北京市海淀区2020年中考数学模拟试题(二)有答案精析
2020年北京市海淀区部分学校中考数学二模试卷(含答案解析)

2020年北京市海淀区部分学校中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A. 点A与点BB. 点B与点CC. 点B与点DD. 点A与点D2.如图,在△ABC中,AB边上的高是()A. CEB. ADC. CFD. AB3.下列选项的四个图形中是如图所示的侧面展开图的是()A.B.C.D.4.掷一个骰子时,观察上面的点数,点数为奇数的概率是()A. 12B. 13C. 14D. 155.下列四个图形中,是中心对称图形的是()A. 等腰梯形B. 正三角形C. D. 正五边形6.一个正方形的面积等于30,则它的边长a满足()A. 4<a<5B. 5<a<6C. 6<a<7D. 7<a<87.数据21、12、18、16、20、21的众数和中位数分别是()A. 21和19B. 21和17C. 20和19D. 20和188.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A. 这是一次1500m赛跑B. 甲、乙同时起跑C. 甲、乙两人中先到达终点的是乙D. 甲在这次赛跑中的速度为5m/s二、填空题(本大题共8小题,共16.0分)9.分解因式:ax2−4ax+4a=.10.对于分式x2−2x−3,当x=______ 时,分式无意义;当x=______ 时,分式值为零.x−311.有一个函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可以是________.(任写出一个)12.七年级和八年级学生分别到甲、乙纪念馆参观,共529人,到乙纪念馆的人数比到甲纪念馆人数的2倍少26人.设到甲纪念馆的人数为x人,则可列方程为________________.13.已知代数式x2+2x的值是2,则代数式3x2+6x−8的值是______.14.如图,在平面直角坐标系xOy中,图形L2可以看作是由图形L1经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由图形L1得到图形L2的过程____.15.如图,⊙O的半径为5,PA、PB是⊙O的切线,切点分别为A、B,∠APB=90°,则PA=__________,PO=__________,AB=__________.16.如图,已知等边三角形OAB的顶点O(0,0),A(0,3),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2018次后,顶点B的坐标为______.三、计算题(本大题共1小题,共8.0分)17.解不等式1−x3≤1−2x7,并把它的解集表示在数轴上.四、解答题(本大题共7小题,共60.0分)18.计算:(13)−1−√12+3tan30°+|√3−2|.19.已知关于x的一元二次方程:x2−2x−k−2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.20.如图,一次函数y=kx+2的图形与反比例函数y=mx的图象交于点P,点P在第一象限,PA⊥x轴于点A,一次函数的图象分别交x轴、y轴于点C、D,且S△COD=1,COOA =12.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象直接写出当x>0时,一次函数值大于反比例函数的值的x的取值范围.21.如图,AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,连接AC,BC,OP,AC与OP相交于点D.(1)求证:∠B+∠CPO=90°;(2)连结BP,若AC=125,sin∠CPO=35,求BP的长.22.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的表达式.(2)将抛物线y=−12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后抛物线的表达式.23.如图,在△ABC中,AC=BC,F为底边AB上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BEEC的值.24.若两个位置不同的二次函数的图象经过适当平移能完全重合,则称这两个二次函数为“全等二次函数”.(1)请写出两个“全等二次函数”,并说明怎样平移能使它们的图象重合;(2)已知关于x的二次函数y1=a1x2+b1x+c1和y2=a2x2+b2x+c2是“全等二次函数”,若函数y1−y2的图象经过原点,求c1−c2b1−b2(b1−b2≠0)的值;(3)已知关于x的两个“全等二次函数”y1=a1x2+b1x+c1和y2=a2x2+b2x+c2的图象的顶点A、B均在x轴上,与y轴的交点分别为点C、D.当AB=CD时,求c1−c2b1−b2的值(用含a1或a2的式子表示)(b1−b2≠0).【答案与解析】1.答案:D解析:解:如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是点A和点D,故选D观察数轴,利用相反数的定义判断即可.此题考查了相反数,以及数轴,熟练掌握相反数的定义是解本题的关键.2.答案:A解析:解:过点C作AB的垂线段CE,则CE为AB边上的高,故选:A.从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.本题考查了三角形的高线的定义,是三角形的顶点到对边所在直线的垂线段.3.答案:C解析:【试题解析】本题主要考查几何体侧面展开图的知识,解答本题的关键是知道几何体侧面展开图的特点.解:根据几何体侧面展开图的特点,知道的侧面展开图是.故选C.4.答案:A解析:解:掷一个骰子,观察向上的面的点数,有6种情况,则点数为奇数有3种情况,故点数为奇数的概率为36=12,故选:A.本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m.n5.答案:C解析:此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.6.答案:B解析:解:∵√25<√30<√36,∴5<√30<6.故选:B.直接得出5<√30<6,进而得出答案.此题主要考查了估算无理数的大小,正确估算出√30的取值范围是解题关键.7.答案:A解析:解:在这一组数据中21是出现次数最多的,故众数是21;数据按从小到大排列:12、16、18、20、21、21,中位数是(18+20)÷2=19,故中位数为19.故选:A.根据众数和中位数的定义求解即可.本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两个数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.8.答案:B解析:本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.根据函数图象对各选项分析判断后利用排除法求解.解:A.路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项不符合题意;B.加起跑后一段时间乙开始起跑,错误,故本选项符合题意;C.乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项不符合题意;=5m/s,正确,故本选项不符合题意.D.甲在这次赛跑中的速度为1500300故选B.9.答案:a(x−2)2解析:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2−2ab+b2=(a−b)2.解:ax2−4ax+4a=a(x2−4x+4)=a(x−2)2.故答案为a(x−2)2.10.答案:3;−1解析:本题考查了分式有意义的条件和分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.分式无意义时,分母等于零;分式的值为零时,分子等于零且分母不等于零.解:依题意得:x−3=0,解得x=3,所以x=3时,分式无意义;依题意得:x2−2x−3=0且x−3≠0,即(x−3)(x+1)=0且x−3≠0,所以x+1=0,解得x=−1.故答案是:3;−1.11.答案:y=−x+3(答案不唯一)解析:本题考查的知识点是一次函数的性质,待定系数法求一次函数解析式,设函数得解析式为y=kx+b,将(1,2)代入y=kx+b得,k+b=2,又因为y随x的增大而减小,故k<0,符合此条件即可.解:设函数得解析式为y=kx+b,将(1,2)代入y=kx+b得,k+b=2,又因为y随x的增大而减小,故k<0,如:k=−1,则b=3,这个函数的解析式可能是y=−x+3(答案不唯一),故答案为y=−x+3(答案不唯一).12.答案:x+2x−26=529解析:本题主要考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程.若设到甲纪念馆的人数为x人,则到乙纪念馆的人数为(2x−26)人,根据到甲、乙纪念馆参观,共529人,因此x+2x−26=529,据此解答.解:设到甲纪念馆的人数为x人,根据题意得:x+2x−26=529.故答案为x+2x−26=529.13.答案:−2解析:本题主要考查的是求代数式的值,整体代入法的应用是解题的关键.由题意得:3x2+6x−8=3(x2+2x)−8,然后将x2+2x=2的值整体代入求解即可.解:由题意得:x2+2x=2,3x2+6x−8=3(x2+2x)−8=3×2−8=−2.故答案为−2.14.答案:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.解析:本题考查了坐标与图形变化(旋转、平移、对称),解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.根据旋转的性质,平移的性质即可解决问题.解:图形L2可以看作是由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.故答案为:由图形L1绕B点顺时针旋转90°,并向左平移7个单位得到图形L2.15.答案:5;5√2;5√2解析:本题主要考查了切线的性质,切线长定理,勾股定理,正方形的判定与性质,连接OA,OB,由切线的性质可得OA⊥PA,OB⊥PB,再由∠APB=90°,PA=PB,可得四边形ABCP为正方形,由圆的半径为5,结合正方形的性质和勾股定理进行求解即可.解:连接OA,OB,∵PA、PB是⊙O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∵∠APB=90°,∴四边形ABCP是正方形,∴PA=OA=5,PO=AB=√52+52=5√2.故答案为5;5√2;5√2.16.答案:(0,−3)解析:本题主要考查坐标与图形的变化−旋转,根据题意得出点B的旋转周期为6及旋转的性质是解题的关键.由点B的旋转周期为6知点B旋转2018次后的坐标与旋转2次后的坐标相同,再结合图形得出点B 旋转2次后的坐标即可得.=6次后与点B重合,即点B的旋转周期为6,解:由题意知点B旋转360°60∘∵2018÷6=336…2,∴点B旋转2018次后的坐标与旋转2次后的坐标相同,如图,∵∠AOB=60°,∴∠BOC=120°,则两次旋转后点B落在y轴的负半轴,且OB=3,所以点B的坐标为(0,−3).故答案为:(0,−3).17.答案:解:去分母得,7(1−x)≤3(1−2x),去括号得,7−7x≤3−6x,移项合并同类项得,−x≤−4,两边同时除以−1得,x≥4.把解集表示在数轴上得:解析:利用不等式的基本性质:先去分母,再去括号,再移项合并同类项,最后系数化1即可解答.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.18.答案:解:原式=3−2√3+3×√3+2−√33=5−2√3.解析:此题主要考查了实数运算,正确化简各数是解题关键.直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简得出答案.19.答案:解:(1)根据题意得,Δ=(−2)2−4(−k−2)>0,解得k>−3;(2)答案不唯一,如取k=−2,则方程变形为x2−2x=0,解得x1=0,x2=2.解析:本题考查了根的判别式,解一元二次方程.一元二次方程ax2+bx+c=0(a≠0)的根与Δ= b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.(1)利用判别式的意义得到Δ=(−2)2−4(−k−2)>0,然后解不等式即可;(2)在(1)中的k的范围内取−2,方程变形为x2−2x=0,然后利用因式分法解方程即可.20.答案:解:(1)在y=kx+2中,令x=0,得y=2,∴点D的坐标为(0,2);(2)∵PA//OD,∴Rt△PAC∽Rt△DOC,∵COOA =12,OD=2,∴ODPA =COCA=13,解得:PA=6,由S△COD=1,可得:12OC⋅OD=1,解得:OC=1,∴OA=2,∴P(2,6),把P(2,6)分别代入y=kx+2与y=mx,则一次函数解析式为:y=2x+2和反比例函数解析式为:y=12x(x>0);(3)由图象知x>2时,反比例函数y=12x<6,一次函数y=2x+2>6,则一次函数值大于反比例函数的值的x的取值范围x>2.解析:(1)对于一次函数解析式,令x=0求出y的值,即可确定出D的坐标即可;(2)由PA与OD平行,得到直角三角形PAC与直角三角形DOC相似,由相似得比例求出PA的长,再由三角形COD面积求出OC的长,进而确定出OA的长,确定出P坐标,即可求出一次函数与反比例函数解析式;(3)由一次函数与反比例函数解析式,及P 坐标,根据图象确定出满足题意x 的范围即可.此题属于反比例函数综合题,涉及的知识有:一次函数与坐标轴的交点,相似三角形的判定与性质,以及待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键. 21.答案:(1)证明:连接OC ,如图.∵PA ,PC 与⊙O 分别相切于点A ,C ,∴OC ⊥PC ,OA ⊥PA ,∠APC =2∠CPO .∴∠OCP =∠OAP =90°.∵∠AOC +∠APC +∠OCP +∠OAP =360°,∴∠AOC +∠APC =180°.∵∠AOC =2∠B ,∴∠B +∠CPO =90°.(2)解:连接BP ,如图.∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠ABC +∠BAC =90°.∵∠ABC +∠CPO =90°,∴∠BAC =∠CPO =∠APO .∵AC =125,sin∠BAC =35, ∴AB =3,OA =32.∵OA =32,sin∠APO =35, ∴AP =2.∴PB =√AP 2+AB 2=√13.解析:(1)连接OC ,如图.根据切线的性质得到OC ⊥PC ,OA ⊥PA ,∠APC =2∠CPO.由垂直的定义得到∠OCP =∠OAP =90°.求得∠AOC +∠APC =180°.于是得到结论;(2)连接BP ,如图.根据圆周角定理得到∠ACB =90°.推出∠BAC =∠CPO =∠APO.解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.22.答案:解:(1)把(1,0),(0,32)代入抛物线解析式得:{−12+b +c =0c =32, 解得:{b =−1c =32,则抛物线解析式为y =−12x 2−x +32;(2)抛物线解析式为y =−12x 2−x +32=−12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =−12x 2.解析:此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可. 23.答案:解:过F 作FT//BC 交AE 于T ,∵FT//BC ,∴△TFD∽△ECD ,∴FT CE =FDCD ,∵D 为CF 中点,∴CD =FD ,∴FT =CE ,∵FT//BC ,∴△AFT∽△ABE ,∴FT BE =AF AB ,∵BF :AF =3:2,FT =CE ,∴CE BE =25,∴BE:CE=5:2.解析:本题考查了相似三角形的性质和判定,过F作FT//BC交AE于T,证△TFD∽△ECD,求出CE=FT,证△AFT∽△ABE,得出FTBE =AFAB,即可得出答案.24.答案:解:(1)答案不唯一,如y=x2−2x+1和y=x2−2x+3.将y=x2−2x+1和y=x2−2x+3配方,得y=(x−1)2和y=(x−1)2+2,∴将y=(x−1)2的图象向上平移2个单位可得y=(x−1)2+2的图象.(2)∵关于x的二次函数=a1x 2+b1x+c1和y2=a2x2+b2x+c2是“全等二次函数”∴a1=a2,∴y1−y2=(b1−b2)x+c1−c2,若函数y1−y2的图象经过原点,则c1−c2=0,∴c1−c2b1−b2(b1−b2≠0)的值为0.(3)易知y1=a1x2+b1x+c1和y2=a2x2+b2x+c2的图象的对称轴分别为x=−b12a1和x=−b22a2.不妨设点A在点B的左侧,则AB=−b22a2−(−b12a1)=b1−b22a1.当a1=a2>0时,若点A到y轴的距离比点B到y轴的距离近,则CD=c2−c1.∵b1−b2≠0,AB=CD,∴b1−b22a1=c2−c1,即c1−c2b1−b2=−12a1.若点B到y轴的距离比点A到y轴的距离近,则CD=c1−c2,∵b1−b2≠0,AB=CD,∴b1−b22a1=c1−c2,即c1−c2b1−b2=12a1.同理,当a1=a2<0时,c1−c2b1−b2=±12a1.综上所述,c1−c2b1−b2=12a1或c1−c2b1−b2=−12a1.解析:本题考查二次函数的综合题,新定义;二次函数的几何变换,二次函数图像是点的坐标特征,(1)根据全等二次函数的定义和二次函数的几何变换即可解答;(2)根据全等二次函数的定义得a1=a2,求得y1−y2=(b1−b2)x+c1−c2,再根据此函数图像根据原点即可解答;(3)易知y1=a1x 2+b1x+c1和y2=a2x 2+b2x+c2的图象的对称轴分别为x=−b12a1和x=−b2,根据点到坐标轴的距离d得AB,CD的长的表示,再根据AB=CD等式即可解答.2a2。
2020学年北京市海淀区初三二模数学试题及答案

2020北京海淀初三二模净考证号1•本试卷共8页,共三道大題,28道小題。
满分100分。
考WlBJI20分钟• 2•在试卷和答题卡上准确填写学校名称、姓名和淮考证号。
3•试题答秦一律填涂或书与在答迩卡上,任常卷上作答无效。
4・在答题卡丄,选择题冃2E 钻笙作答,其他题用黒鱼字逝签字笔作答。
5•考试结束'情将本试誉、答题卡和草稿纟壬一并交回。
一、选径弱冬暫共16分,毎小西2分) 第「8题均有四个选项,符合题竜的选项只有一个・1 •下面的因个图形口,是圆枉的侧面展廿图的罡2若代娠為有意义,贝廡如的取值范围是3・如图,IZVZLeC π. ΛB=3cm ;適过测里,并计算NABC 旳面积,所得面积与=列数直最按近的定A. L5CJW E. 2onD. 3cm4•團中阴彩咅吩是由4个左全柜同的的正方形拼接而成,若吏左①,②,③,④四个区域中笊某个曲馳添加一 个同样的正万形,吏它三阴影部分组或的新图形罡中心对称图枚 刃这个正万形应该添页E2023.6姓名A. K = OE. X= 2C ∙ κ≠OD. x≠2A.区域①处B.区域②处C.区域②处D.区域④处≡Φ ③: A投篮次数H 48 82124176 230 287 328 投中次数M 3359 83 118 1S9 195223 Tn 投中频率右0.69 0.720.670.670.690.680.685・如图,^NABCEFfIBC.ED 平分ZfiEP ,且ZZ)EF = 70°,则Zfi 的度数为A. 70AB ∙ 6D° C. 50° D. 40φ6.如果d t-a-2 = Q^ 那么代数^(fl-l)2+(α÷2)(σ-2)的道为A.lB.2C.3D.47 •如虱go 的土径筹于4,如果弦JLe 所对的圆心角等于90S 那么區心。
到弦刖的距克为A. √2B. 2C. 20D. 3y∕28•在平总亘甬坐标系妙甲,苗于点P(O J b),⅛α&>0>则称点P 为“同号点” ∙F 列匡数的图象中不存在“同 号点”的是A. y=-x÷lB. j = r 2-2ry = x 2+-I二、填空题体题共16分,每4颌2分)9.单项式3X >的系数是 ______________ .D.10j□S,在eθ上,点D 在eθ内,则厶6 _________________ ZADB. (1XC13•解不等式2(x-l)<4-r,并在数轴上表示出它的解集・・4 ∙ 3 ∙ 2 ・1 0 1 2 3 4 X19•下面足丁王同学“过宜线夕卜一点作该亘纸的平佬捫的尺规作團辺程.己知:直纟如及直线!外一点P ∙12. ι≡),y=*r+l(Jt≠0)J i ]图养•上言两点若XV>V 芍出一个符合题意的Jt 的值; ___________ .13•如團,在中,ΛB BC. NJire 三120° >过点占作妙丄BC,交力C 于点Q,若JD=B 则CD 笊长度为 _____________________ .14•如囲 在平面直甬坐标系I 0F 中,已弭点C(3,2) > ^yABC 关于直 线兀=4对称,得贸u ⅛¾q,则点C 的对应点q 的坐标为 ________________ ____再将y ⅛¾c l 向上平移 Y 单位虫度,得到V∕⅛⅞c 2,则点q 的 对应点・G 的坐标为 _____________ .::]■ • ■ Wr丁IC !S •・ ・AZ ∖ ∙:・ φ • 15•小华和小明周末到北京三山云园绿道骑行•他们按设计好的同一条纟牖同时出岌,小华每小时骑行19, 4朋每小时骑行12S,他们完成全部行程所用的盯间,小明比小 华多半小S 寸.设他们这次骑行线路长为如,依题意,可列方 程为 _________________ .16.如图,在平面直甬生标糸 Q 中,肖五个点A(Z f O)3B(Q,-2),C(r 2,4),D(4-2),E 亿0),将二勉 数> =α(r -2)2+ w(m≠0)的團象记^矿.下列的尹断中① 点/—宦不在JF 上; ② 点JJCD 可以同时在JK 上: ② 点、C.忙不可能同时在Ir7 6 5 C- 43 21AIftI•- •A E1 I 1 1 I ∙4∙ 3 -2 -IO 1 23456 7门 --2 B ・£>•3.所有正确结论的序号是 __________ •三、鮮答題(本题共68分,第1T22題,野小融5分,第23'26题,毎小题6分,第2厂28题,每小题7分)眸答 应写出文字说明X :WM 步機或证明过程. M 计算:(”(202。
2020北京海淀初三二模数学及答案

2020北京海淀初三二模数学 2020.6学校姓名准考证号考生须知1.本试卷共8页,共三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面的四个图形中,是圆柱的侧面展开图的是2.若代数式12x-有意义,则实数x的取值范围是A. 0x= B. 2x= C. 0x≠ D. 2x≠3.如图,在ABC中,3AB cm=,通过测量,并计算ABC的面积,所得面积与下列数值最接近的是A. 21.5cmB. 22cmC. 22.5cmD. 23cm4.图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在A. 区域①处B. 区域②处C. 区域③处D. 区域④处5.如图,在ABC 中, //,EF BC ED 平分BEF ∠,且70DEF ∠=︒,则B ∠的度数为A.70°B.60°C.50°D.40°6.如果220a a --=,那么代数式()()()2122a a a -++-的值为A.1B.2C.3D.47.如图,O 的半径等于4,如果弦AB 所对的圆心角等于90︒,那么圆心O 到弦AB 的距离为A.2B.2C.22D.328.在平面直角坐标系xOy 中,对于点(),P a b ,若0ab >,则称点P 为“同号点”.下列函数的图象中不存在“同号点”的是 A.1y x =-+B.22y x x =-C.2y x=-D.21y x x=+二、填空题(本题共16分,每小题2分) 9.单项式23x y 的系数是 .10.如图,点,,A B C 在O 上,点D 在O 内,则ACB ∠ADB ∠.(填 >=<“”,“”或“”) 11.下表记录了一名篮球运动员在罚球线上投篮的结果: 投篮次数n 48 82 124 176 230 287 328 投中次数m 33 59 83 118 159 195 223 投中频率mn0.690.720.670.67 0.690.680.68根据上表,这名篮球运动员投篮一次,投中的概率约为.(结果精确到0.01)12.函数)1(0y kx k =+≠的图象上有两点()()11221,1,P y P y -,,若12y y <,写出一个符合题意的k 的值:.13.如图,在ABC 中,120AB BC ABC =∠=︒,,过点B 作BD BC ⊥,交AC 于点D ,若1AD =,则CD 的长度为.14.如图,在平面直角坐标系xOy 中,已知点 ()3,2C ,将ABC 关于直线4x =对称,得到111A B C ,则点C 的对应点1C 的坐标为;再将111A B C 向上平移一个单位长度,得到222A B C ,则点1C 的对应点2C 的坐标为.15.小华和小明周末到北京三山五园绿道骑行.他们按设计好的同一条线路同时出发,小华每小时骑行18km ,小明每小时骑行12km ,他们完成全部行程所用的时间,小明比小华多半小时.设他们这次骑行线路长为xkm ,依题意,可列方程为.16.如图,在平面直角坐标系xOy 中,有五个点()()()()()2,0,0,2,2,4,4,2,7,0A B C D E ---,将二次函数()2)0(2y a x m m =-+≠的图象记为W .下列的判断中 ①点A 一定不在W 上; ②点,,B C D 可以同时在W 上; ③点C E ,不可能同时在W 上. 所有正确结论的序号是.三、解答题(本题共68分,第17~22题,每小题5分,第23~26题,每小题6分,第27~28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:101312cos302π-++--()(2020-)18.解不等式()214x x -<-,并在数轴上表示出它的解集.19.下面是小王同学“过直线外一点作该直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P . 求作:直线PQ ,使得//PQ l .作法:如图,①在直线l 外取一点A ,作射线AP 与直线l 交于点B , ②以A 为圆心,AB 为半径画弧与直线l 交于点C ,连接AC , ③以A 为圆心,AP 为半径画弧与线段AC 交于点Q , 则直线PQ 即为所求.根据小王设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:AB AC =,ABC ACB ∴∠=∠,()(填推理的依据)AP = , APQ AQP ∴∠=∠.180ABC ACB A ∠+∠+∠=︒, 180APQ AQP A ∠+∠+∠=︒,APQ ABC ∴∠=∠. //PQ BC ∴ ()(填推理的依据).即//PQ l .20.已知关于x 的一元二次方程220x x n -+=.(1)如果此方程有两个相等的实数根,求n 的值; (2)如果此方程有一个实数根为0,求另外一个实数根.21.如图,在Rt ABC 中,90,ACB D ∠=︒为AB 边的中点,连接CD ,过点A 作//AG DC ,过点C 作//CG DA AG ,与CG 相交于点G(1)求证:四边形ADCG 是菱形; (2)若3104AB tan CAG =∠=,,求BC 的长.22.坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系.图1反映了2014-2019年我国生活垃圾清运量的情况.图2反映了2019年我国G 市生活垃圾分类的情况.根据以上材料回答下列问题:(1)图2中,n 的值为;(2)2014-2019年,我国生活垃圾清运量的中位数是;(3)据统计,2019年G 市清运的生活垃圾中可回收垃圾约为0.02亿吨,所创造的经济总价值约为40亿元.若2019年我国生活垃圾清运量中,可回收垃圾的占比与G 市的占比相同,根据G 市的数据估计2019年我国可回收垃圾所创造的经济总价值是多少.23.如图,AB 为O 的直径,C 为O 上一点,CE AB ⊥于点E ,O 的切线BD交OC 的延长线于点D . (1)求证:DBC OCA ∠=∠;(2)若302BAC AC ∠=︒=,.求CD 的长.24.如图,在平面直角坐标系xOy 中,函数2(0)y x x=>的图象与直线(0)y kx k =≠交于点(1,)P p .M 是函数2(0)y x x=>图象上一点,过M 作x 轴的平行线交直线(0)y kx k =≠于点N . (1)求k 和p 的值; (2)设点M 的横坐标为m .①求点N 的坐标;(用含m 的代数式表示) ②若OMN 的面积大于12,结合图象直接写出m 的取值范围.25.如图1,在四边形ABCD 中,对角线AC 平分,901BAD B ACD AC AB ∠∠=∠=︒-=,.为了研究图中线段之间的数量关系,设,AB x AD y ==.(1)由题意可得(),AB AC AD=(在括号内填入图1中相应的线段) y 关于x 的函数表达式为y =;(2)如图2,在平面直角坐标系xOy 中,根据(1)中y 关于x 的函数表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;(3)结合函数图象,解决问题:①写出该函数的一条性质: ;②估计AB AD +的最小值为 .(结果精确到0.1)26.在平面直角坐标系xOy 中,已知二次函数223y mx mx =++的图象与x 轴交于点()3,0A -,与y 轴交于点B ,将其图象在点,A B 之间的部分(含,A B 两点)记为F .(1)求点B 的坐标及该函数的表达式;(2)若二次函数22y x x a =++的图象与F 只有一个公共点,结合函数图象,求a 的取值范围.27.如图1,等边三角形ABC 中,D 为BC 边上一点,满足BD CD <,连接AD ,以点A 为中心将射线AD 顺时针旋转60︒,与ABC 的外角平分线BM 交于点E . (1)依题意补全图1; (2)求证:AD AE =;(3)若点B 关于直线AD 的对称点为F ,连接CF . ①求证://AE CF ;②若BE CF AB +=成立,直接写出BAD ∠的度数为°28.在平面内,对于给定的ABC ,如果存在一个半圆或优弧与ABC 的两边相切,且该弧上的所有点都在ABC 的内部或边上,则称这样的弧为ABC 的内切弧.当内切弧的半径最大时,称该内切弧为ABC 的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy 中,()()8,0,0,6A B . (1)如图1,在弧1G ,弧2G ,弧3G 中,是OAB 的内切弧的是;(2)如图2,若弧G 为OAB 的内切弧,且弧G 与边,AB OB 相切,求弧G 的半径的最大值; (3)如图3,动点(),3M m ,连接,OM AM . ①直接写出OAM 的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T .点P 为弧T 上的一个动点,过点P 作x 轴的垂线,分别交x 轴和直线AB 于点,D E ,点F 为线段PE 的中点,直接写出线段DF 长度的取值范围.。
精品模拟2020年北京市海淀区中考数学模拟试卷解析版

2020年北京市海淀区中考数学模拟试卷一.选择题(满分30分,每小题3分)1.下列对于二次根式的计算正确的是()A.B.2=2C.2=2D.2=2.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=,请根据该阅读材料计算:已知x1、x2是方程x2+6x+3=0的两实属根,则+的值为()A.10B.8C.6D.43.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<04.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.5.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α﹣βB.β﹣αC.180°﹣α+βD.180°﹣α﹣β6.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.两个人的影子在两个相反的方向,这说明()A.他们站在阳光下B.他们站在路灯下C.他们站在路灯的两侧D.他们站在月光下8.如图,矩形ABCD中,AB=6,AD=2,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM的长度为()A.B.2C.D.19.Windows 2000下有一个有趣的“扫雷”游戏.如图是“扫雷”游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷.现在还剩下A、B、C三个方格未被探明,其他地方为安全区(包括有数字的方格),则A、B、C三个方格中有地雷概率最大的方格是()A.A B.B C.C D.无法确定10.定义一种变换f:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若某一序列S0,经变换得到新序列S1,由序列S1继续进行变换得到S2,…,最终得到序列S n(n≥2)与序列S n相同,则下面的序列可作为S n的是()﹣1A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(3,2,3,3,2)二.填空题(满分18分,每小题3分)11.化简的结果为.12.定义运算“※”:a※b=,若5※x=2,则x的值为.13.在平面直角坐标系中将点A(3,2)向y轴的负方向平移3个单位长度所得点的坐标为.14.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是.15.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是.16.如图,在△ABC中,AB=4,AC=3,以BC为边在三角形外作正方形BCDE,连接BD,CE交于点O,则线段AO的最大值为.三.解答题(共7小题,满分10分)17.先化简,再求值:,其中a=1+.18.解不等式组,并把不等式组的解集在数轴上表示出来.19.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.如图所示,⊙O中,弦AC、BD交于E,.(1)求证:;(2)延长EB到F,使EF=CF,试判断CF与⊙O的位置关系,并说明理由.21.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)则样本容量是,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.22.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.23.王华在学习相似三角形时,在北京市义务教育教科书九年级上册第31页遇到这样一道题,如图1,在△ABC中,P是边AB上的一点,连接CP,要使△ACP∽△ABC,还需要补充的一个条件是,或.请回答:(1)王华补充的条件是,或.(2)请你参考上面的图形和结论,探究,解答下面的问题:如图2,在△ABC中,∠A=30°,AC2=AB2+AB•BC.求∠C的度数.参考答案与试题解析一.选择题(满分30分,每小题3分)1.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.【分析】利用材料中的根与系数的关系求出x1+x2=﹣6,x1•x2=3,再代入化简后的式子即可求解.【解答】解:∵x1+x2=﹣,x1•x2=,∴在方程x2+6x+3=0中,x1+x2=﹣6,x1•x2=3,∴+====10.故选:A.【点评】本题主要考查了根与系数的关系,解题的关键是理解材料中的根与系数的关系.3.【分析】根据二次函数的图象求出a<0,c>0,根据抛物线的对称轴求出b=﹣2a>0,即可得出abc<0;根据图象与x轴有两个交点,推出b2﹣4ac>0;对称轴是直线x=1,与x轴一个交点是(﹣1,0),求出与x轴另一个交点的坐标是(3,0),把x=3代入二次函数得出y=9a+3b+c =0;把x=4代入得出y=16a﹣8a+c=8a+c,根据图象得出8a+c<0.【解答】解:A、∵二次函数的图象开口向下,图象与y轴交于y轴的正半轴上,∴a<0,c>0,∵抛物线的对称轴是直线x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故本选项错误;B、∵图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;C、∵对称轴是直线x=1,与x轴一个交点是(﹣1,0),∴与x轴另一个交点的坐标是(3,0),把x=3代入二次函数y=ax2+bx+c(a≠0)得:y=9a+3b+c=0,故本选项错误;D、∵当x=3时,y=0,∵b=﹣2a,∴y=ax2﹣2ax+c,把x=4代入得:y=16a﹣8a+c=8a+c<0,故选:D.【点评】本题考查了二次函数的图象、性质,二次函数图象与系数的关系,主要考查学生的观察图形的能力和辨析能力,题目比较好,但是一道比较容易出错的题目.4.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y 逐渐变小,故反映到图象上应选A.故选:A.【点评】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.5.【分析】根据β为角x和α的对顶角所在的三角形的外角,再根据三角形一个外角等于和它不相邻的两个内角的和解答.【解答】解:如图,∵α=∠1,∴β=x+∠1整理得:x=β﹣α.故选:B.【点评】本题主要利用三角形外角的性质求解,需要熟练掌握并灵活运用.6.【分析】根据旋转的性质即可求出答案.【解答】解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.【点评】本题考查旋转的性质,解题的关键是正确理解旋转的性质,本题属于基础题型.7.【分析】本题考查中心投影的特点.【解答】解:根据两个人的影子在两个相反的方向,则一定是中心投影;且两人同在光源两侧.故选C.【点评】本题考查中心投影的特点:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.8.【分析】连接AC,交BE于O,根据旋转变换的性质得到AB=BE,根据等边三角形的性质得到AE=AB,得到△ABE是等边三角形,根据等边三角形的性质、勾股定理计算即可.【解答】解:连接AC,交BE于O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=6,AD=2,∴tan∠CAB==,∴∠BAC =30°, ∴AC ⊥BE ,∴C 在对角线AH 上, ∴A ,C ,H 共线,∴AO =OH =AB =3,∵∠COB =∠OBG =∠G =90°, ∴四边形OBGM 是矩形,∴OM =BG =BC =2,∴HM =OH ﹣OM =,故选:A .【点评】本题考查的是旋转变换的性质、菱形的性质、矩形的性质,掌握旋转前、后的图形全等是解题的关键.9.【分析】根据图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,即可得出B ,C 均不是地雷,即可得出答案. 【解答】解:根据题意分析可得:B ,C 一定不是地雷, ∴A 处是雷,则B ,C 处均不地雷, P (A )=1;P (B )=0;P (C )=0.故A 、B 、C 三个方格中有地雷概率最大的是A . 故选:A .【点评】此题主要考查了概率的求法与运用,根据已知得出右边2靠近B ,C ,此时B ,C 均不是地雷是解决问题的关键.10.【分析】根据已知中有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,继续变换到S n ﹣1(n ≥2),可得S n ﹣1中2的个数应为2个,由此可排除A ,B 答案,而3的个数应为3个,由此可排除C ,进而得到答案.【解答】解:根据题意可知,S n﹣1(n≥2)和S n相同,若A选项作为S n﹣1,变换后为S n:(2,3,2,3,3),与S n﹣1不同,故排除.若B选项作为S n﹣1,变换后为S n:(3,3,3,2,2)与S n﹣1不同,故排除.同理C选项变换后为S n:(2,2,2,2,1),与S n﹣1不同,故排除.故选:D.【点评】本题为创新定义题,要求学生读懂题意,根据新定义解决问题.二.填空题(满分18分,每小题3分)11.【分析】依据二次根式的基本性质=|a|进行化简即可.【解答】解:=|﹣2|=2﹣,故答案为:2﹣.【点评】本题主要考查了二次根式的性质,解题时注意二次根式的基本性质=|a|的运用.12.【分析】首先认真分析找出规律,根据5与x的取值范围,分别得出分式方程,可得对应x的值.【解答】解:当x<5时,=2,x=,经检验,x=是原分式方程的解;当x>5时,=2,x=10,经检验,x=10是原分式方程的解;综上所述,x=或10;故答案为:或10.【点评】本题主要考查了分式方程的应用以及新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.13.【分析】利用点平移的坐标规律求解.【解答】解:点A(3,2)向y轴的负方向平移3个单位长度所得点的坐标为(3,﹣1).故答案为(3,﹣1).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.14.【分析】根据圆环面积求法得出圆环面积,再求出大圆面积,即可得出飞镖落在阴影圆环内的概率.【解答】解:∵有三个同心圆,由里向外的半径依次是2cm ,4cm ,6cm 将圆盘分为三部分, ∴阴影部分面积为:π(42﹣22)=12π,大圆的面积为:36π,∴那么飞镖落在阴影圆环内的概率是:=,故答案为:.【点评】此题主要考查了几何概率,根据三圆半径依次是2cm ,4cm ,6cm 求出圆环面积与大圆面积是解决问题的关键.15.【分析】由题意可得:∠CAB =∠CBA =45°=∠ATB ,AB =TB =2,可得AC =BC =TC ,即点C 是的中点,则S 阴影=S △TCB ,即S 阴影=S △ABT =××2×2=1. 【解答】解:如图:设AT 与圆O 相交于点C ,连接BC∵BT 是⊙O 的切线∴AB ⊥TB ,又∵∠ATB =45°∴∠TAB =45°=∠ATB∴AB =TB =2∵AB 是直径∴∠ACB =90°∴∠CAB =∠CBA =45°=∠ATB∴AC =BC =TC∴点C 是的中点∴S 阴影=S △TCB∴S 阴影=S △ABT =××2×2=1故答案为:1【点评】本题考查了切线的性质,圆周角的定理,熟练运用这些性质是本题的关键.16.【分析】以AO 为边作等腰直角△AOF ,且∠AOF =90°,由题意可证△AOB ≌△FOC ,可得AB =CF =4,根据三角形的三边关系可求AF 的最大值,即可得AO 的最大值.【解答】解:如图:以AO 为边作等腰直角△AOF ,且∠AOF =90°∵四边形BCDE 是正方形∴BO =CO ,∠BOC =90°∵△AOF 是等腰直角三角形∴AO =FO ,AF =AO∵∠BOC =∠AOF =90°∴∠AOB =∠COF ,且BO =CO ,AO =FO∴△AOB ≌△FOC (SAS )∴AB =CF =4若点A ,点C ,点F 三点不共线时,AF <AC +CF ;若点A ,点C ,点F 三点共线时,AF =AC +CF∴AF ≤AC +CF =3+4=7∴AF 的最大值为7∵AF =AO∴AO 的最大值为.故答案为:【点评】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键.三.解答题(共7小题,满分10分)17.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=•=,当a=1+,b=1﹣时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式①,得:x≥﹣1,解不等式②,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)连接BC,由,得弧AD=弧AB,则∠ABD=∠ACB,得到△ABE∽△ABC,所以;(2)连接AO、CO,由A为中点,得到AO⊥DB,得到∠OAC+∠AED=90°,所以∠OAC+∠FEC=90°,而EF=CF,则∠FEC=∠ECF,又∠OAC=∠OCA,所以∠OAC+∠FEC=∠OCA+∠ECF=90°,即得到CF与⊙O相切.【解答】证明:(1)连接BC,如图,∵.∴弧AD=弧AB,∴∠ABD=∠ACB,而∠CAB公用,∴△ABE∽△ABC,∴,∴;(2)CF与⊙O相切.理由如下:连接AO、CO,∵A为中点,∴AO⊥DB,∴∠OAC+∠AED=90°∵∠AED=∠FEC,∴∠OAC+∠FEC=90°,又∵EF=CF,∴∠FEC=∠ECF,∵AO=OC,∴∠OAC=∠OCA,∴∠OAC+∠FEC=∠OCA+∠ECF=90°,∴FC与⊙O相切.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了三角形相似的判定与性质、等腰三角形的性质和切线的判定.21.【分析】(1)根据B、E两组发言人数的比和E组所占的百分比,求出B组所占的百分比,再根据B组的人数求出样本容量,从而求出C组的人数,即可补全统计图;(2)用该年级总的学生数乘以E和F组所占的百分比的和,即可得出答案;(3)先求出A组和E组的男、女生数,再根据题意画出树状图,然后根据概率公式即可得出答案.【解答】解:(1)∵B、E两组发言人数的比为5:2,E占8%,∴B组所占的百分比是20%,∵B组的人数是10,∴样本容量为:10÷20%=50,∴C组的人数是50×30%=15(人),∴F组的人数是50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=5(人),补图如下:(2)∵F组的人数是1﹣6%﹣8%﹣30%﹣26%﹣20%=10%,∴发言次数不少于12的次数所占的百分比是:8%+10%=18%,∴全年级500人中,在这天里发言次数不少于12的次数为:500×18%=90(次).(3)∵A组发言的学生为:50×6%=3人,有1位女生,∴A组发言的有2位男生,∵E组发言的学生:4人,∴有2位女生,2位男生.∴由题意可画树状图为:∴共有12种情况,所抽的两位学生恰好是一男一女的情况有6种,∴所抽的两位学生恰好是一男一女的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【分析】(1)抛物线的顶点D的横坐标是2,则x=﹣=2,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解;(2)分AB=AC、AB=BC、AC=BC,三种情况求解即可;(3)由S△PAB=•PH•x B,即可求解.【解答】解:(1)抛物线的顶点D的横坐标是2,则x=﹣=2…①,抛物线过是A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3…②,联立①、②解得:a=,b=﹣,c=﹣3,∴抛物线的解析式为:y=x2﹣x﹣3,当x=2时,y=﹣,即顶点D的坐标为(2,﹣);(2)A (0,﹣3),B (5,9),则AB =13,①当AB =AC 时,设点C 坐标(m ,0),则:(m )2+(﹣3)2=132,解得:m =±4,即点C 坐标为:(4,0)或(﹣4,0);②当AB =BC 时,设点C 坐标(m ,0),则:(5﹣m )2+92=132,解得:m =5,即:点C 坐标为(5,0)或(5﹣2,0),③当AC =BC 时,设点C 坐标(m ,0),则:点C 为AB 的垂直平分线于x 轴的交点,则点C 坐标为(,0),故:存在,点C 的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0);(3)过点P 作y 轴的平行线交AB 于点H ,设:AB 所在的直线过点A (0,﹣3),则设直线AB 的表达式为y =kx ﹣3,把点B 坐标代入上式,9=5k ﹣3,则k =,故函数的表达式为:y =x ﹣3,设:点P 坐标为(m , m 2﹣m ﹣3),则点H 坐标为(m , m ﹣3),S △PAB =•PH •x B =(﹣m 2+12m ),当m =2.5时,S △PAB 取得最大值为:,答:△PAB的面积最大值为.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.【分析】(1)由∠A=∠A,当∠ACP=∠B,或∠APC=∠ACB;或时,△ACP∽△ABC;(2)延长AB到点D,使BD=BC,连接CD,由已知条件得出证出,由∠A=∠A,证出△ACB∽△ADC,得出对应角相等∠ACB=∠D,再由等腰三角形的性质和三角形内角和定理得出∠ACB+∠BCD+∠D+∠A=180°,得出∠ACB=50°即可.【解答】解:∵∠A=∠A,∴当∠ACP=∠B,或∠APC=∠ACB;或,即AC2=AP•AB时,△ACP∽△ABC;故答案为:∠ACP=∠B(或∠APC=∠ACB),或AC2=AP•AB;(1)王华补充的条件是:∠ACP=∠B(或∠APC=∠ACB);或AC2=AP•AB;理由如下:∵∠A=∠A,∴当∠ACP=∠B,或∠APC=∠ACB;或,即AC2=AP•AB时,△ACP∽△ABC;故答案为:∠ACP=∠B(或∠APC=∠ACB),或AC2=AP•AB;(2)延长AB到点D,使BD=BC,连接CD,如图所示:∵AC2=AB2+AB•BC=AB(AB+BC)=AB(AB+BD)=AB•AD,∴,又∵∠A=∠A,∴△ACB∽△ADC,∴∠ACB=∠D,∵BC=BD,∴∠BCD=∠D,在△ACD中,∠ACB+∠BCD+∠D+∠A=180°,∴3∠ACB+30°=180°,∴∠ACB=50°.【点评】本题考查了相似三角形的判定与性质、等腰三角形的性质、三角形内角和定理;本题中(2)有一定难度,需要通过作辅助线证明三角形相似才能得出结果.。
2020年北京市海淀区中考数学二模试卷

中考数学二模试卷题号一二三总分得分一、选择题(本大题共8小题,共16.0分)1.-27的立方根是()A. -3B. 3C. ±3D.2.如图,两条直线AB,CD交于点O,射线OM是∠AOC的平分线,若∠BOD=80°,则∠BOM等于()A. 140°B. 120°C. 100°D. 803.科学家在海底下约4.8公里深处的沙岩中,发现了一种世界上最小的神秘生物,它们的最小身长只有0.00000002米,甚至比已知的最小细菌还要小.将0.00000002用科学记数法表示为()A. 2×10-7B. 2×10-8C. 2×10-9D. 2×10-104.实数a,b在数轴上的对应点的位置如图所示,若-a<c<b,则实数c的值可能是()A. B. 0 C. 1 D.5.图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒugǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是()A. B. C. D.6.已知a>b,则下列不等式一定成立的是()A. -5a>-5bB. 5ac>5bcC. a-5<b+5D. a+5>b-57.下面的统计图反映了2013-2018年中国城镇居民人均可支配收入与人均消费支出的情况.根据统计图提供的信息,下列推断不合理的是()A. 2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加B. 2013-2018年,我国城镇居民人均可支配收入平均每年增长超过2400元C. 从2015年起,我国城镇居民人均消费支出超过20000元D. 2018年我国城镇居民人均消费支出占人均可支配收入的百分比超过70%8.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a和南北向的交通主干道b,若他希望租住的小区到主干道a和主干道b的直线距离之和最小,则图中符合他要求的小区是()A. 甲B. 乙C. 丙D. 丁二、填空题(本大题共8小题,共16.0分)9.当x=______时,分式的值为0.10.如图,在△ABC中,∠BAC=90°,D为BC中点,若AD=,AC=3,则AB的长为______.11.如图,在⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ABC=20°,则∠C的度数为______.12.如果m=n+4,那么代数式的值是______.13.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=______.14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.抛掷次数5010020050010002000300040005000“正面向上”的次193868168349707106914001747数“正面向上”的频0.38000.38000.34000.33600.34900.35350.35630.35000.3494率下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是______.15.按《航空障碍灯(MH/T6012-1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(AviationObstructionlight).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达______秒.16.如图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉--明白玉幻方.其背面有方框四行十六格,为四阶幻方(从1到16,一共十六个数目,它们的纵列、横行与两条对角线上4个数相加之和均为34).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数a,b,c,d有如图1的位置关系时,均有a+b=c+d=17.如图2,已知此幻方中的一些数,则x的值为______.三、解答题(本大题共12小题,共68.0分)17.计算:4cos45°+(-1)0-+|2-|.18.解不等式组:19.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在△ABC中,∠C=90°.求作:△ABC的中位线DE,使点D在AB上,点E在AC上.作法:如图,①分别以A,C为圆心,大于AC长为半径画弧,两弧交于P,Q两点;②作直线PQ,与AB交于点D,与AC交于点E.所以线段DE就是所求作的中位线.根据小宇设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接PA,PC,QA,QC,DC,∵PA=PC,QA=______,∴PQ是AC的垂直平分线(______)(填推理的依据).∴E为AC中点,AD=DC.∴∠DAC=∠DCA,又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.∴∠ABC=∠DCB(______)(填推理的依据).∴DB=DC.∴AD=BD=DC.∴D为AB中点.∴DE是△ABC的中位线.20.关于x的一元二次方程x2-(2k-1)x+k2-1=0,其中k<0.(1)求证:方程有两个不相等的实数根;(2)当k=-1时,求该方程的根.21.如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.(1)求证:DA=DF;(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.22.如图,AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,连接AC,BC,OP,AC与OP相交于点D.(1)求证:∠B+∠CPO=90°;(2)连结BP,若AC=,sin∠CPO=,求BP的长.23.如图,在平面直角坐标系xOy中,直线y=x+b与x轴、y轴分别交于点A,B,与双曲线y=的交点为M,N.(1)当点M的横坐标为1时,求b的值;(2)若MN≤3AB,结合函数图象,直接写出b的取值范围.24.有这样一个问题:探究函数y=的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数y=的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)如图,在平面直角坐标系xOy中,完成以下作图步骤:①画出函数y=和y=-的图象;②在x轴上取一点P,过点P作x轴的垂线l,分别交函数y=和y=-的图象于点M,N,记线段MN的中点为G;③在x轴正半轴上多次改变点P的位置,用②的方法得到相应的点G,把这些点用平滑的曲线连接起来,得到函数y=在y轴右侧的图象.继续在x轴负半轴上多次改变点P的位置,重复上述操作得到该函数在y轴左侧的图象.(3)结合函数y=的图象,发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为(保留小数点后一位);②该函数还具有的性质为:______(一条即可).25.某学校共有六个年级,每个年级10个班,每个班约40名同学.该校食堂共有10个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在12岁(含12岁)到18岁(含18岁)之间,平均年龄约为15岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了60名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取6名同学进行调查,绘制统计图表如下:小东从全校每个班随机抽取1名同学进行调查,绘制统计图表如下:小云在食堂门口,对用餐后的同学采取每隔10人抽取1人进行调查,绘制统计图表如下:根据以上材料回答问题:(1)写出图2中m的值,并补全图2;(2)小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处;(3)为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为______窗口尽量多的分配工作人员,理由为______.26.在平面直角坐标系xOy中,抛物线C:y=ax2-2ax+3与直线l:y=kx+b交于A,B两点,且点A在y轴上,点B在x轴的正半轴上.(1)求点A的坐标;(2)若a=-1,求直线l的解析式;(3)若-3<k<-1,求a的取值范围.27.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.28.对于平面直角坐标系xOy中的两个图形M和N,给出如下定义:若在图形M上存在一点A,图形N上存在两点B,C,使得△ABC是以BC为斜边且BC=2的等腰直角三角形,则称图形M与图形N具有关系φ(M,N).(1)若图形X为一个点,图形Y为直线y=x,图形X与图形Y具有关系φ(X,Y),则点,P2(1,1),P3(2,-2)中可以是图形X的是______;(2)已知点P(2,0),点Q(0,2),记线段PQ为图形X.①当图形Y为直线y=x时,判断图形X与图形Y是否既具有关系φ(X,Y)又具有关系φ(Y,X),如果是,请分别求出图形X与图形Y中所有点A的坐标;如果不是,请说明理由;②当图形Y为以T(t,0)为圆心,为半径的⊙T时,若图形X与图形Y具有关系φ(X,Y),求t的取值范围.答案和解析1.【答案】A【解析】解:=-3.故选:A.根据立方根的知识,直接开立方即可.本题考查了立方根的知识,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.【答案】A【解析】解:∵∠BOD=80°,∴∠COB=100°,又∵∠COB+∠AOC=180°∴∠AOC=180°-∠COB=180°-100°=80°∵射线OM是∠AOC的平分线,∴∠COM=40°,∴∠BOM=∠COM+∠COB=40°+100°=140°,故选:A.先根据互补两角之和为180°,求出∠COB与∠AOC,再根据角平分线的定义得出∠COM,最后解答即可.此题考查角平分线的定义,互补两角之和为180°,熟练掌握以上知识点是解题的关键.3.【答案】B【解析】解:将数字0.00000002用科学记数法表示应为2×10-8,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:据数轴可得-2<a<-1<4<b<5,∵-a<c<b,即1,即1<c<5∴实数c的值可能是.故选:D.根据数轴得出-2<a<-1<4<b,据此解答即可.本题考查了数轴,有理数的大小比较的应用,能根据数轴得出-a<c<b,是解此题的关键.5.【答案】C【解析】解:根据俯视图是一个正方形知:C正确,其他选项均不正确,故选:C.根据三视图结合四个选项找到正确的答案即可.本题考查了由三视图判断几何体的知识,解题的关键是有较强的空间想象能力,难度不大.6.【答案】D【解析】解:∵a>b,∴-5a<5b,故选项A不合题意;5ac>5bc,错误,故选项B不合题意;a-5<b+5错误,故选项C不合题意;a+5>b-5,正确,故本选项符合题意.故选:D.根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.7.【答案】D【解析】解:A.2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加,正确;B.2013-2018年,我国城镇居民人均可支配收入平均每年增长(39251-26955)÷5=2459.2元,超过2400元,正确;C.从2015年起,我国城镇居民人均消费支出超过20000元,正确;D.2018年我国城镇居民人均消费支出占人均可支配收入的百分比,未超过70%,此项错误.故选:D.折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.本题考查了折线统计图,正确理解折线统计图的意义是解题的关键.8.【答案】C【解析】解:分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求,如图:从图中可知丙小区最短;故选:C.分别作甲、乙、丙、丁四个小区关于道路a和道路b的对称点,分别连接对称点,线段最短的即为所求;本题考查轴对称求最短路径;通过两次作轴对称,将问题转化为对称点的连线最短是解题的关键.9.【答案】2【解析】解:当x-2=0时,即x=2时,分式的值为0,故答案为:2.根据分式的值为0的条件进行解答即可.本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.10.【答案】4【解析】解:∵在△ABC中,∠BAC=90°,D为BC中点,若AD=,∴BC=2AD=5,∵AC=3,∴AB=,故答案为:4.根据直角三角形的性质和勾股定理解答即可.此题考查直角三角形的性质,关键是根据直角三角形的性质得出BC的长.11.【答案】40°【解析】解:∵∠A=60°,∠ABC=20°,∴∠ODC=180°-20°-60°=100°,∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠C=180°-100°-40°=40°故答案为:40°直接利用三角形外角的性质以及邻补角的关系得出∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.12.【答案】8【解析】解:原式===2(m-n),∵m=n+4,∴m-n=4,∴原式=2×4=8,故答案为8.先化简分式,然后将m-n的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.13.【答案】3【解析】解:∵P,Q分别为AB,AC的中点,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四边形PBCQ=S△ABC-S△APQ=3,故答案为3.利用三角形中位线定理以及相似三角形的性质解决问题即可.本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】②③【解析】解:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确,错误;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动,正确;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的,正确,故答案为:②③.根据图表和各个小题的说法可以判断是否正确,从而可以解答本题.本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.15.【答案】7【解析】解:根据题意,当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒,故答案为7.观察者所处的位置定为一点,叫视点.当该航空障碍灯处于亮的状态的时间总和最长时,灯的亮暗呈规律性交替变化为亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,在这10秒中,航空障碍灯处于亮的状态的时间总和为7秒.本题考查了视点,正确理解图示是解题的关键.16.【答案】1【解析】解:如图,根据小明的发现,在实线的三阶区域内有y右下角对应的是17-y,在虚线的三阶区域内,2对应右下角的数是15,在第四列中,四个数分别是x,x+y,17-y,15,∴x+x+y+17-y+15=34,∴x=1;故答案为1.根据小明的发现,将四阶幻方分解为三阶幻方进行研究,右图中给出数据,在实线的三阶区域内有y右下角对应的是17-y,在虚线的三阶区域内,2对应右下角的数是15,再根据每列和是34,即可求解;本题考查代数式的加减法;能够通过三阶幻方的规律解决四阶幻方,合理的进行分割幻方是解题的关键.17.【答案】解:原式=4×+1-2+2-,=2+1-2+2-,=3-.【解析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【答案】解:解不等式①,得x<3.解不等式②,得x<2.∴原不等式组的解集为x<2.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.【答案】QC到线段两端点距离相等的点在线段的垂直平分线上等角的余角相等【解析】解:(1)如图线段DE即为所求.(2)连接PA,PC,QA,QC,DC,∵PA=PC,QA=QC,∴PQ是AC的垂直平分线(到线段两端点距离相等的点在线段的垂直平分线上),∴E为AC中点,AD=DC.∴∠DAC=∠DCA,又在Rt△ABC中,有∠BAC+∠ABC=90°,∠DCA+∠DCB=90°.∴∠ABC=∠DCB(等角的余角相等),∴DB=DC.∴AD=BD=DC.∴D为AB中点.∴DE是△ABC的中位线.故答案为:QC,到线段两端点距离相等的点在线段的垂直平分线上,等角的余角相等.(1)作线段AC的垂直平分线PQ,交AB于D,交AC于E.(2)想办法证明AE=EC,AD=DC即可解决问题.本题考查作图-复杂作图,线段的垂直平分线的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)依题意可知,△=(2k-1)2-4(k2-1)=5-4k,∵k<0,∴△>0.∴方程有两个不相等的实数根.(2)当k=-1时,方程为x2+3x=0.解得x1=-3,x2=0.【解析】(1)利用一元二次方程根的判别式就可以证明结论;(2)把k=-1代入原方程即可得到结论.本题考查了一元二次方程的解及根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.【答案】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD.∴∠BAF=∠F.∵AF平分∠BAD,∴∠BAF=∠DAF.∴∠F=∠DAF.∴AD=FD.(2)解:∵∠ADE=∠CDE=30°,AD=FD,∴DE⊥AF.∵tan∠ADE=,,∴AE=2.∴S平行四边形ABCD=2S△ADE=AE•DE=4.【解析】(1)根据平行四边形的性质证得∠F=∠DAF,然后利用等角对等边证得结论;(2)利用S平行四边形ABCD=2S△ADE求解即可.本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.22.【答案】(1)证明:连接OC,如图.∵PA,PC与⊙O分别相切于点A,C,∴OC⊥PC,OA⊥PA,∠APC=2∠CPO.∴∠OCP=∠OAP=90°.∵∠AOC+∠APC+∠OCP+∠OAP=360°,∴∠AOC+∠APC=180°.∵∠AOC=2∠B,∴∠B+∠CPO=90°.(2)解:连接BP,如图.∵AB是⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵∠ABC+∠CPO=90°,∴∠BAC=∠CPO=∠APO.∵AC=,sin∠BAC=,∴AB=3,.∵,sin∠APO=,∴AP=2.∴.【解析】(1)连接OC,如图.根据切线的性质得到OC⊥PC,OA⊥PA,∠APC=2∠CPO.由垂直的定义得到∠OCP=∠OAP=90°.求得∠AOC+∠APC=180°.于是得到结论;(2)连接BP,如图.根据圆周角定理得到∠ACB=90°.推出∠BAC=∠CPO=∠APO.解直角三角形即可得到结论.本题考查了切线的性质,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.23.【答案】解:(1)∵点M是双曲线上的点,且点M的横坐标为1,∴点M的坐标为(1,2).∵点M是直线y=x+b上的点,∴b=1.(2)当b=±1时,满足MN=3AB,结合函数图象可得,b的取值范围是b≤-1或b≥1..【解析】(1)把x=1代入y=求得纵坐标,然后根据待定系数法即可求得b;(2)当b=±1时,满足MN=3AB,根据题意即可求得若MN≤3AB,b的取值范围.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,也考查了待定系数法求函数解析式.24.【答案】当x>0时,y随x的增大而增大【解析】解:(1)∵x在分母上,∴x≠0.故函数y=的自变量x的取值范围是x≠0;(2)画出该函数在y轴左侧的图象如图:(3)①点的横坐标约为-1.6;(在-1.9至-1.3之间即可)②该函数的其它性质:当x>0时,y随x的增大而增大.故答案为:当x>0时,y随x的增大而增大.(1)由分母不为0,可得出自变量x的取值范围;(2)连线,画出函数图象;(3)观察函数图象,找出最低点和找出函数性质.本题考查了分式有意义的条件、反比例函数的图象、二次函数的图象以及函数的最值,解题的关键是:(1)根据分母不为0,找出x的取值范围;(2)连点,画出函数图象;(3)根据函数图象,寻找函数的性质.25.【答案】6号和8号从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.【解析】解:(1)60-(5+9+11+10+10+5)=10(人),(12×5+13×9+14×11+15×10+16×10+17×10+18×5)÷60≈15.0岁,故m的值为15.0,补全图如下:(2)小东.理由:小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况;小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况.(3)6号和8号(或者只有8;或者5,6,8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.故答案为6号和8号,从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.注意:(2)(3)的答案不唯一(1)60-(5+9+11+10+10+5)=10(人),(12×5+13×9+14×11+15×10+16×10+17×10+18×5)÷60≈15.0岁,(2)小东.理由:小天调查的不足之处:仅对初一年级抽样,不能代表该学校学生总体的情况;小云调查的不足之处:抽样学生的平均年龄为16岁,远高于全校学生的平均年龄,不能代表该学校学生总体情况;(3)6号和8号(或者只有8;或者5,6,8).理由:从小东的调查结果看,这几个窗口受到更多的同学的喜爱,应该适当增加这几个窗口的工作人员.本题考查了统计图,熟练掌握条形统计图是解题的关键.26.【答案】解:(1)∵抛物线C:y=ax2-2ax+3与y轴交于点A,∴点A的坐标为(0,3).(2)当a=-1时,抛物线C为y=-x2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴解得∴直线l的解析式为y=-x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=-3.结合函数图象可得a>3.当a<0时,当a=-1时,抛物线C过点B(3,0),此时k=-1.结合函数图象可得a<-1.综上所述,a的取值范围是a<-1或a>3.【解析】(1)抛物线C:y=ax2-2ax+3与y轴交于点A,令x=0,即可求得A的坐标;(2)令y=0,解方程即可求得B的坐标,然后根据待定系数法即可求得直线l的解析式;(3)当a=3时,抛物线C过点B(1,0),此时k=-3.当a=-1时,抛物线C过点B(3,0),此时k=-1.结合图象即可求得.本题考查了二次函数的图象和系数的关系,待定系数法求一次函数的解析式,数形结合是解题的关键.27.【答案】解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②∵△ADC是等边三角形,∴∠ACP=60°,∵PC=CQ,∴∠PQC=∠CPQ=30°,∴∠PAC=∠PQC=30°,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.【解析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②根据①中得结论:∠PAC=∠PQC=30°,则PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.本题是三角形的综合题,考查三角形全等的性质和判定、等边三角形、等腰直角三角形、勾股定理等知识,解题的关键是作辅助线,构建等边三角形和三角形全等,难度适中,属于中考常考题型.28.【答案】P1【解析】解:(1)P1;如图1,过P1作P1C I⊥y轴交直线y=x于点C1,作P1B1⊥x轴于B1(B1与O重合),∵P1(0,),∴P1O=,将y=代入y=x中,得x=∴C1(,),即:C1P1=B1P1=∴==2∴P1(0,)与图形Y(直线y=x)具有关系φ(X,Y);∵P2(1,1)在直线y=x上,∴P2(1,1)与图形Y(直线y=x)不具有关系φ(X,Y);∵P3(2,-2)∴B3(-2,-2),C3(2,2),∴B3C3==4≠2∴P3(2,-2)与图形Y(直线y=x)不具有关系φ(X,Y);故答案为P1(0,)(2)①是,如图2,在直线y=x上取点B,C,且BC=2,则满足△ABC是以BC为斜边的等腰直角三角形的点A,在到直线y=x距离为1的两条平行直线上.这两条平行直线与PQ分别交于A1,A2两点.故图形X与图形Y满足φ(X,Y).直线y=x与线段PQ交于点M(1,1),过点M作MH⊥y轴于H,与A1B交于点N,则MA1=1,,可得A1(,).同理可求得A2(,).如图3,在线段PQ上取点B,C,且BC=2,则满足△ABC是以BC为斜边的等腰直角三角形的点A在图中的两条线段上,这两条线段与直线y=x交于A3,A4两点.故图形X 与图形Y满足φ(Y,X).同上可求得A3(,),A4(,).②如图3,当△QB1C1为等腰直角三角形,且斜边B1C1=2时,连接QT1交B1C1于S,则QS=B1S=C1S=1,B1T1=,∴T1S=2,T1Q=2+1=3∴T1O==∴T1(-,0),同理可求得:T2(-1,0),T3(2-,0),T4(5,0),∴或.(1)逐个点进行验证判断是否符合新定义的要求,要紧扣“使得△ABC是以BC为斜边且BC=2的等腰直角三角形”;(2)①按照新定义和条件正确画出图形,结合图形进行求解;②分别找出t的最大值和最小值.本题是一道新定义的圆综合题,考查了等腰直角三角形的性质,圆的性质等,关键是要理解新定义,并能够运用新定义解决问题.。
北京市海淀区2019-2020学年中考数学二模考试卷含解析

北京市海淀区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知方程组2728x y x y +=⎧⎨+=⎩,那么x+y 的值( )A .-1B .1C .0D .52.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确的是( )A .(7+x )(5+x )×3=7×5B .(7+x )(5+x )=3×7×5C .(7+2x )(5+2x )×3=7×5 D .(7+2x )(5+2x )=3×7×5 3.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <0 4.下列运算正确的是( ) A .a 4+a 2=a 4B .(x 2y )3=x 6y 3C .(m ﹣n )2=m 2﹣n 2D .b 6÷b 2=b 35.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯6.二次函数2y x =的对称轴是( ) A .直线y 1= B .直线x 1=C .y 轴D .x 轴7.要使分式337xx -有意义,则x 的取值范围是( ) A .x=73 B .x>73 C .x<73D .x≠738.解分式方程12x -﹣3=42x -时,去分母可得( )A .1﹣3(x ﹣2)=4B .1﹣3(x ﹣2)=﹣4C .﹣1﹣3(2﹣x )=﹣4D .1﹣3(2﹣x )=49.如果关于x的分式方程1311a xxx--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.910.如图,已知矩形ABCD中,BC=2AB,点E在BC边上,连接DE、AE,若EA平分∠BED,则ABECDESSVV的值为()A.23-B.233-C.233-D.23-11.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和12.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP 的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )A.10 B.12 C.20 D.24二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.141x-有意义,则x的取值范围是_____15.若代数式5xx+有意义,则实数x的取值范围是____.16.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是________.17.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.18.如图,Rt△ABC中,∠ACB=90°,D为AB的中点,F为CD上一点,且CF=13CD,过点B作BE∥DC交AF的延长线于点E,BE=12,则AB的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.20.(6分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.21.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.23.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:OC OP PD AP;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.24.(10分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.25.(10分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?26.(12分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?27.(12分)计算:﹣16+(﹣12)﹣2﹣32|+2tan60°参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】解:2728x yx y+=⎧⎨+=⎩①②,①+②得:3(x+y)=15,则x+y=5,故选D2.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.3.B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.4.B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.5.C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数6.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).7.D【解析】【分析】本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.【详解】∵3x−7≠0,∴x≠73.故选D.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.8.B【解析】【分析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.【详解】方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B.【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键. 9.D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x ﹣4=1﹣x ,即52x =-,符合题意; 把a=0代入整式方程得:﹣3x ﹣3=1﹣x ,即x=﹣2,不合题意; 把a=1代入整式方程得:﹣3x ﹣2=1﹣x ,即32x =-,符合题意; 把a=2代入整式方程得:﹣3x ﹣1=1﹣x ,即x=1,不合题意; 把a=3代入整式方程得:﹣3x=1﹣x ,即12x =-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x ,即x=0,不合题意,∴符合条件的整数a 取值为﹣3;﹣1;1;3,之积为1.故选D . 10.C 【解析】 【分析】过点A 作AF ⊥DE 于F ,根据角平分线上的点到角的两边距离相等可得AF=AB ,利用全等三角形的判定和性质以及矩形的性质解答即可. 【详解】解:如图,过点A 作AF ⊥DE 于F ,在矩形ABCD 中,AB =CD , ∵AE 平分∠BED , ∴AF =AB , ∵BC =2AB , ∴BC =2AF , ∴∠ADF =30°, 在△AFD 与△DCE 中 ∵∠C=∠AFD=90°, ∠ADF=∠DEC, AF=DC,,∴△AFD ≌△DCE (AAS ), ∴△CDE 的面积=△AFD 的面积=2113AF DF AF 3AF AB 222⨯== ∵矩形ABCD 的面积=AB•BC =2AB 2,∴2△ABE 的面积=矩形ABCD 的面积﹣2△CDE 的面积=(2)AB 2,∴△ABE的面积=(222AB ,∴ABECDES S ==V V故选:C . 【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB . 11.B 【解析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A 项错误; B. 圆既是中心对称图形也是轴对称图形,正确;C. 平分弦(不是直径)的直径一定垂直于这条弦,故C 选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D 错误. 故选B. 12.B 【解析】 【分析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出BC 与AC 的长度. 【详解】解:根据图象可知点P 在BC 上运动时,此时BP 不断增大, 由图象可知:点P 从B 向C 运动时,BP 的最大值为5,即BC=5, 由于M 是曲线部分的最低点, ∴此时BP 最小,即BP ⊥AC ,BP=4, ∴由勾股定理可知:PC=3, 由于图象的曲线部分是轴对称图形, ∴PA=3, ∴AC=6,∴△ABC 的面积为:12×4×6=12.故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长=1.52.5旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1.故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.14.x≤1且x≠﹣1.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.15.x≠﹣5.【解析】【分析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.16.8【解析】【分析】如图,连接OC,在在Rt△ACO中,由tan∠OAB=OCAC,求出AC即可解决问题.【详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=OC AC,∴122AC ,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.17.1【解析】试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考点:一元二次方程的解.18.1.【解析】【分析】根据三角形的性质求解即可。
2020年北京市海淀区中考数学一模试卷-含详细解析

2020年北京市海淀区中考数学一模试卷-含详细解析一、选择题(本大题共8小题,共16.0分)1.−2的相反数是()A.2B.−2C.2.下列几何体中,主视图为矩形的是()12D.−12A. B. C. D.3.北京故宫有着近六百年的历史,是最受中外游客喜爱的景点之一,其年接待量在2019年首次突破19000000人次大关.将19000000用科学记数法可表示为()A.0.19×108B.0.19×107C.1.9×107D.19×1064.北京大兴国际机场于2019年6月30日完美竣工,如图是世界著名建筑设计大师扎哈设计的机场成体俯视图的示意图.下列说法正确的是()A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C.这个图形既是轴对称图形,又是中心对称图形D.这个图形既不是轴对称图形,也不是中心对称图形5.将抛物线y=2x2向下平移3个单位长度所得到的抛物线是()A.y=2x2+3B.y=2x2−3C.y=2(x−3)2D.y=2(x+3)26.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若OC=1OA,则∠C等于()2A.15°B.30°C.45°D.60°7.若实数m,n,p,q在数轴上的对应点的位置如图所示,且n与q互为相反数,则绝对值最大的数对应的点是()A.点MB.点NC.点PD.点Q8.如图,在平面直角坐标系xOy中,AB,CD,EF,GH是正方形OPQR边上的线段,点M在其中某条线段上,若射线OM与x轴正半轴的夹角为α,且s i nα>c o sα,则点M所在的线段可以是()A.AB和CDB.AB和EFC.CD和GHD.EF和GH二、填空题(本大题共8小题,共16.0分)9.代数式√x−1在实数范围内有意义,则x的取值范围是______.10.如图,在Rt△ABC中,∠C=90°,BC=2,且t a nA=1,则AC=______.311.分解因式:ab2−ac2=______.12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是______.13.某校初三年级在“停课不停学”期间,积极开展网上答疑活动,在某时间段共开放7个网络教室,其中4个是数学答疑教室,3个是语文答疑教室.为了解初三年级学生的答疑情况,学校教学管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为______.14.如图,在ABCD中,延长CD至点E,使DE=DC,连接BE与AC于点F,则BFFE 的值是______.15.为了丰富同学们的课余生活,某年级买了3个篮球和2个足球,共花费了474元,其中篮球的单价比足球的单价多8元,求篮球和足球的单价,如果设篮球的单价为x元,足球的单价为y元,依题意可列方程组为______.16.如果四边形有一组对边平行,且另一组对边不平行,那么称这样的四边形为梯形,若梯形中有一个角是直角,则称其为直角梯形.下面四个结论中:①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上;②存在无数个直角梯形,其四个顶点在同一条抛物线上;③存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上;④至少存在一个直角梯形,其四个顶点在同一个圆上.所有正确结论的序号是______.三、解答题(本大题共12小题,共68.0分)17.计算:(−2)0+√12−2si n30°+|−√3|.18.解不等式组:{3(x−1)<2x2x+1>x−1.219.如图,已知等边三角形ABC,延长BA至点D,延长AC至点E,使AD=CE,连接CD,BE.求证:△ACD≌△CBE.20.已知关于x的一元二次方程x2−2x+2m−1=0.(1)当m=−1时,求此方程的根;(2)若此方程有两个实数根,求m的取值范围.21.如图,在ABCD中,∠ABC=60°,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接DF.(1)求证:△ABF是等边三角形;(2)若∠CDF=45°,CF=2,求AB的长度.22.致敬,最美逆行者!病毒虽无情,人间有大爱,2020年,在湖北省抗击新冠病毒的战“疫”中,全国(除湖北省外)共有30个省(区、市)及军队的医务人员在党中央全面部署下,白衣执甲,前赴后继支援湖北省抗击疫情,据国家卫健委的统计数据,截至3月1日,这30个省(区、市)累计派出医务人员总数多达38478人,其中派往湖北省除武汉外的其他地区的医务人员总数为7381人.a.全国30个省(区、市)各派出支援武汉的医务人员频数分布直方图(数据分成6组:100≤x<500,500≤x<900,900≤x<1300,1300≤x< 1700,1700≤x<2100,2100≤x<2500):b.全国30个省(区、市)各派出支援武汉的医务人员人数在900≤x<1300这一组的是:919,997,1045,1068,1101,1159,1179,1194,1195,1262.根据以上信息回答问题:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数______A.不到3万人,B.在3万人到3.5万人之间,C.超过3.5万人(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是______,其中医务人员人数超过1000人的省(区、市)共有______个.(3)据新华网报道,在支援湖北省的医务人员大军中,有“90后”也有“00后”,他们是青春的力量,时代的脊梁.习近平总书记回信勉励北京大学援鄂医疗队全体“90后”党员中指出:“在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,澎显了青春的蓬勃力量,交出了合格答卷.”小华在收集支援湖北省抗疫宣传资料时得到这样一组有关“90后”医务人员的数据:C市派出的1614名医护人员中有404人是“90后”;H市派出的338名医护人员中有103人是“90后”;B市某医院派出的148名医护人员中有83人是“90后”.小华还了解到除全国30个省(区、市)派出38478名医务人员外,军队派出了近四千名医务人员,合计约4.2万人.请你根据小华得到的这些数据估计在支援湖北省的全体医务人员(按4.2万人计)中,“90后”大约有多少万人?(写出计算过程,23.在平面直角坐标系xOy中,直线x=3与直线y=1x+1交于点A,函数y=k(k>2x 0,x>0)的图象与直线x=3,直线y=1x+1分别交于点B,C.2(1)求点A的坐标.(2)横、纵坐标都是整数的点叫做整点.记函数y=k(k>0,x>0)的图象在点xB,C之间的部分与线段AB,AC围成的区域(不含边界)为W.①当k=1时,结合函数图象,求区域W内整点的个数;②若区域W内恰有1个整点,直接写出k的取值范围.24.如图,在Rt△ABC中,∠BAC=90°,点D为BC边的中点,以AD为直径作⊙O,分别与AB,AC交于点E,F,过点E作EG⊥BC于G.(1)求证:EG是⊙O的切线;(2)若AF=6,⊙O的半径为5,求BE的长.25.某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.根据上表回答下列问题:(1)第一组一共进行了______场比赛,A队的获胜场数x为______;(2)当B队的总积分y=6时,上表中m处应填______,n处应填______;(3)写出C队总积分p的所有可能值为:______.26.在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+m的顶点为A.(1)当m=1时,直接写出抛物线的对称轴;(2)若点A在第一象限,且OA=√2,求抛物线的解析式;(3)已知点B(m−1,m+1),C(2,2).若抛物线与线段BC有公共点,结合函数图2象,直接写出m的取值范围.27. 已知∠MON = α,A 为射线 OM 上一定点,OA = 5,B 为射线 ON 上一动点,连接AB ,满足∠OAB ,∠OBA 均为锐角.点 C 在线段 OB 上(与点 O ,B 不重合),满足AC = AB ,点 C 关于直线 OM 的对称点为 D ,连接 AD ,OD .(1)依题意补全图 1;(2)求∠BAD 的度数(用含α的代数式表示);(3)若t a nα = 3,点 P 在 OA 的延长线上,满足AP = OC ,连接 BP ,写出一个 AB4 的值,使得BP//OD ,并证明.28. A ,B 是⊙ C 上的两个点,点 P 在⊙ C 的内部.若∠APB 为直角,则称∠APB 为 AB关于⊙ C 的内直角,特别地,当圆心 C 在∠APB 边(含顶点)上时,称∠APB 为 AB 关于⊙ C 的最佳内直角.如图 1,∠AMB 是 AB 关于⊙ C 的内直角,∠ANB 是 AB 关于⊙ C 的最佳内直角.在平面直角坐标系 xOy 中.(1)如图 2,⊙ O 的半径为 5,A(0, −5),B(4,3)是⊙ O 上两点.①已知P 1(1,0),P 2(0,3),P 3(−2,1),在∠AP 1B ,∠AP 2B ,∠AP 3B ,中,是 AB 关于⊙ O 的内直角的是______;②若在直线y = 2x + b 上存在一点 P ,使得∠APB 是 AB 关于⊙ O 的内直角,求 b的取值范围.(2)点 E 是以T(t , 0)为圆心,4 为半径的圆上一个动点,⊙ T 与 x 轴交于点D(点 D在点 T 的右边).现有点M(1,0),N(0, n),对于线段 MN 上每一点 H ,都存在点 T , 使∠DHE 是 DE 关于⊙ T 的最佳内直角,请直接写出 n 的最大值,以及 n 取得最大 值时 t 的取值范围.答案和解析1.【答案】A【解析】解:根据相反数的定义,−2的相反数是2.故选:A.根据相反数的意义,只有符号不同的数为相反数.本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【答案】B【解析】解:A、圆锥的主视图是等腰三角形,不符合题意;B、长方体的主视图是矩形,符合题意;C、球的主视图是圆形,不合题意;D、该几何体的主视图是等腰梯形,不符合题意.故选:B.根据主视图是从物体正面看,所得到的图形,分别得出四个几何体的主视图,即可解答.本题考查了简单几何体的主视图,注意主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.【答案】C【解析】解:将19000000用科学记数法表示为:1.9×107.故选:C.直接利用科学记数法的定义结合科学记数法形式:a×10n,其中1≤a<10,n为正整数,进而得出答案.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:这个图形是轴对称图形,但不是中心对称图形.故选:A.根据轴对称图形和中心对称图形的概念求解.此题主要考查了轴对称图形和中心对称图形,正确把握相关定义是解题关键.5.【答案】B【解析】解:依题意,得平移后抛物线顶点坐标为(0,−3),由平移不改变二次项系数,故得到的抛物线解析式为:y=2x2−3.故选:B.原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(0,−3),平移不改变二次项系数,可根据顶点式求出平移后抛物线解析式.本题考查了二次函数图象与几何变换,抛物线平移问题,实际上就是两条抛物线顶点之间的问题,找到了顶点的变化就知道了抛物线的变化.6.【答案】BOM ,OP>PM,【解析】【分析】本题考查了切线的性质、含30度角的直角三角形.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,OC=1OA,2∴∠C=∠OBC,OB=1OA,2∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.7.【答案】C【解析】解:由数轴可得,p<n<m<q,∵n与q互为相反数,∴原点在线段NQ的中点处,∴绝对值最大的数对应的点是点P,故选:C.根据数轴可以得到实数m,n,p,q的大小关系,再根据n与q互为相反数,可以得到原点所在的位置,从而可以得到绝对值最大的数对应的点是哪个点.本题考查实数与数轴、相反数,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】D【解析】解:如图,当点M在线段AB上时,连接OM.∵s i nα=PM,c o sα=OMOP∴x i nα<c o sα,同法可证,点M在CD上时,s i nα<c o sα,如图,当点M在EF上时,作MJ⊥OP于J.OM ,c o sα=OM,OJ<MJ,∵s i nα=MJ OJ∴s i nα>c o sα,同法可证,点M在GH上时,s i nα>c o sα,故选:D.如图,当点M在线段AB上时,连接OM.根据正弦函数,余弦函数的定义判断s i nα,c o sα的大小.当点M在EF上时,作MJ⊥OP于J.判断s i nα,c o sα的大小即可解决问题.本题考查正方形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.【答案】x≥1【解析】解:∵√x−1在实数范围内有意义,∴x−1≥0,解得x≥1.故答案为:x≥1.先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,即被开方数大于等于0.10.【答案】6【解析】解:∵t a nA=1,3∴BC=1,即2=1,AC3AC3解得,AC=6,故答案为:6.根据正切的定义列式计算,得到答案.本题考查的是锐角三角函数的定义,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.11.【答案】a(b+c)(b−c)【解析】解:原式=a(b2−c2)=a(b+c)(b−c),故答案为:a(b+c)(b−c)原式提取a,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】9【解析】解:360÷40=9,即这个多边形的边数是9.15.【答案】{x − y = 8 根据题意可列方程组为{x − y = 8 故答案为:{x − y = 8 外角的个数,即多边形的边数.根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题 目,需要熟练掌握.13.【答案】47【解析】解:根据题意可知:共开放 7 个网络教室,其中 4 个是数学答疑教室,3 个是语文答疑教室,管理人员随机进入一个网络教室,则该教室是数学答疑教室的概率为4.7故答案为:4.7根据概率公式即可求出该教室是数学答疑教室的概率.本题考查了列表法与树状图法,解决本题的关键是掌握概率公式.14.【答案】12【解析】解:在▱ABCD 中,AB//CD ,AB = CD ,∵ DE = DC ,∴ AB = CD = DE = 1 CE ,2∵ AB//CD ,∴△ ABF∽△ CEF ,∴ BF = AB = 1.FECE 2故答案为:1.2在▱ABCD 中,AB//CD ,AB = CD ,根据DE = DC ,可得AB = CD = DE = 1 CE ,再由 2AB//CD ,可得△ ABF∽△ CEF ,对应边成比例即可求得结论.本题考查了相似三角形的判定与性质、平行四边形的性质,解决本题的关键是掌握相 似三角形的判定与性质.3x + 2y = 474【解析】解:设篮球的单价为 x 元,足球的单价为 y 元,3x + 2y = 474 ,3x + 2y = 474 .根据“3 个篮球的价钱+2个足球的价钱= 474和篮球单价−足球的单价= 8元”可列方 程组.本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目 蕴含的相等关系.16.【答案】①②③18.【答案】解:{ 3(x − 1) < 2x ① 【解析】解:①如图 1 中,点 P 是正方形 ABCD 的边 AD 上的任意一点,则四边形ABCP 是直角梯形,这样的直角梯形有无数个,故①正确.②如图 2 中,四边形 ABCO 是直角梯形,这样的直角梯形有无数个,故②正确. ③如图 3 中,四边形 ABCD 是直角梯形,这样的直角梯形有无数个,故③正确. ④直角梯形的四个顶点,不可能在同一个圆上,故④错误,故答案为①②③.根据直角梯形的性质,画出图形利用图象法一一判断即可.本题考查直角梯形的定义,二次函数的性质,反比例函数的性质,四点共圆等知识, 解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.17.【答案】解:原式= 1 + 2√3 − 2 × 1 + √3 2 = 1 + 2√3 − 1 + √3= 3√3.【解析】直接利用二次根式的性质和特殊角的三角函数值、零指数幂的性质、绝对值 的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.2x + 1 > x−1 ② 2, 由①得:x < 3,由②得:x > −1,则不等式组的解集为−1 < x < 3.【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可. 此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键. 19.【答案】证明:∵△ ABC 是等边三角形,0 0 0 ∴ ∠DAC = ∠BCE = 120°,∵ AD = CE ,∴△ ACD≌△ CBE(SAS).【解析】根据等边三角形的性质和全等三角形的判定定理即可得到结论.本题考查了全等三角形的判定定理,等边三角形的性质,熟练掌握全等三角形的判定 定理是解题的关键.20.【答案】解:(1)将m = −1代入方程,得:x 2 − 2x − 3 = 0,∵ (x + 1)(x − 3) = 0,∴ x + 1 = 0或x − 3 = 0,解得x = −1或x = 3;(2) ∵方程有两个实数根,∴△= (−2)2 − 4 × 1 × (2m − 1) ≥ 0,解得m ≤ 1.【解析】(1)将m = −1代入方程,再利用因式分解法求解可得;(2)根据方程有两个实数根得出△= b 2 − 4ac ≥ 0,据此列出关于 m 的不等式求解可 得.本题主要考查根的判别式,利用一元二次方程根的判别式(△= b 2 − 4ac)判断方程的根 的情况.一元二次方程ax 2 + bx + c = 0(a ≠ 0)的根与△= b 2 − 4ac 有如下关系:①△当 > 时,方程有两个不相等的两个实数根;②△当 = 时,方程有两个相等的两个实数根;③△当 < 时,方程无实数根.21.【答案】(1)证明:∵四边形 ABCD 是平行四边形,∴ AB//CD ,∴ ∠DAB + ∠ABC = 180°,∵ ∠ABC = 60°,∴ ∠DAB = 120°,∵ AF 平分∠DAB ,∴ ∠FAB = 60°,∴ ∠FAB = ∠ABF = 60°,∴ ∠FAB = ∠ABF = ∠AFB = 60°,∴△ ABF 是等边三角形;(2)作FG ⊥ DC 于点 G ,∵四边形 ABCD 是平行四边形,∠ABC = 60°,∴ DC//AB ,DC = AB ,∴ ∠FCG = ∠ABC = 60°,∴ ∠GFC = 30°,∵ CF = 2,∠FGC = 90°,∴ CG = 1,FG = √3,∵ ∠FDG = 45°,∠FGD = 90°,∴ ∠FDG = ∠DFG = 45°,∴ DG = FG = √3,∴ DC = DG + CG = √3 + 1,∴ AB = √3 + 1,即 AB 的长度是√3 + 1.1614338148≈11800(人),【解析】(1)根据在ABCD中,∠ABC=60°,可以得到∠DAB的度数,然后根据AF平分∠DAB,可以得到∠FAB的度数,然后等边三角形的判定方法即可得到△ABF是等边三角形;(2)作FG⊥DC于点G,然后根据直角三角形中30°角所对的直角边等于斜边的一半,可以得到CG、FG的长,然后即可得到DG的长,从而可以得到DC的长,然后即可得到AB的长.本题考查等边三角形的判定与性质、角平分线的性质、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】B1021人15【解析】解:(1)这次支援湖北省抗疫中,全国30个省(区、市)派往武汉的医务人员总数为38478−7381=31097(人),故选B;(2)全国30个省(区、市)各派出支援武汉的医务人员人数的中位数是9971045=1021(2人);其中医务人员人数超过1000人的省(区、市)共有15(个);故答案为:1021人,15;(3)42000×40410383答:90后”大约有1.2万人.(1)根据题意列式计算即可得到正确的选项;(2)根据频数(率)分布直方图中的信息和中位数的定义即可得到结论;(3)根据样本估计总体,可得到90后”大约有1.2万人.本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.各组频率的和等于1,即所有长方形面积的和等于1;频数分布直方图可以清楚地看出落在各组的频数,各组的频数和等于总数.也考查了样本估计总体.23.【答案】解:(1)直线x=3与直线y=1x1交于点A,2x=3x=3∴{y=1x1,解得{y=5,22∴A(3,5);2(2)①当k=1时,根据题意B(3,1),C(−1√3,√31),32②若区域W内恰有1个整点,当C点在直线x=3的左边时,如图1,在W区域内有1个整数点:(2,1),∴1≤k<2;当C点在直线x=3的右边时,如图2,在W区域内有1个整数点:(4,4),∴16<k≤20;综上,当区域W内恰有1个整点时,1≤k<2或16<k≤20【解析】(1)根据题意列方程即可得到结论;(2)①当k=1时,求得B、C的坐标,根据图象得到结论;②分两种情况根据图象即可得到结论.本题考查了反比例函数与一次函数的交点问题,利用数形结合思想解决问题是本题的关键.24.【答案】(1)证明:如图,连接EF,∵∠BAC=90°,∴EF是⊙O的直径,∴OA=OE,∴∠BAD=∠AEO,∵点D是Rt△ABC的斜边BC的中点,∴AD=BD,∴∠B=∠BAD,∴∠AEO=∠B,∴OE//BC,∵EG⊥BC,∴OE⊥EG,∵点E在⊙O上,∴EG是⊙O的切线;(2)∵⊙O的半径为5,∴EF=2OE=10,在Rt△AEF中,AF=6,根据勾股定理得,AE=√EF2−AF2=8,由(1)知OE//BC,∵OA=OD,∴BE=AE=8.【解析】(1)先判断出EF是⊙O的直径,进而判断出OE//BC,即可得出结论;(2)先根据勾股定理求出AE,再判断出BE=AE,即可得出结论.此题主要考查了圆的有关性质,切线的判定,直角三角形斜边的中线是斜边的一半,勾股定理,判断出EF//BC是解本题的关键.25.【答案】1030:22:09或10【解析】解:(1)∵5×(51)=10(场),2∴第一组一共进行了10场比赛;∵每场比赛采用三局两胜制,A、B的结果为2:1,A、C的结果为2:0,A、E的结果为2:0,∴A队的获胜场数x为3;故答案为:10,3;(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,根据E的总分可得:a+c+b+c=9,∴a=1,b=2,c=3,根据A的总分可得:c+d+b+d=13,∴d=(13c b)÷2=(1332)÷2=4,设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,∴x=1,∴m处应填0:2;∴B:C=0:2,∴C:B=2:0,∴n处应填2:0;(3)∵C队胜2场,∴分两种情况:当C、B的结果为2:0时,p=1+4+3+2=10;当C、B的结果为2:1时,p=1+3+3+2=9;∴C队总积分p的所有可能值为9或10.故答案为:9或10.(1)按照5个队中每个队都要和另外4个队进行一场比赛,而A与B和B与A属于同一场比赛,列式计算或直接从表中数一下即可得比赛场数;根据表中比赛结果可直接得出A队的获胜场数x的值;(2)每场比赛的结果有四种:0:2,1:2,2:1,2:0,设以上四种得分为a,b,c,d,且a<b<c<d,根据E和A的总分可得关于a,b,c,d的等式,化简即可得出a,b,c,d的值,设m对应的积分为x,根据题意得关于x的方程,解得x的值,则可得答案;(3)C队胜2场,分两种情况:当C、B的结果为2:0时;当C、B的结果为2:1时,分别计算出p的值即可.本题考查了统计表在比赛积分问题中的应用,读懂表格中的数据、理清题中的数量关系是解题的关键.∴抛物线的对称轴为x=1;(2)∵y=x2−2mx+m2+m=(x−m)2+m,∴抛物线y=x2−2mx+m2+m的顶点A的坐标为(m,m).∵点A在第一象限,且点A的坐标为(m,m),∴过点A作AM垂直于x轴于点M,连接OA,∵m>0,∴OM=AM=m,∴OA=√2m,∵OA=√2,∴m=1,∴抛物线的解析式为y=x2−2x+2.(3)∵点B(m−1,m+1),C(2,2).2∴把点B(m−1,m+1),代入抛物线y=x2−2mx+m2+m时,2方程无解;把点C(2,2)代入抛物线y=x2−2mx+m2+m,得m2−3m+2=0,解得m=1或m=2,根据函数图象性质:当m≤1或m≥2时,抛物线与线段BC有公共点,∴m的取值范围是:m≤1或m≥2.【解析】(1)将m=1代入抛物线解析式即可求出抛物线的对称轴;(2)根据抛物线y=x2−2mx+m2+m的顶点A的坐标为(m,m).点A在第一象限,且OA=√2,即可求抛物线的解析式;(3)将点B(m−1,m+1),C(2,2).分别代入抛物线y=x2−2mx+m2+m,根据二次2函数的性质即可求出m的取值范围.本题考查了二次函数的综合,解决本题的关键是掌握二次函数的图象和性质.27.【答案】解:(1)图形,如图所示.OB ,∴ 4 = 2(9−x),(2) ∵ C ,D 关于 AO 对称,∴△ AOD≌△ AOC ,∴ ∠D = ∠ACO ,∠AOD = ∠AOC = α,∵ AC = AB ,∴ ∠ACB = ∠ABC ,∵ ∠ACO + ∠ACB = 180°,∴ ∠D + ∠ABC = 180°,∴ ∠DAB + ∠DOB = 180°,∵ ∠DOB = 2α,∴ ∠DAB = 180° − 2α.(3)如图 2 中,不妨设OD//PB.作AH ⊥ BC 于 H ,BJ ⊥ OA 于 J .在Rt △ AOH 中,∵ OA = 5,tan∠AOH = 3, 4∴ AH = 3,OH = 4,设CH = BH = x ,则BC = 2x , ∵ OD//BP ,∴ ∠DOA = ∠OPB ,∵ ∠DOA = ∠AOB ,∴ ∠AOB = ∠OPB ,∴ PB = OB = 4 + x ,∵ BJ ⊥ OP ,OP = OA + AP = 5 + 4 − x = 9 − x ,∴ OJ = J P = 1 (9 − x),2∵ cos∠AOH = OH =OA OJ 1 5 4+x 解得x = 1,∴ BH = 1,∴ AB = √AH 2 + BH 2 = √32 + 12 = √10.【解析】(1)根据要求画出图形即可.(2)首先证明∠D + ∠ABO = 180°,再利用四边形内角和定理解决问题即可.(3)假设PB//OD ,求出 AB 的值即可.本题属于几何变换综合题,考查了轴对称,等腰三角形的判定和性质,四边形内角和 定理,解直角三角形等知识,解题的关键是理解题意,学会利用参数构建方程解决问 题,属于中考常考题型.28.【答案】∠AP 2B ,∠AP 3B【解析】解:(1)如图 1,∵ P 1(1,0),A(0, −5),B(4,3),∴ AB = √42 + 82 = 4√5,P 1A = √12 + 52 = √26,P 1B = √32 + 32 = 3√2,∴P 1不在以 AB 为直径的圆弧上,故∠AP1B 不是 AB关于⊙O 的内直角,∵ P 2(0,3),A(0,−5),B(4,3),∴ P 2A = 8,AB = 4√5,P 2B = 4,∴ P 2A 2 + P 2B 2 =AB 2,∴ ∠AP 2B =90°,∴ ∠AP 2B 是 AB 关于⊙ O 的内直角,同理可得,P3B 2 + P 3A 2 = AB 2,∴ ∠AP 3B 是 AB 关于⊙ O 的内直角,故答案为:∠AP 2B ,∠AP 3B ;(2) ∵ ∠APB 是 AB 关于⊙ O 的内直角,∴ ∠APB = 90°,且点 P 在⊙ O 的内部,∴满足条件的点 P 形成的图形为如图 2 中的半圆H(点 A ,B 均不能取到),过点B作BD⊥y轴于点D,∵A(0,−5),B(4,3),∴BD=4,AD=8,并可求出直线AB的解析式为y=2x−5,∴当直线y=2x+b过直径AB时,b=−5,连接OB,作直线OH交半圆于点E,过点E作直线EF//AB,交y轴于点F,∵OA=OB,AH=BH,∴EH⊥AB,∴EH⊥EF,∴EF是半圆H的切线.∵∠OAH=∠OAH,∠OHB=∠BDA=90°,∴△OAH∽△BAD,∴OH=BD=4=1,AH AD82∴OH=1AH=1EH,22∴OH=EO,∵∠EOF=∠AOH,∠FEO=∠AHO=90°,∴△EOF≌△HOA(ASA),∴OF=OA=5,∵EF//AB,直线AB的解析式为y=2x−5,∴直线EF的解析式为y=2x+5,此时b=5,∴b的取值范围是−5<b≤5.(3)∵对于线段MN上每一个点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,∴点T一定在∠DHE的边上,∵TD=4,∠DHT=90°,线段MN上任意一点(不包含点M)都必须在以TD为直径的圆上,该圆的半径为2,∴当点N在该圆的最高点时,n有最大值,即n的最大值为2.分两种情况:①若点H不与点M重合,那么点T必须在边HE上,此时∠DHT=90°,∴点 H 在以 DT 为直径的圆上,如图 3,当⊙ G 与 MN 相切时,GH ⊥ MN ,∵ OM = 1,ON = 2,∴ MN = √ON 2 + OM 2 = √5,∵ ∠GMH = ∠OMN ,∠GHM = ∠NOM ,ON = GH = 2,∴△ GHM≌△ NOM(ASA),∴ MN = GM = √5,∴ OG = √5 − 1,∴ OT = √5 + 1,当 T 与 M 重合时,t = 1,∴此时 t 的取值范围是−√5 − 1 ≤ t < 1,②若点 H 与点 M 重合时,临界位置有两个,一个是当点 T 与 M 重合时,t = 1,另一 个是当TM = 4时,t = 5,∴此时 t 的取值范围是1 ≤ t < 5,综合以上可得,t 的取值范围是−√5 − 1 ≤ t < 5.(1)判断点P 1,P 2,P 3是否在以 AB 为直径的圆弧上即可得出答案;(2)求得直线 AB 的解析式,当直线y = 2x + b 与弧 AB 相切时为临界情况,证明△ OAH∽△ BAD ,可求出此时b = 5,则答案可求出;(3)可知线段 MN 上任意一点(不包含点M)都必须在以 TD 为直径的圆上,该圆的半径 为 2,则当点 N 在该圆的最高点时,n 有最大值 2,再分点 H 不与点 M 重合,点 M 与 点 H 重合两种情况求出临界位置时的 t 值即可得解.本题是圆的综合题,考查了一次函数图象上点的坐标特征,直角三角形的性质,圆周 角定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质等知识,利 用数形结合的思想,正确理解最佳内直角的意义是解本题的关键.。
2020北京中考数学二模分类汇编《几何综合》含答案解析

2020北京中考数学二模分类汇编——几何综合1.(2020•海淀区二模)如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为°.2.(2020•西城区二模)在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.3.(2020•东城区二模)在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D 与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.4.(2020•朝阳区二模)已知∠AOB=40°,M为射线OB上一定点,OM=1,P为射线OA 上一动点(不与点O重合),OP<1,连接PM,以点P为中心,将线段PM顺时针旋转40°,得到线段PN,连接MN.(1)依题意补全图1;(2)求证:∠APN=∠OMP;(3)H为射线OA上一点,连接NH.写出一个OH的值,使得对于任意的点P总有∠OHN为定值,并求出此定值.5.(2020•丰台区二模)如图,在Rt△ABC中,∠ABC=90°,将CA绕点C顺时针旋转45°,得到CP,点A关于直线CP的对称点为D,连接AD交直线CP于点E,连接CD.(1)根据题意补全图形;(2)判断△ACD的形状,并证明;(3)连接BE,用等式表示线段AB,BC,BE之间的数量关系,并证明.温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC至点F,使CF=AB,连接EF,可证△ABE≌△CFE,再证△BEF是等腰直角三角形.解法2的主要思路:过点A作AM⊥BE于点M,可证△ABM是等腰直角三角形,再证△ABC∽△AME.解法3的主要思路:过点A作AM⊥BE于点M,过点C作CN⊥BE于点N,设BN=a,EN=b,用含a或b 的式子表示AB,BC.…….6.(2020•石景山区二模)在△ABC中,AB=AC,D是边BC上的一点(不与点B重合),边BC上点E在点D的右边且∠DAE=∠BAC,点D关于直线AE的对称点为F,连接CF.(1)如图1,①依题意补全图1;②求证:CF=BD.(2)如图2,∠BAC=90°,用等式表示线段DE,CE,CF之间的数量关系,并证明.7.(2020•房山区二模)点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在△ABD外侧,以BD为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).8.(2020•平谷区二模)如图,在△ABM中,∠ABC=90°,延长BM使BC=BA,线段CM 绕点C顺时针旋转90°得到线段CD,连接DM,AD.(1)依据题意补全图形;(2)当∠BAM=15°时,∠AMD的度数是;(3)小聪通过画图、测量发现,当∠AMB是一定度数时,AM=MD.小聪把这个猜想和同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:通过观察图形可以发现,如果把梯形ABCD补全成为正方形ABCE,就易证△ABM ≌△AED,因此易得当∠AMD是特殊值时,问题得证;想法2:要证AM=MD,通过第(2)问,可知只需要证明△AMD是等边三角形,通过构造平行四边形CDAF,易证AD=CF,通过△ABM≌△CBF,易证AM=CF,从而解决问题;想法3:通过BC=BA,∠ABC=90°,连接AC,易证△ACM≌△ACD,易得△AMD是等腰三角形,因此当∠AMD是特殊值时,问题得证.请你参考上面的想法,帮助小聪证明当∠AMD是一定度数时,AM=MD.(一种方法即可)9.(2020•密云区二模)已知:MN是经过点A的一条直线,点C是直线MN左侧的一个动点,且满足60°<∠CAN<120°,连接AC,将线段AC绕点C顺时针旋转60°,得到线段CD,在直线MN上取一点B,使∠DBN=60°.(1)若点C位置如图1所示.①依据题意补全图1;②求证:∠CDB=∠MAC;(2)连接BC,写出一个BC的值,使得对于任意一点C,总有AB+BD=3,并证明.10.(2020•昌平区二模)如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A 逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.(1)当α=90°时,①依题意补全图形;②求证:PD=2PB;(2)写出一个α的值,使得PD=PB成立,并证明.11.(2020•顺义区二模)已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C 作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).12.(2020•门头沟区二模)如图,在正方形ABCD中,点E,F分别是AB,BC上的两个动点(不与点A,B,C重合),且AE=CF,延长BC到G,使CG=CF,连接EG,DF.(1)依题意将图形补全;(2)小华通过观察、实验、提出猜想:在点E,F运动过程中,始终有EG=DF.经过与同学们充分讨论,形成了几种证明的想法:想法一:连接DE,DG,证明△DEG是等腰直角三角形;想法二:过点D作DF的垂线,交BA的延长线于H,可得△DFH是等腰直角三角形,证明HF=EG;…请参考以上想法,帮助小华证明EG=DF.(写出一种方法即可)2020北京中考数学二模分类汇编——几何综合参考答案与试题解析1.(2020•海淀区二模)如图1,等边三角形ABC中,D为BC边上一点,满足BD<CD,连接AD,以点A为中心,将射线AD顺时针旋转60°,与△ABC的外角平分线BM交于点E.(1)依题意补全图1;(2)求证:AD=AE;(3)若点B关于直线AD的对称点为F,连接CF.①求证:AE∥CF;②若BE+CF=AB成立,直接写出∠BAD的度数为20°.【分析】(1)由旋转即可补全图形;(2)先判断出∠BAE=∠CAD,再判断出∠ABE=60°=∠C,进而判断出△ABE≌△ACD,即可得出结论;(3)①先判断出AFC=∠ACF,设∠BAD=α,进而表示出∠FAD=α,∠CAF=60°﹣2α,进而得出∠ACF=60°+α再判断出∠CAE=120°﹣α,即可得出结论;②先判断出∠CBG=30°﹣α,进而判断出∠CDF=60°﹣2α,再判断出DF=CF,进而得出∠DCF=∠CDF=60°﹣2α,再判断出∠DCF=α,即可得出结论.【解答】解:(1)补全图形如图1所示;(2)由旋转知,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠C=∠BAC=60°,∴∠DAE=∠BAC,∴∠BAE=∠CAD,∵BE是△ABC的外角的平分线,∴∠ABM=(180°﹣60°)=60°=∠C,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE;(3)①如图2,连接AF,∵点F是点B关于AD的对称点,∴∠BAD=∠FAD,AF=AB,∴AF=AC,∴∠AFC=∠ACF,设∠BAD=α,则∠FAD=α,∴∠CAF=∠BAC﹣∠BAD﹣∠FAD=60°﹣2α,∴∠ACF=(180°﹣∠CAF)=60°+α,由(2)知,∠BAE=∠CAD=60°﹣α,∴∠CAE=∠BAE+∠BAC=60°﹣α+60°=120°﹣α,∴∠ACF+∠CAE=60°+α+120°﹣α=180°,∴AE∥CF;②如图2,连接BF,设∠BAD=α,∵点F是点B关于AD的对称点,∴AD⊥BF,垂足记作点G,则∠AGB=90°,∴∠ABG=90°﹣α,∵∠ABC=60°,∴∠CBG=30°﹣α,连接DF,则BD=DF,∴∠CDF=2∠CBG=60°﹣2α,由(2)知,△ABE≌△ACD,∴BE=CD,∵BE+CF=AB,∴CD+CF=BC=BD+CD,∴BD=CF,∴DF=CF,∴∠DCF=∠CDF=60°﹣2α,由①知,∠ACF=60°+α,∴∠DCF=∠ACF﹣∠ACB=α,∴60°﹣2α=α,∴α=20°,即∠BAD=20°,故答案为:20.【点评】此题是三角形综合题,主要考查了等边三角形的性质,旋转的性质,轴对称的性质,全等三角形的判定和性质,三角形的内角和定理,等腰三角形的性质,判断出∠CDF=60°﹣2α是解本题的关键.2.(2020•西城区二模)在正方形ABCD中,E是CD边上一点(CE>DE),AE,BD交于点F.(1)如图1,过点F作GH⊥AE,分别交边AD,BC于点G,H.求证:∠EAB=∠GHC;(2)AE的垂直平分线分别与AD,AE,BD交于点P,M,N,连接CN.①依题意补全图形;②用等式表示线段AE与CN之间的数量关系,并证明.【分析】(1)由平行线的性质可得出∠AGH=∠GHC.证得∠EAB=∠AGH.则结论得证;(2)①依题意补全图形即可;②连接AN,连接EN并延长,交AB边于点Q.证得NA=NE.得出∠ANE=∠ANQ=90°.则可得出AE=NE=CN.【解答】(1)证明:在正方形ABCD中,AD∥BC,∠BAD=90°,∴∠AGH=∠GHC.∵GH⊥AE,∴∠EAB=∠AGH.∴∠EAB=∠GHC.(2)①补全图形,如图所示.②证明:连接AN,连接EN并延长,交AB边于点Q.∵四边形ABCD是正方形,∴点A,点C关于BD对称.∴NA=NC,∠BAN=∠BCN.∵PN垂直平分AE,∴NA=NE.∴NC=NE.∴∠NEC=∠NCE.在正方形ABCD中,BA∥CE,∠BCD=90°,∴∠AQE=∠NEC.∴∠BAN+∠AQE=∠BCN+∠NCE=90°.∴∠ANE=∠ANQ=90°.在等腰Rt△ANE中,∴AE=NE=CN.【点评】本题考查了正方形的性质,平行线的性质,轴对称的性质,中垂线的性质,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解题的关键.3.(2020•东城区二模)在△ABC中,AB=AC,∠BAC=α,点D是△ABC外一点,点D 与点C在直线AB的异侧,且点D,A,C不共线,连接AD,BD,CD.(1)如图1,当α=60°.∠ADB=30°时,画出图形,直接写出AD,BD,CD之间的数量关系;(2)当α=90°,∠ADB=45°时,利用图2,继续探究AD,BD,CD之间的数量关系并证明;(提示:尝试运用图形变换,将要研究的有关线段尽可能转移到一个三角形中)(3)当∠ADB=时,进一步探究AD,BD,CD之间的数量关系,并用含α的等式直接表示出它们之间的关系.【分析】(1)先判断出∠BDE=90°,再根据勾股定理得出BD2+DE2=BE2,即BD2+AD2=BE2,再判断出△ABE≌△ACD(SAS),得出BE=CD,即可得出结论;(2)同(1)方法得出DE2+BD2=BE2,进而得出2AD2+BD2=BE2,同(1)的方法判断出BE=CD,即可得出结论;(3)同(1)的方法得出DE2+BD2=BE2,再判断出DF=2AD•sin,即可得出结论.【解答】解:(1)AD2+BD2=CD2,理由:如图1,过AD为边在AD上侧作等边三角形ADE,连接BE,则AD=DE=AE,∠DAE=∠ADE=60°,∵∠ADB=30°,∴∠BDE=∠DBA+∠ADE=90°,在Rt△BDE中,根据勾股定理得,BD2+DE2=BE2,∴BD2+AD2=BE2,∵∠DAE=∠BAC=60°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴AD2+BD2=CD2;(2)如图2,过点A作AE⊥AD,且AE=AD,连接BE,DE,∴∠ADE=45°,∵∠BDA=45°,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵DE2=2AD2,∴2AD2+BD2=BE2,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴2AD2+BD2=CD2;(3)如图3,将线段AD绕点A顺时针旋转α得到AE,连接DE,BE,∴∠ADE=(180°﹣∠DAE)=90°﹣α,∵∠ADB=α,∴∠BDE=90°,根据勾股定理得,DE2+BD2=BE2,∵∠DAE=∠BAC=α,∴∠BAE=∠CAD,∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∴DE2+BD2=CD2,过点A作AF⊥DE于F,则DE=2DF,∴∠DAF=90°﹣∠ADE=α,在Rt△ADF中,sin∠DAF=,∴DF=AD•sin∠DAF=AD•sin,∴DE=2DF=2AD•sin,即:(2AD•sin)2+BD2=CD2.【点评】此题是三角形综合题,主要考查了等边三角形的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.4.(2020•朝阳区二模)已知∠AOB=40°,M为射线OB上一定点,OM=1,P为射线OA 上一动点(不与点O重合),OP<1,连接PM,以点P为中心,将线段PM顺时针旋转40°,得到线段PN,连接MN.(1)依题意补全图1;(2)求证:∠APN=∠OMP;(3)H为射线OA上一点,连接NH.写出一个OH的值,使得对于任意的点P总有∠OHN为定值,并求出此定值.【分析】(1)根据要求画出图形即可.(2)利用三角形的外角的性质解决问题即可.(3)结论:OH=1时,∠OHN的值为定值.证明△OMP≌△GPN(SAS),推出OP=NG,∠AOB=∠NGP=40°,由OM=OH=PG=1,推出OP=HG,推出GH=GN,推出∠GNH=∠GHN=(180°﹣40°)=70°可得结论.【解答】(1)解:图形如图所示:(2)证明:如图1中,∵∠MPN=∠AOB=40°,∠APM=∠APN+∠MPN=∠AOB+∠OMP,∴∠APN=∠OMP.(3)解:结论:OH=1时,∠OHN的值为定值.理由:在射线PA设取一点G,使得PG=OM,连接NG.∵PN=PM,∠GPN=∠OMP,∴△OMP≌△GPN(SAS),∴OP=NG,∠AOB=∠NGP=40°,∵OM=OH=PG=1,∴OP=HG,∴GH=GN,∴∠GNH=∠GHN=(180°﹣40°)=70°,∴∠OHN=180°﹣70°=110°.【点评】本题属于几何变换综合题,考查了三角形的外角的性质,全等三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.5.(2020•丰台区二模)如图,在Rt△ABC中,∠ABC=90°,将CA绕点C顺时针旋转45°,得到CP,点A关于直线CP的对称点为D,连接AD交直线CP于点E,连接CD.(1)根据题意补全图形;(2)判断△ACD的形状,并证明;(3)连接BE,用等式表示线段AB,BC,BE之间的数量关系,并证明.温馨提示:在解决第(3)问的过程中,如果你遇到困难,可以参考下面几种解法的主要思路.解法1的主要思路:延长BC至点F,使CF=AB,连接EF,可证△ABE≌△CFE,再证△BEF是等腰直角三角形.解法2的主要思路:过点A作AM⊥BE于点M,可证△ABM是等腰直角三角形,再证△ABC∽△AME.解法3的主要思路:过点A作AM⊥BE于点M,过点C作CN⊥BE于点N,设BN=a,EN=b,用含a或b 的式子表示AB,BC.…….【分析】(1)根据要求画出图形即可.(2)结论:△ACD是等腰直角三角形.根据等腰直角三角形的定义判断即可.(3)结论:BC+BA=BE.延长BC至点F,使CF=AB,连接EF.证明△EAB≌△ECF(SAS),推出BE=EF,∠AEB=∠CEF可得结论.【解答】解:(1)图形如图所示:(2)结论:△ACD是等腰直角三角形.理由:∵A,D关于CP对称,∴AD⊥CP,∠ACP=∠PCD=45°,CA=CD,∴∠ACD=90°,∴△ACD是等腰直角三角形.(3)结论:BC+BA=BE.理由:延长BC至点F,使CF=AB,连接EF.∵∠ABC=∠AEC=90°,∴∠BAE+∠BCE=180°,∵∠BCE+∠ECF=180°,∴∠BAE=∠ECF,∵△ACD是等腰直角三角形,CE⊥AD,∴AE=DE,∴CE=AE=ED,∵AB=CF,∴△EAB≌△ECF(SAS),∴BE=EF,∠AEB=∠CEF,∴∠BEF=∠AEC=90°,∴△BEF是等腰直角三角形,∴BF=BE,∵BF=BC+CF=BC+BA,∴BC+BA=BE.【点评】本题考查作图﹣复杂作图,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.6.(2020•石景山区二模)在△ABC中,AB=AC,D是边BC上的一点(不与点B重合),边BC上点E在点D的右边且∠DAE=∠BAC,点D关于直线AE的对称点为F,连接CF.(1)如图1,①依题意补全图1;②求证:CF=BD.(2)如图2,∠BAC=90°,用等式表示线段DE,CE,CF之间的数量关系,并证明.【分析】(1)①根据题意补全图形即可;②连接AF,如图1,根据已知条件得到∠3=∠1+∠2.根据轴对称的性质得到AF=AD,∠FAE=∠3=∠1+∠2.根据全等三角形的性质得到结论;(2)连接FA,FE,如图2,根据等腰三角形的性质得到∠1=∠2=45°,求得∠FCE =90°,根据勾股定理即可得到结论.【解答】解:(1)①依题意补全图形,如图1;②证明:连接AF,如图1,∵,∴∠3=∠1+∠2.∵点F与点D关于直线AE对称,∴AF=AD,∠FAE=∠3=∠1+∠2.∴∠4=∠FAE﹣∠2=(∠1+∠2)﹣∠2=∠1.又∵AC=AB,∴△ACF≌△ABD(SAS),∴CF=BD;(2)线段DE,CE,CF之间的数量关系是DE2=CE2+CF2.证明:连接FA,FE,如图2,∵AB=AC,∠BAC=90°,∴∠1=∠2=45°,由(1)②,可得FE=DE,∠3=∠2=45°,∴∠FCE=90°,在Rt△FCE中,由勾股定理,得FE2=CE2+CF2,∴DE2=CE2+CF2.【点评】本题考查了几何变换的综合题,全等三角形的性质,轴对称的性质,勾股定理,正确的作出图形是解题的关键.7.(2020•房山区二模)点C为线段AB上一点,以AC为斜边作等腰Rt△ADC,连接BD,在△ABD外侧,以BD为斜边作等腰Rt△BED,连接EC.(1)如图1,当∠DBA=30°时:①求证:AC=BD;②判断线段EC与EB的数量关系,并证明;(2)如图2,当0°<∠DBA<45°时,EC与EB的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D为旋转中心,过点D作线段BD垂线,交BE延长线于点G,连接CG;通过证明△ADB≌△CDG解决以上问题;想法2:尝试将点D为旋转中心,过点D作线段AB垂线,垂足为点G,连接EG.通过证明△ADB∽△GDE解决以上问题;想法3:尝试利用四点共圆,过点D作AB垂线段DF,连接EF,通过证明D、F、B、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC=EB(一种方法即可).【分析】(1)①先利用直角三角形斜边的中线得出AC=2DF,再用含30°的直角三角形的性质得出BD=2DF,即可得出结论;②先求出∠BDC=15°,进而得出∠CDE=60°,即可判断出△CDE是等边三角形,即可得出结论;(2)先判断出BD=GD,进而判断出△ADB≌△CDG(SAS),得出∠DCG=∠DAB,判断出△BCG是直角三角形,再判断出EG=EB,即可得出结论.【解答】解:(1)①如图1,过点D作DF⊥AC于F,则∠DFC=90°,∵△ADC是AC为斜边作等腰Rt△ADC,∴AC=2DF,在Rt△DFB中,∠DBA=30°,∴BD=2DF,∴AC=BD;②∵△ADC是等腰直角三角形,∴∠ACD=45°,∵∠DBA=30°,∴∠CDB=∠ACD﹣∠DBA=15°,∵△BDE是等腰直角三角形,∴∠BDE=45°,∴∠CDE=∠CDB+∠BDE=60°,在Rt△ADC中,AC=DC,在Rt△BDE中,BD=BE=DE,由①知,AC=BD,∴BE=CD=ED,∴△CDE是等边三角形,∴DE=CE,∴EC=EB;(2)如图2,过点D作DG⊥BD交BE的延长线于G,连接CG,∴∠BDG=90°=∠ADC,∴∠ADB=∠CDG,∵△BED是以BD为斜边作等腰Rt△BED,∴∠BED=90°,∠DBE=45°,∴∠DGE=90°﹣∠DBE=45°=∠DBE,∴BD=GD,∵AD=CD,∴△ADB≌△CDG(SAS),∴∠DCG=∠DAB,∵∠ACD=45°,∴∠BCG=∠ACG=90°,在Rt△BDG中,DB=DG,∠BED=90°,∴EG=EB,∴BE=CE(直角三角形斜边的中线等于斜边的一半).【点评】此题是三角形综合题,主要考查了等腰直角三角形的判定和性质,含30度角的直角三角形的性质,全等三角形的判定和性质,三角形外角的性质,判断出∠BCG=90°是解本题的关键.8.(2020•平谷区二模)如图,在△ABM中,∠ABC=90°,延长BM使BC=BA,线段CM 绕点C顺时针旋转90°得到线段CD,连接DM,AD.(1)依据题意补全图形;(2)当∠BAM=15°时,∠AMD的度数是60°;(3)小聪通过画图、测量发现,当∠AMB是一定度数时,AM=MD.小聪把这个猜想和同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:通过观察图形可以发现,如果把梯形ABCD补全成为正方形ABCE,就易证△ABM ≌△AED,因此易得当∠AMD是特殊值时,问题得证;想法2:要证AM=MD,通过第(2)问,可知只需要证明△AMD是等边三角形,通过构造平行四边形CDAF,易证AD=CF,通过△ABM≌△CBF,易证AM=CF,从而解决问题;想法3:通过BC=BA,∠ABC=90°,连接AC,易证△ACM≌△ACD,易得△AMD是等腰三角形,因此当∠AMD是特殊值时,问题得证.请你参考上面的想法,帮助小聪证明当∠AMD是一定度数时,AM=MD.(一种方法即可)【分析】(1)由题意画出,图形;(2)由旋转的性质可得出△DCM为等腰直角三角形,则∠DMC=45°,∠AMB=75°,可求出答案;(3)根据三种想法证明△AMD为等边三角形即可得出结论.【解答】解:(1)由题意画出图形如图1,(2)如图1,∵∠BAM=15°,∠ABC=90°,∴∠AMB=90°﹣15°=75°,∵线段CM绕点C顺时针旋转90°得到线段CD,∴CM=CD,∠MCD=90°,∴∠CMD=∠MDC=45°,∴∠AMD=180°﹣∠AMB﹣∠DMC=180°﹣75°﹣45°=60°.故答案为:60°.(3)当∠AMB=75°时,AM=DM.想法1证明:如图2,过点A作AE⊥CD交CD的延长线于点E,∵∠AEC=∠C=∠ABC=90°,AB=BC,∴四边形ABCE正方形,∴AB=AE,BC=CE,由(2)可知CM=CD,∴BM=DE,∴△ABM≌△AED(SAS),∴AM=AD,由(2)可知∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.想法2证明:如图3,过点C作CF∥AD交AB于点F,∵AF∥CD,∴四边形AFCD为平行四边形,∴AD=CF,AF=CD,∵AB=AF+BF,BC=BM+CM,AB=BC,∴CD+BF=BM+CM,∵CD=CM,∴BF=BM,又∵AB=BC,∠FBC=∠MBC=90°,∴△ABM≌△CBF(SAS),∴AM=CF,∴AM=AD,又∵∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.想法3证明:如图4,连接AC,∵BC=AB,∠ABC=90°,∴∠ACB=45°,∴∠ACD=45°,又∵CM=CD,AC=AC,∴△ACM≌△ACD(SAS),∴AM=AD,∵∠AMD=60°,∴△AMD为等边三角形,∴AM=DM.【点评】本题是四边形综合题,考查了旋转的性质,等边三角形的判定与性质,等腰直角三角形的性质,平行四边形的判定与性质,全等三角形的判定与性质,正方形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.9.(2020•密云区二模)已知:MN是经过点A的一条直线,点C是直线MN左侧的一个动点,且满足60°<∠CAN<120°,连接AC,将线段AC绕点C顺时针旋转60°,得到线段CD,在直线MN上取一点B,使∠DBN=60°.(1)若点C位置如图1所示.①依据题意补全图1;②求证:∠CDB=∠MAC;(2)连接BC,写出一个BC的值,使得对于任意一点C,总有AB+BD=3,并证明.【分析】(1)①根据题意作出图形即可求解;②根据等量关系可证∠CDB=∠MAC;(2)如图2,连接BC,在直线MN上截取AH=BD,连接CH,根据SAS可证△ACH≌△DCB,再根据全等三角形的性质和等边三角形的判定与性质即可求解.【解答】解:(1)①如图1所示:②证明:∵∠C=60°,∠DBN=60°,∴∠C=∠DBN,∵∠DBN+∠ABD=180°,∴∠C+∠ABD=180°,在四边形ACDB中,∠CDB+∠BAC=180°,∵∠BAC+∠MAC=180°,∴∠CDB=∠MAC;(2)BC=3时,对于任意一点C,总有AB+BD=3.证明:如图2,连接BC,在直线MN上截取AH=BD,连接CH,∵∠MAC=∠CDB,AC=CD,∴△ACH≌△DCB(SAS),∴∠ACH=∠DCB,CH=CB,∵∠DCB+∠ACB=∠ACD=60°,∴∠HCB=∠ACH+∠ACB=60°,∴△HCB是等边三角形,∴BC=BH=BA+BD=3.【点评】考查了全等三角形的判定与性质,等边三角形的判定与性质,关键是根据题意作出辅助线,得到△HCB是等边三角形.10.(2020•昌平区二模)如图,在△ABC中,∠BAC=30°,AB=AC,将线段AC绕点A 逆时针旋转α°(0<α<180),得到线段AD,连接BD,交AC于点P.(1)当α=90°时,①依题意补全图形;②求证:PD=2PB;(2)写出一个α的值,使得PD=PB成立,并证明.【分析】(1)当α=90°时,①依题意即可补全图形;②根据30度角所对直角边等于斜边一半即可证明PD=2PB;(2)当α的值为60或120度时,根据等腰三角形的性质即可证明PD=PB成立.【解答】解:(1)当α=90°时,①如图即为补全的图形;②证明:∵∠BAC=30°,AB=AC,根据题意可知:AC=AD,∴AD=AB,∴∠ABD=∠ADB,∵∠CAD=90°,∴∠DAB=120°,∴∠ABD=∠D=∠BAC=30°,∴AP=BP,在Rt△APD中,∠ADB=30°,∴PD=2AP,∴PD=2PB;(2)当α=60(或120°)时,PD=PB成立,情况1,如图所示:当α=60°时,过点D作DF⊥AC于点F,过点B作BE⊥AC于点E,∴DF∥BE,∴△DFP∽△BEP,∴=,在Rt△ABE中,∠BAC=30°,∴AC=AB=2BE,在Rt△ADF中,∠CAD=60°,∴AD=DF,∵AD=AC=AB,∴2BE=DF,∴BE=DF,∴PD=PB.情况2,如图所示:当α=120°时,过点D作DF⊥AC于点F,过点B作BE⊥AC于点E,∴DF∥BE,∴△DFP∽△BEP,∴=,在Rt△ABE中,∠BAC=30°,∴AC=AB=2BE,在Rt△ADF中,∠FAD=60°,∴AD=DF,∵AD=AC=AB,∴2BE=DF,∴BE=DF,∴PD=PB.【点评】本题考查了作图﹣旋转变换、等腰三角形的性质、含30度角的直角三角形,解决本题的关键是掌握旋转的性质.11.(2020•顺义区二模)已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C 作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是AE⊥DF;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=45°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).【分析】(1)根据题意正确画图;(2)证明△ABD≌△AED(SSS),可得∠AED=∠B=90°,从而得结论;(3)想法1:如图2,过点A做AG⊥CF于点G,先证明四边形ABCG是正方形,得AG =AB,∠BAG=90°,再证明Rt△AFG≌Rt△AFE(HL),得∠GAF=∠EAF,根据∠BAG =90°及角的和可得结论;想法2:如图3,过点B作BG∥AF,交直线FC于点G,证明四边形ABGF是平行四边形,得AF=BG,∠BGC=∠BAF,再证明Rt△AEF≌Rt△BCG(HL),同理根据∠BCG =90°及等量代换,角的和可得结论.【解答】解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,∵AB=BC,∴四边形ABCG是正方形,∴AG=AB,∠BAG=90°,∵点B关于直线AD的对称点为E,∴AB=AE,∠B=∠AED=∠AEF=90°,∠BAD=∠EAD,∴AG=AE,∵AF=AF,∴Rt△AFG≌Rt△AFE(HL),∴∠GAF=∠EAF,∵∠BAG=90°,∴∠BAD+∠EAD+∠EAF+∠GAF=90°,∴∠EAD+∠EAF=45°.即∠DAF=45°.想法2:证明如下:如图3,过点B作BG∥AF,交直线FC于点G,依题意可知:∠ABC=∠BCF=90°,∴AB∥FG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AF=BG,∠BGC=∠BAF,∵点B关于直线AD的对称点为E,∴AB=AE,∠ABC=∠AED=90°,∠BAD=∠EAD,∵AB=BC,∴AE=BC,∴Rt△AEF≌Rt△BCG(HL),∴∠EAF=∠CBG,∵∠BCG=90°,∴∠BGC+∠CBG=90°,∴∠BAF+∠EAF=90°,∴∠BAD+∠EAD+∠EAF+∠EAF=90°,∵∠BAD=∠EAD,∴∠EAD+∠EAF=45°,即∠DAF=45°.故答案为:45.【点评】本题是三角形的综合题,考查了三角形全等的性质和判定,正方形和平行四边形的判定和性质,对称的性质,角的平分线,画图的能力,垂直的判定等知识,正确作辅助线,构建三角形全等是关键.12.(2020•门头沟区二模)如图,在正方形ABCD中,点E,F分别是AB,BC上的两个动点(不与点A,B,C重合),且AE=CF,延长BC到G,使CG=CF,连接EG,DF.(1)依题意将图形补全;(2)小华通过观察、实验、提出猜想:在点E,F运动过程中,始终有EG=DF.经过与同学们充分讨论,形成了几种证明的想法:想法一:连接DE,DG,证明△DEG是等腰直角三角形;想法二:过点D作DF的垂线,交BA的延长线于H,可得△DFH是等腰直角三角形,证明HF=EG;…请参考以上想法,帮助小华证明EG=DF.(写出一种方法即可)【分析】(1)根据题意画出图形即可;(2)如图,连接DE,DG,根据正方形的性质得到AD=CD,∠A=∠DCF=90°,根据全等三角形的性质得到DE=DF,∠ADE=∠CDF,求得DF=DG,由等腰三角形的性质得到∠CDF=∠CDG,推出△EDG是等腰直角三角形,于是得到结论.【解答】解:(1)依题意补全图形如图所示;(2)如图,连接DE,DG,∵在正方形ABCD中,AD=CD,∠A=∠DCF=90°,∵AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∵∠DCF=90°,∴DC⊥FG,∵CF=CG,∴DF=DG,∴∠CDF=∠CDG,∴DE=DG,∠ADE=∠CDG,∵∠ADC=90°,∴∠EDG=90°,∴△EDG是等腰直角三角形,∴EG=DG=DF.【点评】本题考查了等腰直角三角形,作图﹣基本作图,正方形的性质,全等三角形的判定和性质,线段垂直平分线的性质,等腰三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市海淀区普通中学2020年中考数学模拟试卷(二)(1月份)(解析版)一.选择题1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C. D.22.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF5.图中∠BOD的度数是()A.75°B.80°C.135°D.150°6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B. C. D.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱二.填空题9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h 的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.11.如下图,直线a∥b,则∠A=度.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三.解答题13.计算:.14.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.15.解方程:.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?2020年北京市海淀区普通中学中考数学模拟试卷(二)(1月份)参考答案与试题解析一.选择题1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C. D.2【考点】倒数.【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵a与﹣2互为倒数,∴a是﹣.故选:B.【点评】本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.2.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a×10n (1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:6700 010=6.70001×106≈6.7×106,故选B.【点评】本题考查了对科学记数法的掌握和有效数字的运用.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.【点评】本题考查同学们利用所学知识解决实际问题的能力,属于基础题.4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【考点】勾股定理;勾股定理的逆定理.【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.5.图中∠BOD的度数是()A.75°B.80°C.135°D.150°【考点】圆周角定理.【分析】连接OC,根据圆周角定理求解即可.【解答】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.【点评】本题利用了圆周角定理求解.6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【考点】函数的图象.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.【点评】主要考查了函数图象的读图能力.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱【考点】圆心角、弧、弦的关系.【分析】设需要x箱马赛克片,由题意:×34=125x,解方程即可.【解答】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6﹣7箱.故选B.【点评】本题考查圆心角、弧弦之间的关系,一元一次方程等知识,解题的关键是学会设未知数列方程解决问题,属于中考常考题型.二.填空题9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h 的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【考点】二次函数的应用.【分析】把v值代入解析式求出S,即刹车距离,和80进行比较即可.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.【点评】本题利用求二次函数的值,判断实际问题.11.如下图,直线a∥b,则∠A=25度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【分析】本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的外角等于与它不相邻的两个内角的和.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.【考点】翻折变换(折叠问题).【分析】由平行四边形可得对边相等,由折叠,可得AE=EF,AB=BF,结合两个三角形的周长,通过列方程可求得FC的长,本题可解.【解答】解:设DF=x,FC=y,∵▱ABCD,∴AD=BC,CD=AB,∵BE为折痕,∴AE=EF,AB=BF,∵△FDE的周长为8,△FCB的周长为22,∴BC=AD=8﹣x,AB=CD=x+y,∴y+x+y+8﹣x=22,解得y=7.故答案为7.【点评】本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.三.解答题13.(2020•海淀区校级模拟)计算:.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.【解答】解:=﹣8×+2÷(﹣)=﹣4+2÷=﹣4﹣2(2)=﹣4﹣12﹣6=﹣16﹣6【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.14.(2020•福州)化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.【考点】整式的混合运算—化简求值.【分析】本题应将代数式去括号,合并同类项,从而将整式化为最简形式,然后把a、b的值代入即可.【解答】解:(a+b)2﹣2a(b+1)﹣a2b÷b,=a2+2ab+b2﹣2ab﹣2a﹣a2b÷b,=b2﹣2a,当a=,b=2时,原式=22﹣2×=3.【点评】本题主要利用完全平方公式,单项式乘多项式的法则,单项式除单项式的法则,熟练掌握运算法则是化简的关键.15.(2020•溧水县一模)解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.【点评】本题主要考查了分式方程的解法,解方程时要主要:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16.(2020•浙江)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.【考点】一元一次不等式组的应用.【分析】已知矩形的周长为2(x+10)cm,面积为10xcm2,列出不等式方程组即可解.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,(2分)根据题意,得,(4分)解这个不等式组得.(2分)所以x的取值范围是10<x<30.(2分)【点评】解决问题的关键是读懂题意,找到关键描述语,根据矩形的周长<80cm,面积>100cm2列不等式组解答.17.(2020•海淀区校级模拟)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.【考点】作图-旋转变换.【分析】(1)画出梯形关于MN的轴对称图形即可;(2)再将梯形各点与点M的连线,并逆时针方向旋转180°,找到对应点,顺次连接画出这个梯形.【解答】解:如图:【点评】本题综合考查了轴对称图形,及旋转变换图形,注意在做这类题时,找对应点是关键.18.(2020•海淀区校级模拟)如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB 的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.【考点】切线的判定.【分析】连接OC,根据等腰三角形性质推出OC⊥AB,根据切线判定推出即可.【解答】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.【点评】本题考查了等腰三角形性质和切线的判定的应用,关键是推出OC⊥AB.19.(2020•海淀区校级模拟)已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.【考点】待定系数法求二次函数解析式;一次函数的性质.【分析】(1)设抛物线y=ax2+bx+c,把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式;(2)因为二次函数与直线有两个交点,根据函数图象的交点个数与它们组成的方程组的解的个数的关系,可以利用根的判别式解答.【解答】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,∴,解得:.则这个二次函数的表达式为y=2x2﹣3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2﹣3x得,2x2﹣4x﹣1=0,△=(﹣4)2﹣4×2×(﹣1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2﹣3x得,2x2﹣4x﹣t=0.△=(﹣4)2﹣4×2×(﹣t)=0,即t=﹣2,故t的取值范围是﹣2<t≤1.【点评】此题将用待定系数法求函数解析式、函数图象的交点个数与它们组成的方程组的解的个数的关系以及根的判别式结合起来,综合性较强,有一定的难度.20.(2020•海淀区校级模拟)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.XX电脑公司电脑单价单位(元)A型:6000B型:4000C型:2500D型:5000E型:2000(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?【考点】列表法与树状图法;概率公式.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案;(3)分别从选用方案AD时,与选用方案AE时,去分析求解即可求得答案.【解答】解:(1)列表如图:A B C甲乙D (D,A)(D,B)(D,C)E (E,A)(E,B)(E,C)有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.【点评】本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.。