2013年中考数学模拟试卷(二)(含答案)
2013年中考数学第二次模拟考试卷(有答案苏州市)

2013年中考数学第二次模拟考试卷(有答案苏州市)苏州立达中学2013年初三第二次模拟考试试卷数学(本试卷共三大题,29小题,满分130,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的班级、姓名、考试号用0.5毫米黑色签字笔写在答题卷的相应位置上.2.除作图可使用2B铅笔作答外,其余各题请按题号用0.5毫米黑色签字笔在各题目规定的答题区域内作答,不能超出横线或方格,超出答题区域的答案无效.3.考试结束,只需交答题卷.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1.下列四个数中,最小的数是(▲)A.B.C.D.2.下列运算正确的是(▲)A.B.C.D.3.函数的自变量x的取值范围在数轴上可表示为(▲)4.某校有名同学参加百米竞赛,预赛成绩各不相同,要取前名参加决赛,小张已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这名同学成绩的(▲)A.平均数B.众数C.中位数D.极差5.由四个大小相同的正方体组成的几何体如图所示,它的左视图是(▲)6.函数与函数在同一坐标系中的大致图象是(▲)7.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽,最深处水深,则此输水管道的直径是(▲).A.B.C.D.第7题第8题第10题第12题8.如图,已知菱形的对角线、的长分别为、,于点,则的长是(▲)A.B.C.D.9.下列命题中,其中真命题有(▲)①若分式的值为,则或;②两圆的半径、分别是方程的两根,且圆心距,则两圆外切;③对角线互相垂直的四边形是菱形;④将抛物线向左平移个单位,再向上平移个单位可得到抛物.A.个B.个C.个D.个10.如图,中,.一电子跳蚤开始时在边的处,.跳蚤第一步从跳到边的(第次落点)处,且;第二步从跳到边的(第次落点)处,且;第三步从跳到边的(第次落点)处,且;……;跳蚤按照上述规则一直跳下去,第次落点为(为正整数),则点与点之间的距离为(▲)A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应横线上)11.某校学生在“爱心传递”活动中,共筹得捐款元,请你将数字用科学计数法并保留两个有效数字表示为▲.12.把一块直尺与一块三角板如图放置,若,则的度数为▲.13.分解因式:▲.14.若两个等边三角形的边长分别为与,则它们的面积之比为▲.15.若某个圆锥的侧面积为,其侧面展开图的圆心角为,则该圆锥的底面半径为▲cm.16.如图,点、在反比例函数的图像上,过点、作轴的垂线,垂足分别为、,延长线段交轴于点,若,则的面积为▲.17.将矩形纸片按如图所示的方式折叠,得到菱形.若,则的长为▲.第16题第17题第18题18.如图,点、、、在上,点在的内部,四边形为平行四边形,则▲°.三、解答题(本大题共有11小题,共76分,解答过程请写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分8分)(1)计算:(2)解方程:20.(本题满分4分)先化简,再求值:,其中.21.(本题满分5分)如图,在平行四边形中,、是、的中点,、的延长线分别交、的延长线于、;(1)求证:;(2)若四边形为菱形,试判断与的大小,并证明你的结论.22.(本题满分6分)为了解我市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(:40分;:39-35分;:34-30分;:29-20分;:19-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,的值为▲,的值为▲;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的体育成绩应在什么分数段内?▲.(填相应分数段的字母)(3)若把成绩在分以上(含分)定为优秀,则我市今年名九年级学生中体育成绩为优秀的学生人数约有多少名?23.(本题满分6分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:方案:若两次抽得相同花色则甲胜,否则乙胜;方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?24.(本题满分6分)如图,某校综合实践活动小组的同学欲测量公园内一棵树的高度,他们在这棵树正前方一座楼亭前的台阶上点处测得树顶端的仰角为,朝着这棵树的方向走到台阶下的点处,测得树顶端的仰角为.已知点的高度为,台阶的坡度为,且、、三点在同一条直线上.请根据以上条件求出树的高度(测倾器的高度忽略不计).25.(本题满分7分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润(万元)和月份之间满足函数关系式:.(1)若一年中某月的利润为21万元,求n的值;(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?26.(本题满分7分)如图,在平面直角坐标系中,四边形为菱形,点(,),(,).(1)求经过点的反比例函数的解析式;(2)设是(1)中所求函数图象上一点,以、、为顶点的三角形的面积与的面积相等,求点的坐标.27.(本题满分8分)如图,在平面直角坐标系中,点坐标是(,),点坐标是(,).是射线上一点,轴,垂足为,设.(1)▲;(2)如图,以为直径作圆,圆心为点.若与轴相切,求的值;(3)是正半轴上一点,连接、.若∽,试探究满足条件的点的个数(直接写出点的个数及相应的取值范围,不必说明理由).28.(本题满分9分)如图,在平面直角坐标系内,正方形的顶点的坐标为(,),过点的直线与平行,的延长线交于点,点是直线上的一个动点,∥交于点.(1)求直线的函数解析式;(2)当点在轴的上方时,求证:≌;猜想:若点运动到轴的下方时,与是否依然全等?直接填“是”或“否”(3)当四边形为菱形时,试求出点的坐标.29.(本题满分10分)如图1,抛物线的顶点为,与轴交于(,)、(,)两点,与轴交于点.(1)求抛物线的解析式及其顶点的坐标;(2)在该抛物线的对称轴上求一点,使得的周长最小.请在图中画出点的位置,并求点的坐标;(3)如图2,若点是第一象限抛物线上的一个动点,过作轴,垂足为.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点与轴相距最远,所以当点运动至点时,折线——的长度最长”.这个同学的说法正确吗?请说明理由.②若与直线交于点.试探究:四边形能否为平行四边形?若能,请直接写出点的坐标;若不能,请简要说明理由.数学参考答案一.选择题:1-10BBCCAABDBD二.填空题:11.、3.7×10412.、13、14、1:915、116、617、18、60三.解答题:19、(1)3(2),经检验是原方程的解20、,121、(1)∵四边形ABCD是平行四边形∴DC=AB,DC∥AB,∴∠C=∠EBH,∠CDE=∠H又∵E是CB的中点,∴CE=BE∴△CDE≌△BHE,∴BH=DC∴BH=AB(2)∵四边形ABCD是平行四边形,∴AD∥CB,∴∠ADF=∠G ∵四边形ABCD是菱形,∴AD=DC=CB=AB,∠A=∠C∵E、F分别是CB、AB的中点,∴AF=CE∴△ADF≌△CDE,∴∠CDE=∠ADF∴∠H=∠G22、(1)a=32,b=10(2)B(3)904023、(1)略(2)A方案:P(甲胜)=B方案:P(甲胜)=选择A方案24、6米25、(1)5月或9月(2)7月,25万(3)1月、2月、12月26、(1)(2)或27、(1)10(2)28、(1)y=x-1(2)略(ASA)(3)是(4)P()或()29、解:(1)将A(-1,0)、B(5,0)分别代入中,得,得∴.………………2分∵,∴Q(2,9).……3分(2)如图1,连接BC,交对称轴于点P,连接AP、AC.……4分∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.∵点A关于对称轴=1的对称点是点B(5,0),抛物线与y轴交点C的坐标为(0,5).∴由几何知识可知,PA+PC=PB+PC为最小.………………5分设直线BC的解析式为y=k+5,将B(5,0)代入5k+5=0,得k=-1,∴=-+5,∴当=2时,y=3,∴点P的坐标为(2,3).….6分(3)①这个同学的说法不正确.……………7分∵设,设折线D-E-O的长度为L,则,∵,∴当时,.而当点D与Q重合时,,∴该该同学的说法不正确.…9分②四边形不能为平行四边形.……………10分如图2,若四边形为平行四边形,则EF=DF,CF=BF.∵DE∥轴,∴,即OE=BE=2.5.当=2.5时,,即;当=2.5时,,即.∴>2.5.即>,这与EF=DF相矛盾,。
2013年九年级中考模拟数学试卷(2)及答案

2013年九年级中考模拟数学试卷(2)及答案姓名 得分 一、选择题(共15小题,每小题3分,满分45分)1.π+-3的绝对值是( )A .π+-3B .π--3C .π-3D .31--π 2.如图,直线a ∥b ,直线c 与a ,b 相交,∠1+∠2=66°,则∠3=( ) A .67° B .57° C .47° D .52° 3.南海是中国领土的最南端,面积为3 500 000平方公里,3 500 000用科学记数法表示为( ) A .3.5×105 B .35×105 C .3.5×106 D .0.35×106 4.下列事件中不可能事件的是( )A .在地球上,太阳从东边升起B .正常情况下,将水加热到100℃时水会沸腾C .三角形的内角和是360°D .打开电视机,正在播动画片 5.下列各式计算正确的是( )A .a 2·a 3=a 6B .a 2+a 2=2 a 2C .a 5÷a 5=aD .a 3•a 2=a 56.如图,一个几何体由5个大小相同、棱长为1的小正方形搭成,下列关于这个几何体的说法正确的是( )A .主视图的面积为5B .左视图的面积为3C .俯视图的面积为3D .三种视图的面积都是4 7.化简2x ·3x+x(1-x)结果为( )A .5x 2+xB .7xC .6x 2D .7x-x 28.四张完全相同的卡片上分别画有平行四边形、等腰三角形、正方形、等腰梯形,将有图形的一面朝下放在桌面上,从中随机抽取两张,抽到的两张卡片上图形一张中心对称一张是轴对称的概率为( ) A .43 B .32 C .16 D .65 9.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠CAB 的值为( )A .13 B .12 C .2D .3第11题图10.下列命题是真命题的是( )A .一组对角与一组对边分别相等的四边形是平行四边形B .对角线相等的梯形是等腰梯形C . 对角线相等且互相垂直的四边形的矩形D .四个角是直角的四边形是正方形 11.一次函数y 1=k 1x+b 和反比例函数y 2=xk 2错误!未找到引用源。
2013年中考数学模拟题(含答案)

2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。
10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。
三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。
甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。
2013年江苏中考数学模拟试卷2(附答案)

A .C .D .B .2013年江苏中考数学模拟试卷二第Ⅰ卷 (选择题共24分一.选择题(本大题共8题,每题3分,共24分。
下列四个选项中,只有一个选项是符合题意的1.3-的倒数是(A .13B .13-C .3D .3-2.下列图形:其中是中心对称图形的个数为A.4B.3C.2D.13.淮安市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超过13000元,数13000用科学记数法可以表示为A. 41.310⨯B. 31310⨯C. 50.1310⨯D.213010⨯ 4.如图所示的几何体的主视图是5.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A .12cm 2B .96cm 2C .48cm 2D .24cm 26.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是 A.4B.6C.5D.107.已知a ,b 为实数,则解可以为– 2 < x < 2的不等式组是A.⎩⎨⎧>>11bx axB. ⎩⎨⎧<>11bx axC. ⎩⎨⎧><11bx axD. ⎩⎨⎧<<11bx ax8.如图,直线0(<=k kx y 与双曲线xy 2-=交于,(,,(2211y x B y x A 两点,则122183y x y x -的值为[来源:学科网ZXXK]A.-5B.-10C.5D.10[来源:学§科§网Z§X§X§K]第Ⅱ卷 (非选择题共126分二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡相应位置上........ 9.计算a 3·a 4的结果▲10.如图(十九,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。
2013中考数学模拟测试卷

2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。
2013年数学中考模拟试题及答案

2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。
设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。
11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。
2013年中考数学模拟试卷(含答案)

数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。
2013年中考数学模拟试卷及答案

2013年第一次升学模拟考试数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平。
答题时,请注意以下几点:1.全卷共4页,有三大题,24小题。
全卷满分150分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.参考公式:抛物线y=ax²+bx+c(c≠0)的顶点坐标是(24,24b ac ba a--)祝你成功!一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9) B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)26.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.B. C. D.10.已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()A.3个 B.2个C.1个 D.0个二.填空题(共6小题,每题5分,共30分)11.已知x+y=﹣5,xy=6,则x2+y2= _________ .12.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_________ °.13.如图,直线y=﹣x+3与x轴、y轴分别交于A、B两点,把△AOB绕点A旋转90°后得到△AO′B′,则点B′的坐标是_________ .第12题图第13题图第16题图14.已知(a﹣)<0,若b=2﹣a,则b的取值范围是_________ .15.如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有_________ 个.16.如图,点M是反比例函数y=在第一象限内图象上的点,作MB⊥x轴于B.过点M的第一条直线交y轴于点A1,交反比例函数图象于点C1,且A1C1=A1M,△A1C1B的面积记为S1;过点M的第二条直线交y轴于点A2,交反比例函数图象于点C2,且A2C2=A2M,△A2C2B的面积记为S2;过点M的第三条直线交y轴于点A3,交反比例函数图象于点C3,且A3C3=A3M,△A3C3B的面积记为S3;以此类推…;则S1+S2+S3+…+S8= _________ .三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:.(2)解方程:(x﹣3)2﹣9=0.18.(8分)如图,已知线段AB,(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)(2)若AB=2,求出你所作的黄金三角形的周长.19.(8分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是________ ;(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).20.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.21.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.22.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.23.(12分)库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?浙江省温州市2013年第一次学业模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B 二.填空题(共6小题,每题5分,共30分)题号11 12 13 14 15 16答案13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6第16题:解:过点M作MD⊥y轴于点D,过点A1作A1E⊥BM于点E,过点C1作C1F⊥BM 于点F,∵点M是反比例函数y=在第一象限内图象上的点,∴OB×BM=1,∴=OB×MB=,∵A1C1=A1M,即C1为A1M中点,∴C1到BM的距离C1F为A1到BM的距离A1E的一半,∴S1===,∴=BM•A 2到BM距离=×BM×BO=,∵A2C2=A2M,∴C2到BM的距离为A2到BM的距离的,∴S2===,同理可得:S3=,S4=…∴++…++,=++…++,=,三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)解:=1﹣8+3+2 (3分)=﹣2.(5分)(2)解:移项得:(x﹣3)2=9,开平方得:x﹣3=±3,(1分)则x﹣3=3或x﹣3=﹣3,(3分)解得:x1=6,x2=0.(5分)18. 解:(1)可分为两种情况:底与腰之比均为黄金比的等腰三角形如图1,(2分)腰与底之比为黄金比为黄金比如图2,(4分)(2)∵如图1,AB=2,当底与腰之比为黄金比时:∴=,∴AD=﹣1,∴AB+AD+BD=,(6分)如图2,当腰与底之比为黄金比时,=,∴AC=+1,∴△ABC周长为.(8分)19. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)20. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.21.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)22.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.23.(1)填写如下:每空1分C D 总计A (200﹣x)吨B (240﹣x)吨(60+x)吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)24.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学模拟试卷(二)
(满分120分,考试时间100分钟)
一、选择题(每小题3分,共24分)
1. 某市1月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最
高气温减最低气温)是【 】
A .-2℃
B .8℃
C .-8℃
D .2℃ 2. 下列四个图形中,既是轴对称图形又是中心对称图形的有【 】
A .4个
B .3个
C .2个
D .1个
3. 某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要
求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵, 则根据题意列出方程正确的是【 】 A .5(211)6(1)x x +-=- B .5(21)6(1)x x +=- C .5(211)6x x +-= D .5(21)6x x +=
4. 一次函数|1|y mx m =+-的图象过点(0,2),且y 随x 的增大而增大,则m =
【 】
A .-1
B .3
C .1
D .-1或3
5. 如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的
平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是【 】
B
O
A
B
A
A
A .正三角形
B .正方形
C .正五边形
D .正六边形
6. 在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换: ①f (x ,y ) = (y ,x ):如f (2,3) = (3,2);②g (x ,y ) = (-x ,-y ):如g (2,3) = (-2,-3).按照以上变换有:f (g (2,3)) =f (-2,-3) =(-3,-2),那么 g (f (-6,7)) =【 】
A .(7,6)
B .(7,-6)
C .(-7,6)
D .(-7,-6)
7. 如图,等边△ABC 的周长为6π,半径为1的⊙O 从与AB 相切于点D 的位置
出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了【 】
A .2周
B .3周
C .4周
D .5周
第7题图 8. 如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,
点D 的坐标为(5,4),AD =2.若动点E ,F 同时从点O 出发,点E 沿折线OA -AD -DC 运动,到达C 点时停止;点F 沿OC 运动,到达C 点时停止,它们运动的速度都是每秒1个单位长度.设点E 运动x 秒时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为【 】
二、填空题(每小题3分,共21分)
9. x 的取值范围是_________.
10. 如图,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF
,连接AE ,BF .将
△ABE 绕正方形的对角线交点O 按顺时针方向旋转到△BCF ,则旋转角是_________.
F B
N C
O 第10题图 第12题图
11. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2.随机摸出
一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程20x px q ++=有实数根的概率是_________.
12. 如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB 的度数是 . 13. 用一些大小相同的小正方体组成的几何体的左视图和俯视图如图所示,则组成这个几何体的小正方体最多可能有________个.
14. 如图,□ABCD 的顶点A ,C 在双曲线11y x =-上,B ,D 在双曲线22y x
=上,
122k k =(k 1>0),
AB ∥y 轴,S □ABCD =24,则k 1
=_________. 15. 已知:在△ABC 中,AC =a ,AB 与BC 所在直线成45°角,AC 与BC 所在直线
形成的夹角的余弦值为(即cos C =),则AC 边上的中线长是 ____________.
三、解答题(本大题共8小题,满分75分)
16. (8分)已知x 是一元二次方程x 2-2x +1=0的根,求代数式
2
352362x x x x x -⎛
⎫÷+- ⎪--⎝⎭
的值.
17. (9分)九(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区
部分家庭,并将调查数据进行如下整理:
/t
请解答以下问题:
(1)把上面频数分布直方图补充完整,并计算:a=_______,b=________;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过
20t的家庭大约有多少户?
18.(9分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于
点M,与B C相交于点N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
A B M
N
O
D
C
19.(9分)如图,四边形ABCD是正方形,其中A(1,1),B(3,1),D(1,3).反
比例函数
m
y
x
=(x>0)的图象经过对角线BD的中点M,与BC,CD的边分
别交于点P,Q.
(1)直接写出点M,C的坐标;
(2)求直线BD的解析式;
(3)线段PQ与BD是否平行?并说明理由.
1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出
最省钱的租车方案,并求出最少租车费.
22.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,
且CD=3cm.现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行,为什么?
(2)连接DP,当t为何值时,四边形EQDP能成为平行四边形?
(3)当t为何值时,△EDQ为直角三角形?
23.(11分)已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),
对称轴为直线x=2.
(1)求该抛物线的解析式.
(2)点D在线段AB上,且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时两点的运动时间t(秒)和点Q的运动速度;若不存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?
若存在,请求出所有点M的坐标;若不存在,请说明理由.
2013年中考数学预测试卷(二)参考答案
一、选择题
二、填空题
9. -1≤x ≤2 10. 90° 11. 1
2
12. 30° 13.19 14.8
15.
或 三、解答题:
16.一元二次方程的解为:x =1,
原式=
13(3)x x +,当1x =时,原式=1
12
.
17.(1)12,0.08;(2)68%;(3)120.
18.(1)证明略;(2)5.
19.(1)(22)(33)M C ,,,;(2)4y x =-+;(3)平行,理由略.
20.(1)11.0;(2)45.6米. 21.(1)A :3吨,B :4吨;
(2)方案一:A 型车9辆,B 型车1辆;方案二:A 型车5辆,B 型车4辆; 方案三:A 型车1辆,B 型车7辆.
(3)最省钱的租车方案是方案三:A 型车1辆,B 型车7辆,最少租车费为 940元.
22.(1)略;(2)1;(3)531
210或.
23.(1)211
6164
y x x =
--.
(2)存在,运动时间t 为5秒,点Q . (3)存在,
12345(13)(1(13(13M M M M M ---,,,,,,,.。