=strel(y4=imclose(b,se);w4=im2bw(y4, 185/255); z=imcomplement(w4);subplot(2,2,1)imshow(z);title('取反后图像')
z=bwareaopen(z,200);
subplot(2,2,2);
imshow(z);
title('去除像素点小于200的部分')
BW = logical(z);
L = bwlabel(BW,4);
subplot(2,2,3);
imshow(L);
title('四连通')
M=bwlabel(BW,8);
Subplot(2,2,4)
imshow(M);
)
'八连通
'title(
4、测量各个细胞的面积等参数);\CHEN2-7.BMP' x=imread('C:\Documents and
Settings\Administrator\桌面b=rgb2gray(x);
se = strel(,5,5); 'ball'I0=imclose(b,se);
I11=im2bw(I0,185/256);
I12=imcomplement(I11);
I13= bwlabel(I12);
s = regionprops(I13, ); 'centroid'centroids = cat(1, s.Centroid);
figure(1);
imshow(I13)
title(); '重心标记图'hold on plot(centroids(:,1), centroids(:,2), ) 'r*'hold off m=regionprops(I13,); 'Area'areas=cat(1, m.Area);
figure(3);
plot(areas)
如图为重心标记和各区域面积分布图:
1.为何需要预处理?直接分割的效果如何?
答:如果不进行预处理,在后续处理时如进行阈值分割会产生边缘毛刺,使效果不明显;
2.选择何种预处理方法?
a)中值适合于去除脉冲噪声和图像扫描噪声,同时不会使图像变模糊,但对消除细节较多的图像不适合用中值滤波;
b)均值可以有效的是噪声得到消除,但同时图像变得模糊,丢失了一些图像的细节部分;
c)形态学开运算对于消除背景噪声有很好的效果,尤其是一些胡椒噪声;
d)形态学闭运算对消除前景噪声效果较好,如:沙眼噪声;
通过以上分析及结合图像处理效果可以得出,利用形态学开闭运算对滤除图像中的沙眼噪声和胡椒噪声效果较好;
3.分析预处理的目的,有针对性的选择合适的方法
答:预处理的目的是为了事先消除图像的噪声,好为后处理做准备;
四、思考题
1.若将预处理去噪的步骤省掉,则如何在目标编号的过程中加入滤波处理;
答:若预处理中没有去噪步骤,从图像处理结果可以看出,经过阈值分割后,图像中还有很多椒盐噪声,要在编号中滤除这些噪声,可通过形态学开运算后,再进行取反操作等后续操作;2.将去噪过程与阈值分割前后调换,选择哪种滤波方法可以滤除二值图像上的噪声;
答:通过阈值分割之后,图像中有很多胡椒噪声,可通过形态学开操作将其去除;
3.总结大津阈值在细胞图像分割中存在的问题,想一想你所学的算法中哪种算法更适合于细胞图像的分割。

答:大津阈值是在最小二乘法的基础上建立起来的分割技术,是基于阈值的分割方法,因此在判断阈值时计算量大;可使用canny算子进行边缘检测;
五、能否利用所学过的图象分析方法,设计一套算法流程,实现如下图所示的普通信封上邮政编码的定位和识别?车牌定位和识别?
(一)普通信封上邮政编码的定位和识别
答:1、预处理,先将图像变成灰度图像,通过滤波去掉图像中的噪声
2、将变成的灰度图像通过大津阈值法进行二值化处理
3、采用Canny算子对图像进行边缘提取
4、使用形态学闭运算对图像中的毛刺进行去除,尽量改变需要的区域
5、对得到的边缘进行多边形逼近,逼近邮政编码区域
6、对邮政编码区域进行识别,根据长宽比的特征对数字进行识别
(二)车牌定位和识别
答:1、根据车牌的蓝白相间的特征将车牌中的蓝色分量提取出来
2、对图像进行预处理,得出图像的灰度图像
3、利用大津阈值法进行图像的二值化
4、根据车牌的矩形特征将车牌提取出来
5、根据数字的特征将车牌中的数字识别出来
六、实验总结
本次实验是这学期的最后一次实验,也就是因为这个原因,大家在进行实验时都特别的专心认真。

这次实验的许多内容是要我们自己进行编程的,在自己进行编程的过程中学会对图像的预处理去噪、大津阈值分割、目标编号标记和相关参数的测量。

在和同学的交流学习过程中,我们慢慢掌握其中的诀窍,关键还是在于掌握对于图像这样操作的思想流程。

在我看来,这次实验最有意思的地方就是最后老师给的两个构思题。

通过前面的练习,自己独立构思,完成生活中需要的数字图像处理要求,这样不但锻炼了我们自己的思维,而且还使得我们对学过的知识进行了加固。

这是本学期的最后一次实验,我期待着和老师在下学期的见面。

不出意外的话,对数字图像进行处理了。

TLABMA下学期再见的时候,我应该还能很熟练的运用.。

相关文档
最新文档