工程结构的安全性与耐久性正式版

合集下载

土建结构工程的安全性与耐久性范本(2篇)

土建结构工程的安全性与耐久性范本(2篇)

土建结构工程的安全性与耐久性范本1. 引言土建结构工程的安全性和耐久性是工程建设中最重要的考虑因素之一。

安全性关乎人员的生命安全,耐久性则决定了工程的寿命和使用价值。

本文将重点讨论土建结构工程安全性和耐久性的一些范本。

2. 结构设计范本2.1 结构设计原则结构设计应以满足工程安全性和耐久性要求为目标,遵循国家相关标准和规范。

设计应充分考虑荷载、材料性能、结构形式和施工工艺等因素,确保结构的强度、刚度和稳定性。

2.2 材料选择范本材料的选择应根据工程的承载能力要求和使用环境来确定。

常用的结构材料包括混凝土、钢筋、钢材等。

材料的强度和耐久性是核心指标,同时还需要考虑材料的成本和施工工艺等因素。

2.3 施工技术范本施工技术是保证结构安全性和耐久性的重要环节。

施工过程中应严格按照设计要求进行,确保施工质量和结构的稳定性。

特别是在关键节点和特殊部位的施工,应采取相应的措施来保证施工质量。

3. 结构验收范本3.1 安全验收范本结构的安全验收是确保工程安全性的重要环节。

验收中应对结构的强度、刚度、稳定性等进行检查,确保结构满足设计要求。

同时还要考虑结构的使用寿命和抗灾能力,确保满足相关安全标准和规范。

3.2 耐久验收范本结构的耐久性验收是保证工程寿命和使用价值的重要环节。

验收中应评估结构材料的老化状况,检查结构的防水、防腐等性能。

根据工程要求,结合使用环境和材料特性,制定相应的验收标准和指标。

4. 维护管理范本4.1 定期检查维护对土建结构工程应定期进行检查和维护,确保结构的安全性和耐久性。

检查中应关注结构的裂缝、腐蚀等问题,及时修复和加固。

同时还要针对特殊情况和自然灾害做好相应的应对措施。

4.2 技术管理技术管理是保证工程安全性和耐久性的重要手段。

要建立完善的技术管理体系,制定相应的工程管理规程和操作指南。

加强对施工工艺和材料选择的监督,确保施工过程的合理性和质量可控。

5. 举例分析通过分析一些典型的土建结构工程,可以进一步理解安全性和耐久性的范本。

工程结构的安全性与耐久性

工程结构的安全性与耐久性

工程结构的安全性与耐久性是保障建筑物长期稳定运行的重要因素。

在建筑设计和施工过程中,必须综合考虑各种因素,确保建筑结构能够承受各种外力和环境因素的影响,保证建筑物的安全性与耐久性。

一、安全性1. 承载能力:建筑结构必须具备足够的承载能力,能够承受自重、人员和设备活动所带来的荷载。

在设计过程中需要合理确定结构的截面尺寸、材料的强度参数,以及计算和验证结构的荷载承受能力。

2. 抗震能力:对于地震高风险区域的建筑结构来说,抗震能力是保障安全性的重点。

可以采取各种措施,如搭建抗震支撑系统、使用抗震材料、加固现有结构等,增强结构的抗震性能。

3. 防火性能:建筑结构要具备一定的防火能力,防止火灾发生时结构的热膨胀、强度降低的影响。

可以采用防火涂料、防火板等材料进行处理,设计合理的防火隔离带和逃生通道,以增加结构的防火能力。

4. 稳定性:建筑结构的稳定性是指在各种力和荷载作用下,结构不发生失稳现象,如屈曲、整体坍塌等。

设计过程中需要根据结构力学原理计算稳定系数,采取加强和稳定措施,确保结构的稳定性。

二、耐久性1. 材料选择:在建筑设计和施工过程中,应根据具体需求选择适用于不同环境条件的材料。

抗酸碱、抗腐蚀、抗风化等性能良好的材料能够延长结构的使用寿命。

2. 施工质量:施工过程中应严格控制施工质量,避免过度振捣、反复侧压、拆模过早等不良施工操作。

确保结构的正常固化和稳定,避免未来的开裂和变形问题。

3. 维修与保养:建筑物在使用过程中需要定期进行维修和保养。

对于外墙、屋面等易受气候影响的部位,可以采用抗紫外线、防雨渗、防水保温等材料进行维修和保养,延长结构的使用寿命。

4. 环境因素考虑:建筑结构在不同环境条件下会受到不同的侵蚀和损害。

如在海洋环境中,应选择抗盐蚀和抗海水侵蚀的材料;在寒冷环境中,应采取保温措施,防止低温引起的冻胀等。

总之,工程结构的安全性与耐久性是保障建筑物长期稳定运行的关键因素。

通过合理的设计、选择优质的材料、控制施工质量和定期维修保养,可以有效提高工程结构在各种外力和环境因素下的安全性和耐久性。

土建结构工程的安全性与耐久性

土建结构工程的安全性与耐久性

土建结构工程的安全性与耐久性土建结构工程是指利用土木工程原理和技术,进行建筑、桥梁、隧道、港口、水利工程等领域的建筑结构工程。

在建筑设计和施工过程中,安全性和耐久性是至关重要的两个方面,其重要性不言而喻。

本文将就土建结构工程的安全性和耐久性展开深入探讨。

土建结构工程的安全性是指在使用过程中不会出现结构失稳、倒塌或其他安全事故,保障了人身和财产的安全。

安全性与耐久性是两个紧密相关的概念,安全性是建筑结构的基本要求,而耐久性是保障建筑结构安全的重要手段。

没有良好的耐久性,就不可能有很高的安全性。

首先来说说土建结构工程安全性。

安全性是建筑结构工程的首要要求,建筑结构的安全性在很大程度上影响着建筑物的使用寿命和后期维护成本。

土建结构工程的安全性主要包括以下几个方面:首先是结构设计的安全性。

土建结构工程的设计应根据具体的使用要求和环境条件,科学合理地确定结构的受力形式、结构材料和结构形式,保证结构在自重和外载荷作用下具有足够的承载能力和变形能力,以确保结构的安全性。

结构设计还应考虑地震、风荷载等特殊荷载的作用,采取相应的抗震、抗风措施,提高结构的抗震、抗风能力。

其次是施工质量的安全性。

土建结构工程施工过程中,施工质量的好坏直接关系到结构的安全性。

施工质量包括材料的选用、施工工艺、工程质量监督等方面。

在混凝土浇筑过程中,浇筑质量的好坏直接影响着结构的承载能力和耐久性。

需要加强施工现场的质量管理,提高建筑工程施工质量。

最后是结构的使用和维护的安全性。

建筑结构在使用过程中,应按照设计要求合理使用,避免超载和恶劣环境对结构造成的不利影响。

定期对建筑结构进行检查维护,及时发现并消除可能影响结构安全的隐患,保障结构的安全使用。

除了安全性,土建结构工程的耐久性也是至关重要的。

耐久性是指建筑结构在特定使用条件下能够保持设计要求的使用性能和使用寿命,经受得住自然环境和外部荷载的影响,不发生结构失效。

耐久性与安全性密切相关,耐久性不强容易导致结构失效,从而影响结构的安全性。

土建结构工程的安全性与耐久性(三篇)

土建结构工程的安全性与耐久性(三篇)

土建结构工程的安全性与耐久性结构安全性是结构防止破坏倒塌的能力,是结构工程最重要的质量指标。

结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建工程法规和技术标准(规范、规程、条例等)的合理设置及运用相关联。

1.我国结构设计规范的安全设置水准对结构工程的设计来说,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性与结构的耐久性等几个方面。

我国建筑物和桥梁等土建结构的设计规范在这些方面的安全设置水准,总体上要比国外同类规范低得多。

1.1构件承载能力的安全设置水准与结构构件安全水准关系最大的二个因素是:1)规范规定结构需要承受多大的荷载(荷载标准值),比如同样是办公楼,我国规范自1959年以来均规定楼板承受的活荷载是每平方米150公斤(现已确定在新的规范里将改回到200公斤),而美、英则为240和250公斤;2)规范规定的荷载分项系数与材料强度分项系数的大小,前者是计算确定荷载对结构构件的作用时,将荷载标准值加以放大的一个系数,后者是计算确定结构构件固有的承载能力时,将构件材料的强度标准值加以缩小的一个系数。

这些用量值表示的系数体现了结构构件在给定标准荷载作用下的安全度,在安全系数设计方法(如我国的公路桥涵结构设计规范)中称为安全系数,体现了安全储备的需要;而在可靠度设计方法(如我国的建筑结构设计规范)中称为分项系数,体现了一定的名义失效概率或可靠指标。

安全系数或分项系数越大,表明安全度越高。

我国建筑结构设计规范规定活荷载与恒载(如结构自重)的分项系数分别为1.4和1.2,而美国则分别为1.7和1.4,英国1.6和1.4;这样根据我国规范设计办公楼时,所依据的楼层设计荷载(荷载标准值与荷载分项系数的乘积)值大约只有英美的52%(考虑人员和设施等活载)和85%(对结构自重等恒载),而设计时据以确定构件能够承受荷载的能力(与材料强度分项系数有关)却要比英美规范高出的10~15%,二者都使构件承载力的安全水准下降。

工程结构的安全性与耐久性

工程结构的安全性与耐久性

1.结构的安全性:结构及其构件在荷载等各种可能出现的外加的作用下防止破坏倒塌、保护人员设备不受损伤的能力。

2.结构的耐久性:结构及其构件在环境作用下能够长期维持其所需功能的能力。

3.结构设计需要考虑的各种外加作用主要有三类:(1)一般作用;包括自重、使用荷载、风载、雪载等一般性的永久荷载和可变荷载的直接作用以及施加于结构上的强制变形等间接作用。

(2)偶然作用;主要指地震、爆炸、火灾等灾害作用,严重人为错误的后果也可列入这一范畴。

(3)导致结构材料性能劣化(如钢筋锈蚀、混凝土腐蚀)的环境作用或环境影响。

4.结构及其构件在其设计使用年限内,必须具有适当的安全储备(安全系数方法中)或适当的可靠度(可靠度方法中),满足三个方面的基本功能要求:(1)在一般作用和环境作用下能满足正常使用的实用性要求,与之相应的极限状态即为实用性极限状态或正常使用极限状态;(2)在可能出现的一般作用和规定的偶然作用下有足够的承载力(最大极限承载力或最大抗力,有时也可为不适于继续承载时的最大极限变形)能够抵抗倒塌或类似倒塌那样的严重破坏,与之相应的极限状态是承载力极限状态;(3)在可预见或不可预见的偶然灾害作用下或受到重大人为错误影响时,结构不应发生与其初始原因的严重破坏后果,即结构应有的整体牢固性或鲁棒性,或者说,如果偶然作用在开始时本来只造成局部破坏,就不应该引发大范围的连续倒塌。

5.由于结构安全性是防止破坏倒塌的能力,严格说来应该与构件的极限承载力或最大抗力相联系,后者虽然在很大程度上取决于材料的强度,但尚与结构及其材料在承载力极限状态工作时的塑性行为有关,所以容许应力设计方法并不能准确反映结构的安全性。

6.我国对于混凝土结构设计,与欧洲规范相似,主要考虑的极限状态有才承载力极限状态(与构件的安全性相关)和正常使用极限状态(与构件的适用性相关),包括变形极限状态和裂缝极限状态。

7.保证结构的安全性必须做到:(1)在可能发生的一般作用和规定的偶然作用下,结构的每一构件(如梁、板、柱及其连接)都要有足够的强度和稳定性,即构件在承载力上的安全性;(2)结构必须具有整体牢固性,无论天灾人祸,结构都不应发生与其初始原因不相称的严重破坏后果;(3)在环境作用下,结构材料性能的劣化应控制在可接受的程度内。

土木建筑工程结构的安全性与耐久性设计

土木建筑工程结构的安全性与耐久性设计

土木建筑工程结构的安全性与耐久性设计土木建筑工程的结构安全性和耐久性是设计过程中非常重要的考虑因素。

安全性指的是建筑结构在正常使用和极端情况下(如地震、风暴等)保持稳定和不坍塌的能力。

耐久性则指的是建筑结构在长期使用过程中能够保持其功能和结构完整性的能力。

第一,结构安全性设计需要根据土地使用条件、气候条件和地质情况等因素进行综合分析和评估。

工程师需要对建筑所在的地理环境进行详细研究,了解地震、风荷载和雪荷载等极端气候条件对建筑结构的影响,从而合理确定建筑的结构布局和抗震设计。

建筑结构的设计需要满足相应的安全标准和规范。

国家和地区都有相应的建筑设计规范,规定了建筑结构在设计和施工过程中的各项要求和技术参数。

工程师需要严格遵守这些规范,确保建筑结构的安全性和稳定性。

结构的安全性设计还需要考虑施工质量和监测监管。

施工过程中的质量问题,如钢筋接头不牢固、混凝土浇筑不均匀等,都可能导致结构的安全隐患。

工程师需要对施工过程进行有效的监管和检查,确保施工质量符合设计要求。

在建筑竣工后,还需要进行定期的结构监测和维护,发现问题及时进行修复和加固,保障建筑结构的长期稳定性。

耐久性设计是保证建筑结构长期使用的重要环节。

材料的选择是耐久性设计的关键。

建筑材料需要具有抗腐蚀、耐久性好的特点,能够承受外部环境的侵蚀和负荷的作用。

在海滨地区建造的建筑结构需要选择耐盐碱侵蚀的材料。

施工工艺和维护保养也是影响建筑结构耐久性的因素。

施工过程中需要严格按照设计要求进行施工,避免施工缺陷和质量问题。

建筑竣工后,定期进行维护保养,及时修复和更换损坏的部件,延长建筑的使用寿命。

结构的安全性和耐久性是土木建筑工程设计中至关重要的考虑因素。

在设计过程中,需要综合考虑地理环境、气候条件和地质情况等因素,符合相应的安全规范和标准,严格控制施工质量,定期进行结构监测和维护保养,以确保建筑结构的安全稳定和长期使用。

工程结构的安全性与耐久性

工程结构的安全性与耐久性

工程结构的安全性与耐久性工程结构的安全性与耐久性是现代工程领域的两个重要方面。

它们是评估一个工程结构建设成功与否的关键因素。

一个具有优良安全性和耐久性的工程结构不仅可以保证人们的生命财产安全,而且可以确保工程实现长期稳定运行。

一、安全性安全性是指工程结构在正常运行条件下不会发生任何的损坏或破坏,并且有足够的承载能力承担可能发生的超负荷作用。

在现代工程领域,安全性是最重要的要素之一,这是因为一个安全的工程结构可以保证人们的生命安全以及资产安全。

因此,为了保证工程的安全性,必须采取必要的措施来检测工程结构的可靠性,避免任何可能危及人们生命安全的因素。

二、耐久性耐久性是指工程结构可以在长期运行条件下,保持其正常功能并经久不衰。

耐久性是现代工程领域中的另一个关键要素。

一个具有耐久性的工程结构可以保证其在维修和保养时的成本降低以及减少因为工程结构失效而导致的资产损失。

三、如何确保工程结构的安全性与耐久性1. 选择合适的材料在构建工程结构时,必须选择合适的材料确保其具有良好的安全性和耐久性。

如铁、钢、混凝土等强度高、耐久性好的材料是一些常见的选择。

2. 建立合适的维护计划为了保证工程结构的持久稳定运行,必须建立合适的维护计划。

该计划应该定期检测工程结构的安全性和耐久性,并确定必要的维修、保养措施以避免可能存在的问题。

定期维修和保养可以让工程结构长期保持正常的影响力和承载能力,从而降低生产成本。

3. 采取预防措施预防措施也是确保工程结构安全性和耐久性的重要措施之一。

预防措施包括对工程结构进行定期的检查和维护、提高工程结构的耐用性、降低工程的危险等级、增加最大承载能力以及对可能存在的危险因素进行全面的评估和处理。

4. 采用先进的技术和设备采用先进的技术和设备可以帮助确保工程结构的安全性和耐久性。

利用新的技术和设备可以提高工程的精度和可靠性,从而降低生产成本,不断提高安全性和耐久性。

5. 组织科学施工组织施工是确保工程结构安全耐用的另一个关键措施。

工程结构的安全性与耐久性

工程结构的安全性与耐久性

工程结构的安全性与耐久性是衡量一个工程项目质量好坏的重要指标。

安全性是指工程结构在正常使用条件下,不发生塌陷、倒塌或破坏的能力;耐久性是指工程结构在长期使用或极端环境条件下,保持稳定运行并不断发挥功能的能力。

下面将从设计、施工、材料和维护等方面分析如何确保工程结构的安全性与耐久性。

首先,设计是保证工程结构安全性与耐久性的基础。

设计师需要深入了解工程结构的使用需求和使用环境,合理确定结构形式、荷载标准和材料选择。

结构形式的选择应考虑力学性能、地质条件以及施工和维护的方便性。

荷载标准的确定需要综合考虑工程的使用情况,如人员数量、设备重量、雪、风等自然荷载,以及可能出现的事故荷载。

材料的选择应考虑强度、稳定性、耐久性和特殊特性等因素,确定合适的材料,如钢筋、混凝土、石材等。

其次,施工是确保工程结构安全性与耐久性的重要环节。

施工单位在施工过程中应严格按照设计要求进行施工,确保施工质量。

首先,施工过程中需要加强质量控制,对原材料进行检验,监督施工工艺和操作规范,保证施工的精度和质量。

其次,应加强现场管理,保证施工安全,严格执行施工工艺,充分保证结构施工质量。

此外,施工过程中应密切配合相关部门进行监督和检查,及时处理施工中的问题和隐患,确保施工质量和安全。

再次,材料是确保工程结构安全性与耐久性的重要因素。

材料的质量直接影响工程结构的性能和使用寿命。

因此,材料的选择应严格按照国家标准进行,确保材料符合强度、稳定性和耐久性要求。

在使用过程中,还应随时监测材料的使用状况和工程结构的变化情况,及时修复和更换受损材料,确保工程结构的安全性和耐久性。

最后,维护是保证工程结构安全性与耐久性的重要环节。

对于长期使用的工程结构来说,定期维护和检修是保证其安全性和耐久性的关键。

维护工作包括对工程结构进行巡检、维护、保养和修复等。

定期巡检可以及时发现结构问题和隐患,做到“防患于未然”,及时采取措施修复和加固。

维护保养工作包括定期清理杂物,防止积水和雨淋,处理水泄漏等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal.
工程结构的安全性与耐久
性正式版
工程结构的安全性与耐久性正式版
下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。

文档可以直接使用,也可根据实际需要修订后使用。

1.混凝土的腐蚀主要有冻融破坏和化学腐蚀,配置混凝土时加入化学引气剂可以在混凝土体内产生大量的封闭微细气泡,是防止混凝土冻融破坏的最有效手段。

2.钢筋混凝土的种种劣化过程,都需要有水的参与或以水为媒介。

为了阻止水分、氧气、二氧化碳等气体和盐、酸等有害物质侵入混凝土内部,最根本的措施就是增加混凝土材料自身的抗侵入性或抗渗性,并增加混凝土保护层的厚度,以延缓有害物质到达钢筋位置的时间。

3.在水化良好的低水灰比浆体中,毛细孔隙的尺寸在0.01-0.1微米的范围内,而在高水灰比的早期浆体中,毛细孔隙的最大尺寸可超过5微米,孔隙的总体积可占整个浆体的百分之四十以上。

尺寸大于0.05微米的毛细孔隙被认为对强度和抗渗性有害。

4.混凝土的抗侵入性或抗渗性主要取决于毛细孔隙的孔径分布和孔隙率等孔结构特征。

加入大量矿物掺合料能有效抑制硫酸盐、酸、碱-骨料反应等化学腐蚀,并能显著提高混凝土抗氯盐侵入能力。

矿物掺合料与水泥水化产物中的氢氧化钙发生化学作用(火山灰反应)后生成的产物可以进一步改善混凝土的微结构并消耗部
分的不利于混凝土强度和化学稳定性的氢氧化钙。

5.扩撒:流体中的自由分子或离子通过无序运动从高浓度区到低浓度区的净流动,其驱动力是浓度差。

吸收:毛细孔隙表面张力引起的液体传输。

渗透:在压力差的驱动下而产生的流体运动。

1. 混凝土碳化需要有一定的水分,如环境过于干燥,碳化也不会发生。

没有足够的水分和气供给,钢筋即使因混凝土碳化而脱钝,也不会发生持续的锈蚀。

所以对钢筋而言,最易发生锈蚀的环境条件是干湿交替。

所以海洋环境中,氯
离子向混凝土内部扩散的速度较快,但因缺氧,钢筋不易锈蚀。

环境温度对锈蚀速度也有重大影响。

2. 外界的水或水溶液在压力驱动下渗透到混凝土内部的情况比较少见,这种现象主要发生在高水头下或水下混凝土的表层出。

我国混凝土结构的耐久性现状
1. 相对于房屋建筑而言,对于露天状况下的桥梁耐久性与病害状况要严重得多。

2. 隧道的衬砌机构多用素混凝土构筑,不存在钢筋锈蚀问题。

衬砌的渗漏、裂损和腐蚀主要是由于混凝土强度等级过低等设计缺陷,导致钢轨锈蚀、道床
翻浆、电力牵引设备漏电而危害正常运行。

3. 耐久性不足的原因:设计标准过低、施工进度的不适当追求、缺乏正常的检测与维修。

4. 我国规范主要考虑的是荷载作用下结构强度的安全性需要,对于长期使用过程中由于环境作用引起材料性能劣化的影响,则被置于次要和从属地位。

5. 水泥强度的不断增加靠的是提高水泥中的早强矿物成分和增加水泥的细度,结果导致水泥水化产物的内部微结构和后期强度发展不良,对耐久性带来不利影响,而水泥强度的增加有使低强度等级混凝土的水灰比得益提高,降低了这种
混凝土的密实性和抗渗性,所以今天的低强度混凝土,其耐久性要比几时年前同样强度的混凝土差得多。

6. 我国规范规定的混凝土保护层厚度远小于英美等国,由于混凝土碳化从构件表面向里扩散到钢筋表面的年限大概与保护层厚度的平方成正比,这样按照我国规范设计的主筋开始出现锈蚀的年限,大概短到只要按英美规范的四分之一。

7. 过薄的混凝土保护层厚度,过低的的混凝土强度等级,过高的水灰比,有时又采用过细的钢筋,这些在结构设计上的先天不足,无疑是我国混凝土结构特别是露天结构过早化破损的最主要原
因。

8. 施工养护不良对于大尺寸构件的承载力不会有太大的影响,因为强度受到损失的主要是表层混凝土,而内部混凝土因始终处于潮湿状态,尚不至于受到明显损害。

但养护不良可使表层混凝土抵抗空气渗透的能力成倍降低。

9. 规范规定保护层厚度的施工允许误差一般为5-10mm,对于构件的承载力不会产生很大的影响,但对耐久性却至关重要,所以从耐久性要求考虑,对于施工图中的保护层厚度名义尺寸,应该额外加上施工负误差。

改善工程结构安全性与耐久性的主要途径
1.合理的结构安全设置水准,应该是结构所承担的风险损失与社会(或业主)所能提供的经济实力之间达到某种平衡的结果。

2.设计基准期只是用来确定可变荷载的出现频率与其作用值以及材料强度参数的取值,而不是考虑环境作用下与材料劣化相联系的耐久性要求。

设计使用年限与设计基准期是两种不同的概念,虽然从表面上看,两者的数值往往相同。

设计使用年限必须具有一定的保证率或安全度而基准期则不是。

2.技术使用寿命:结构的某种技术性能(如承载力或变形)因材料性能劣化而不再满足要求时的期限。

功能使用寿命:当结构的使用功能发生了变化(如桥梁行车能力增加或建筑物用途改变)因而无法继续使用时的期限。

经济使用寿命:当结构由于经济效益考虑(如继续修理使用还不如差拆除重建时经济)而不再使用时的期限。

3.结构的设计使用年限或使用寿命:结构竣工后,在设计预定的使用和维修条件下,其安全性和适用性均能满足原定设计要求的期限。

4.结构的可修复性:结构及其构件受到损害后能够经济合理地进行修复的能力,材料的劣化或腐蚀程度愈深,修复的费用和难度就越大,因此劣化程度易设定在较轻的范围内。

5.土建工程的设计使用年限是对主体结构而言的,由于技术条件所限或局部环境特别严酷,结构个别部件的使用年限可能达不到这一要求而需在使用过程中更换。

6.横向裂缝宽度如果不是太大(如不大于0.4mm)对碳化引起的钢筋锈蚀没有大的影响,裂缝宽度大小与钢筋锈蚀发展速率和锈蚀程度之间并无直接联系。

沿着钢筋表面发生的顺筋纵向裂缝则完全相反,它使水、氧等参与锈蚀反应的物质长驱直入,极大加速钢筋的锈蚀。

而预应力筋在应力腐蚀下的锈蚀素的快,对裂缝宽度的限制也要严格的多。

7.混凝土抗氯离子侵入的能力虽水胶
比降低而提高,可是过低的水胶比(如小于0.36)在施工过程中容易开裂,质量控制比较复杂,而混凝土的耐久性更需要施工质量的保证,这就要综合权衡而定。

8.混凝土冻融的外部因素:冻融循环次数、最低温度及冻结期限、混凝土表面接触水体或受雨淋的程度等。

——此位置可填写公司或团队名字——。

相关文档
最新文档