人教版七年级下册数学第八章 小结与复习
(2021年整理)新人教版七年级数学下册教案全册2017-2018

新人教版七年级数学下册教案全册2017-2018编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版七年级数学下册教案全册2017-2018)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版七年级数学下册教案全册2017-2018的全部内容。
魏城镇初级中学七年级下数学教案备课人:赵刚七年级数学教学工作计划2017—2018学年度第二学期基本情况分析1、学生情况分析:学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现两班学生尖子生少,中等生较多,差生出现,上课部分学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。
学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间强化几何训练,培养学生良好的学习习惯。
全面提升学生的数学素质。
2、教材分析:第五章、相交线与平行线:本章主要在第四章“图形认识初步"的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行.本章重点:垂线的概念和平行线的判定与性质。
本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。
第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根. 2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算.本章重点:平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.本章难点:实数的概念,实数与数轴一一对应的关系第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。
第八章小结与复习

5.计算. (1) (0.125)16×(-8)17 15×(215)3 (2) (0.125) 4· 5· 4 (3) 2 4 (-0.125)
6.(1)比较340与430的大小; (2)比较2100与375的大小.
同底数幂的除法知识点梳理:
1.同底数幂的除法运算性质:同底数幂相除,
底数不变,指数相减.
一、同底数幂的乘法
am·an=am+n(m、n都是正整数)
同底数幂相乘,底数不变 ,指数 相加 . m n s am+n+s
a ·a ·a =
(m、n、s都是正整数) 当我们学了负指数幂之后,指数不再受正负性的限 制.
例:
am· -n=am-n a am· -n· -p= a a am-n-p
口答:
初中数学七年级下册 (苏科版)
用科学记数法表示下列各数.
(1) 360000000=____________;
(2) -2730000=_____________; (3) 0.00000012=____________;
(4) ) -0.00000000901=_________;
m÷an=am–n (m,n为正整数) a
2.任何不等于0的数的0次幂等于1.
a = 1(a ≠ 0)
3.任何不等于0的数的-n次幂,等于这个数的 n次幂的倒数.(n是正整数)
0
1 a = n (a ≠ 0,n为正整数) a
-n
1.计算. (1) m19÷m14· 3÷m2· m m
(2) (-x2y)5÷(-x2y)3
解答: (1) 已知:8· 2m-1· 3m=217,求 2 2 m的值. m-n=7,am+n=13,求 (2) 已知a 2m. a
冀教版七年级数学下册第八章知识汇总

冀教版七年级数学下册第八章知识汇总整式的乘法知识点一:同底数幂相乘同底数幂的乘法⎪⎪⎩⎪⎪⎨⎧⋅==⋅++数数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:是正整数相加。
即法则:底数不变,指数a a a a a a m n m n m m n n n ),m ( 知识点二:幂的乘方与积的乘方1、幂的乘方⎪⎩⎪⎨⎧==)()(),(a a a a m n m m n mn mn n 逆运算:是正整数即底数不变,指数相乘。
积的乘方⎪⎩⎪⎨⎧=⋅⋅=(ab)(ab)n n n n n n )(,b a b a n 逆运算;是正整数再把所得的幂相乘。
即把每一个因式分别乘方 知识点三:同底数幂的除法 同底数幂的除法⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧==⨯==⨯=≠=≠=>≠=÷-m nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)0010(02.50000502.0)1-10(96.6696000),0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。
即任何不等于零指数幂的意义:规定是正整数变,指数相减。
即同底数幂相除,底数不知识点四.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.知识点五.单项式与多项式的乘法法则:a(b+c+d)= ab + ac + ad单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.知识点六.多项式与多项式的乘法法则:( a+b)(c+d)= ac + ad + bc + bd多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.知识点七.乘法公式:①完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.②平方差公式:(a+b)(a-b)=a2-b2语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.。
最新人教版初中数学目录(详细)

22.3实际问题与二次函数
数学活动
小结
复习题22
第二十三章 旋转
23.1图形的旋转
23.2中心对称
23.3课题学习 图案设计
数学活动
小结
复习题23
第二十四章 圆
24.1圆的有关性质
24.2点和圆、直线和圆的位置关系
24.3正多边形和圆
24.4弧长和扇形面积
数学活动
小结
复习题24
数学活动
小结
复习题2
第三章一元一次方程
3.1从算式到方程
阅读与思考“方程”史话3.2解一元一次方程(一)——合并同类项与移项
实验与探究无限循环小数化分数
3.3解一元一次方程(二)——去括号与去分母
3.4实际问题与一元一次方程
数学活动
小结
复习题3
第四章几何图形初步
4.1几何图形
阅读与思考几何学的起源
4.2直线、射线、线段
27.2相似三角形
观察与猜想 奇妙的分形图形
27.3位似
信息技术应用 探索位似的性质
数学活动
小结
复习题27
第二十八章 锐角三角函数
28.1锐角三角函数
阅读与思考 一张古老的“三角函数表”
28.2解直角三角形及其应用
阅读与思考 山坡的高度
数学活动
小结
复习题28
第二十九章 投影与视图
29.1投影
29.2三视图
阅读与思考 视图的产生与应用
29.3课题学习 制作立体模型
数学活动
小结
复习题29
13.4课题学习 最短路径问题
数学活动
小结
复习题13
七年级数学下册《第八章 幂的运算》复习教案 (新版)苏科版

第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
人教版初中数学教案7篇

人教版初中数学教案7篇教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页教学目标(1)根底学问与技能目标:会用代入消元法解简洁的二元一次方程组。
(2)过程与方法目标:经受探究代入消元法解二元一次方程的过程,理解代入消元法的根本思想所表达的化归思想方法。
(3)情感、态度与价值观目标:通过供应适当的情境资料,吸引学生的留意力,激发学生的学习兴趣;在合作争论中学会沟通与合作,培育良好的数学思想,逐步渗透类比、化归的意识。
教学重、难点关键教学重点:用代入消元法解二元一次方程组教学难点:探究如何用代入消元法解二元一次方程组,感受“消元”思想。
教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。
学生分析授课对象为少数民族地区的七年级学生,根底学问薄弱,特殊是对一元一次方程内容把握的不够透彻,再加上厌学现象严峻,团结协作的力量差,本节课设计了他们感兴趣的篮球竞赛和常用的消毒液作为题材来讨论二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。
教学内容分析:本节主要内容是在上节已熟悉二元一次方程(组)和二元一次方程(组)的解等概念的根底上,来学习解方程组的第一种方法——代入消元法。
并初步体会解二元一次方程组的根本思想“消元”。
二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学学问的一个回忆和提高,同时,也为后面的利用方程组来解决实际问题打下了根底。
通过实际问题中二元一次方程组的应用,进一步增加学生学习数学、用数学的意识,体会学数学的价值和意义。
初中阶段要把握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的挨次安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中稳固前面的学问,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
七年级数学下册目录人教版

七年级数学下册目录人教版第五章相交线与平行线5.1交叉线观察与猜想看图时的错觉5.2平行线及其确定5.3 平行线的性质应用信息技术探索两条直线的位置关系5.4 平移数学活动小结复习问题5第六章实数6.1平方根6.2 立方根6.3实数阅读与思考为什么√2不是有理数数字活动小结复习问题6第七章平面直角坐标系7.1平面直角坐标系阅读与思考用经纬度表示地理位置7.2坐标法的简单应用数学活动总结复习题7第八章二元一阶方程组8.1 二元一次方程组8.2消去法——求解二元线性方程组8.3 实际问题与二元一次方程组8.4三元一次方程的求解阅读与思考一次方程组的古今表示及解法数学活动小结复习问题8第九章不等式与不等式组9.1不平等阅读与思考用求差法比较大小9.2一元线性不等式9.3 一元一次不等式组数学活动小结复习问题9第十章数据的收集、整理与描述10.1统计调查实验与探究瓶子中有多少粒豆子10.2直方图信息技术应用利用计算机画统计图10.3从数据谈节水的专题研究数学活动总结复习题10部分汉英词汇索引一、认识三角形1.三角形:由三条不在同一条直线上的线段组成的图形,其头部和尾部顺序相连。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
已知三条线段来确定是否可以形成三角形,并且通过知道两条边来获得第三条边的值范围三、三角形的内角和是180°;直角三角形的两锐角互余。
三角形的三个角都是锐角4、三角形按角分类直角三角形有一个角是直角钝角三角形有一个钝角5、三角形的特殊线段:三角形的中间线:连接顶点和对边中点的线段。
这两个三角形分成相等的区域b三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。
C三角形高度:从顶点到对边的垂直线段。
绘制每个三角形二、全等三角形:1.全等三角形:两个可以重合的三角形。
2、全等三角形的性质:全等三角形的对应边、对应角相等。
3.全等三角形的判定:判定方法所容纳之物简称并排三边对应相等的两个三角形全等sss边角边两边角度相等的两个三角形是全等的sas角落两角与这两角的夹边对应相等的两个三角形全等阿萨角角边两个三角形的两个角对应于其中一个三角形的另一侧,这两个三角形是全等的 aas斜切直角边斜边与一条直角边对应相等的两个直角三角形全等hl注意:三个角对应相等的两个三角形不能判定两个三角形形全等;aaa如果两条边对应于一条边的同一对角线,则无法确定两个三角形的同余。
新人教版七年级数学下册第八章 小结与复习

第八章复习教案教学设计思想本课是第八章的章节复习课,是学生再认知的过程,因此本课教学时老师提出问题,引导学生独立完成,从过程中提高学生对问题的进一步认识。
首先让学生思考回答:①二元一次方程组的解题思路及基本方法。
②列一次方程组解应用题的步骤;然后师生共同讲评训练题;最后小结。
教学目标知识与技能熟练地解二元一次方程组;熟练地用二元一次方程组解决实际问题;对本章的内容进行回顾和总结,进一步感受方程模型的重要性。
过程与方法通过反思二元一次方程组应用于实际的过程(由实际问题中的数量关系,经“逐步抽象”到建立方程组(实现数学化),由方程组的解再到实际问题的答案),体会数学模型应用于实际的基本步骤。
情感态度价值观通过反思消元法,进一步强化数学中的化归思想;学会如何归纳知识,反思自己的学习过程。
教学方法:复习法,练习法。
重、难点重点:解二元一次方程组、列二元一次方程组解应用题。
难点:如何找等量关系,并把它们转化成方程。
解决办法:反复读题、审题,用简洁的语言概括出相等关系。
课时安排1课时。
教具准备投影片教学过程设计(一)明确目标前面已学过二元一次方程组及一次方程组的应用题,这一节课主要把这一部分内容小结一下,并加以巩固练习。
(二)整体感知本章含有两个主要思想:消元和方程思想。
所谓方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系人手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决,方程思想是中学数学中非常重要的数学思想方法之一,它的应用十分广泛。
(三)复习通过提问学生一些相关问题,引导总结总结出本节的知识点,形成以下的知识网络结构图。
(四)练习1.2x -5y=18找学生写出它的五个解。
2.4(x y 1)3(1y)2y x 223--=--⎧⎪⎨+=⎪⎩分别用代入消元法、加减消元法求出它的解来。
答案:{x 2y 3== 3.1号仓库与2号仓库共存粮450吨,现从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,结果2号仓库所余的粮食比1号仓库所余的粮食多30吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a=3, b=1.
2a-2b=4, 2a+2b=8.
所以6a-3b=6×3-3×1=15.
专题四 二元一次方程组的实际应用
【例5】某汽车运输队要在规定的天数内运完一批货物, 如果减少6辆汽车则要再运3天才能完成任务;如果增 加4辆汽车,则可提前一天完成任务,那么这个汽车运 输队原有汽车多少辆?原规定运输的天数是多少?
【迁移应用3】 已知-4xm+nym-n与-2x7-my1+n是同类项,求m,n的值.
解:由题意得
m+n=7-m, m-n=1+n.
解得
m=3, n=1.
【迁移应用4】 已知方程组 aaxx+-bbyy==48,的解为 xy==22,,则求6a-3b的值.
解:将 xy==22,代入原方程组得
解得
解:k=14
(提示:xy
2k 6,) 4k
5.A、B两地相距36千米.甲从A地出发步行到B地,乙从B 地出发步行到A地.两人同时出发,4小时相遇,6小时后,甲 所余路程为乙所余路程的2倍,求两人的速度.
解:设甲、乙的速度分别为x千米/时和y千米/时.
依题意可得:
4x 4 y
解得x=2,把x=2代入③得 y=-1.
由此可得二元一次方程组的解是
x=2, y=-1.
【例4】用加减消元法解方程组
3(x-1)=4(y-4), 5(y-1)=3(x+5).
解: 化简整理得
3x-3=4y-16, ① 3x+15=5y-5 , ②
由②-①得 18=y+11,解得y=7, 把y=7代入①得 3x=28-16+3,
4y 2x
36, 2(4x
2 y),
解得x 4,源自 y5.
答:甲、乙的速度分别为4千米/时和5千米/时.
解得x=5.
由此可得二元一次方程组的解为
x=5, y=7.
【归纳拓展】 ①代入消元法是将其中的一个方程写成“y=”或 “x=”的形式,并把它代入另一个方程,得到一个 关于x或y的一元一次方程求得x或y值. ②加减消元法是通过两个方程两边相加(或相减) 消去一个未知数,把二元一次方程组转化为一元一 次方程.
x-by+4=0.
把x=1,y=-2代入方程组
可得:
a+4=3, 1+2b=-4,
解得:a=-1,b=-2.5,则a+b=-3.5.
专题三 代入消元法与加减消元法
【例3】用代入法消元法解方程组
3x-y=7, 5x+2y=8.
解: 3x-y=7, ①
5x+2y=8 ,②
由①可得y=3x-7 , ③
将③代入②得 5x+2(3x-7)=8,
-x+4y=4 ,②
由②可得x=4y-4 ,③
把③代入①可得 3(4y-4)-6y=18, 解得y=5.
把y=5代入③得 x=16. 由此可得
x=16, y=5.
答:原有汽车16辆,原规定完成的天数为5天.
【归纳拓展】利用方程的思想解决实际问题时, 1.首先要找准等量关系式,找等量关系式时要注意题干
得 6y+4=x,
解得
x=514, y=85.
7(y-11-1)=x-3,
答:设该年级寄宿学生有514人,宿舍有85间.
课堂小结
1.二元一次方程(组)的定义及解的定义 2.二元一次方程组的解法 3.二元一次方程组的应用
课后训练
1.下列方程是二元一次方程的是( D )
A.xy+8=0
B.
1 x
1 y
第八章 二元一次方程组
小结与复习
知识网络
专题复习
课堂小结
课后训练
知识网络
数学问题
实际问题
设未知数,列方程组
(二元或三元 一次方程组)
实际问题 的答案
检验
解 方 程
代入法 加减法
组(消元)
数学问题的解 (二元或三元一次
方程组的解)
专题复习
专题一 二元一次方程与二元一次方程组
【例1】若x2m-1+5y3n-2m=7是二元一次方程,则m= 1 ,
解得:a=-1,b=1.5.
【归纳拓展】一般情况下,提到二元一次方程(组) 的解,须先把解代入二元一次方程(组),得到解 题需要的关系式,然后解关系式,即可解决问题.
【迁移应用2】
已知x=1,y=-2满足(ax-2y-3)2+ |x-by+4 |=0,求a+b的值.
ax-2y-3=0,
解:由题意可得:
解:由题可得:|n| -1=1,m≠3,m2-8=1,n ≠-2. 解得:m=-3,n=2.
专题二 二元一次方程与二元一次方程组的解
【例2】已知x=1,y=-2是二元一次方程组 ax-2y=3,的
x-by=4
解,求a,b的值.
解: 把x=1,y=-2代入二元一次方程组得
a+4=3, 1+2b=4,
n= 1 .
2m-1=1,
解析: 由二元一次方程的定义可得:
3n-2m=1, 解得: m=1,
n=1.
【归纳拓展】首先理解二元一次方程或二元一次方 程组定义的几大因素,并且通过定义得到需要的等 式,由等式得到最后的求解.
【迁移应用1】
已知方程(m-3) x n 1+(n+2) ym28 =0是关于x、y的二元一 次方程,求m、n的值.
中提到的等量关系的语句, 2.根据等量关系列得方程,
主要步骤是“找”“设”“列”“解”“答”,一步 都不能少.
【迁移应用5】 某校七年级安排宿舍,若每间宿舍住6人,则有4人住 不下,若每间住7人,则有1间只住3人,且空余11间宿 舍,求该年级寄宿学生有多少人?宿舍有多少间?
解:设该年级寄宿学生有x人,宿舍有y间.根据题意可
23
C.x2-2x-4=0
D.2x+3y=7
2.已知x=2,y=1是方程kx-y=3的解,则k= 2 .
3.已知方程x-2y=4,用含x的式子表示y为_y___x _2_4_;
用含y的式子表示x为___x=__2_y+__4__.
4.方程组
2x 3x
3y 5y
k, k2
中,x与y的和为12,求k的值.
分析:等量关系式: ①减少6辆汽车后运输的货物=原规定运输货物; ②增加4辆汽车后运输的货物=原规定的货物。
解:设这个汽车运输队原有汽车x辆,原规定完成的天
数为y天,每辆汽车每天的运输量为1. 根据题意可得 (x-6)(y+3)=xy,
(x+4)(y-1)=xy.
化简整理得: 3x-6y=18, ①