初中数学竞赛专题培训(4):代数式的化简与求值

合集下载

代数式的化简与求值(竞赛培训)

代数式的化简与求值(竞赛培训)

代数式的化简与求值例1、 已知代数式()()15326222-+--+-+y x bx y ax x(1)当a 、b 取何值时,此代数式的值与x 的取值无关;(2)在(1)的情况下,求代数式()()2222423b ab a b ab a ++---的值。

例2、 已知()2-x 与()4-x 是代数式b ax x x ++-232的两个因式,试求代数式2244b ab a ++的值。

例3、 已知012=-+a a ,求代数式3223++a a 的值。

例4、 已知d cx bx ax y +++=35,当0=x 时,5-=y ;当3-=x 时,7=y ,求当3=x 时,y 的值。

例5、 已知当4,2-==y x 时,代数式5213++by ax 的值为2005,求21,4-=-=y x 时,代数式50062433+-by ax 的值。

例6、 已知211=+b a ,求代数式bab a b ab a -+-+-3353的值。

例7、 已知:当2=x 时,关于x 的二次三项式()()5233223-++++-x x x b x x x a 的值是17-,试求当2-=x 时,该二次三项式的值。

例8、 如果无论x 取什么值,代数式43++bx ax (分母不为0)都得到相同的值,试求a 、b 应该满足的关系。

例9、 若a 、b 均为正数,且1=ab ,试求11+++b b a a 的值。

例10、 已知xz c z y b y x a -=-=-,则c b a ++=___________。

练习题:1. 已知()b a b a ≠=+0,则化简()()11+++b ba a ab 的结果是( ) A 、a 2 B 、b 2 C 、2 D 、2-2. 若543z y x ==,且20254=+-z y x ,则z y x +-52=_______________。

3. 若当1,1-==y x 时,代数式3-+by ax 的值为0,则当1,1=-=y x 时,代数式3-+by ax 的值等于( )A 、-6B 、-4C 、-3D 、-54. 已知20072008+=x a ,20082008+=x b ,20092008+=x c ,则()()()222a c c b b a -+-+-=______________。

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

代数式的化简与求值

代数式的化简与求值

代数式的化简与求值二、方法剖析与提炼 例1.已知12322--+=x xy x A ,12-+-=xy x B ,且3A +6B 的值与x 无关,求y 的值。

【解答】3A +6B=()9615--x y∴当y =_________________时,3A +6B 的值与x 无关。

【解析】由已知3A +6B 与x 无关,只能说3A +6B 中不含有x 。

【解法】求3A +6B 表示的代数式,用整体代入求得关于x ,y 的代数式9615--x xy ,因3A +6B 与x 无关问题就转化为当y 为何值时9615--x xy 中不含有x 。

∵当15y -6=0时,9615--x xy 中不含有x 。

∴当y =52时,3A +6B 中不含有x 。

【解释】(1)3A +6B 的式子也即将12322--+=x xy x A 与12-+-=xy x B 整体代入后化简的结果;(2)3A +6B 与x 无关的问题转化为“式中应不含有x ”,如何当代数式9615--x xy 中不含有x 呢?那可以这样处理:把y 作为常数,让字母x 的系数为0即可。

例2.若201632=+y x ,则代数式()_______)9()(232=+-+---y x y x y x【解答】())9()(232y x y x y x +-+---=4032.【解析】首先化简代数式())9()(232y x y x y x +-+---得:y x 64+,再观察y x 64+与y x 32+的关系,若看不出来,也可对y x 64+进行因式分解: y x 64+=()y x 322+,可得y x 64+是y x 32+的2倍。

【解法】对代数式()()()2232y y x y x x -+---化简后得23129x x -+,再将241x x -=整体代入求解,具有一般性解法。

此题也可以由241x x -=,得:241x x =+,代入化简化的代数式y x 64+求值,这种方法叫消元代入法。

代数式的计算与化简

代数式的计算与化简

代数式的计算与化简一. 代数式的计算与化简代数式在数学中扮演着重要的角色,它可以用来表示数学问题中的关系和规律。

在数学中,我们经常需要对代数式进行计算和化简,以便更好地理解和解决问题。

本文将介绍代数式的计算和化简的方法和技巧。

1. 代数式的计算代数式的计算是指根据已知的规则和运算法则对代数式中的数值和符号进行计算。

常见的代数式计算包括四则运算(加减乘除)和指数运算。

例如,对于代数式3x + 4y - 2z,我们可以根据加减法的运算法则将x、y和z的系数进行合并,得到简化后的代数式3x + 4y - 2z。

在进行代数式的计算时,我们需要注意运算符的优先级和结合性。

一般来说,先进行括号中的计算,然后按照指数、乘法和除法、加法和减法的顺序进行计算。

2. 代数式的化简代数式的化简是指通过变换和合并代数式中的项或因式,使其更加简化和易于理解。

化简代数式可以帮助我们更好地理解问题和推导解决方案。

在进行代数式的化简时,我们可以利用一些常见的化简公式和技巧。

下面是一些常见的代数式化简方法:- 合并同类项:将代数式中的相同项合并,例如将3x + 2x合并为5x。

- 分配律:将一个因式乘到括号内的每一项上,例如将3(x + 2)展开为3x + 6。

- 因式分解:将代数式根据因式分解的规则进行拆分,例如将x^2 -4分解为(x + 2)(x - 2)。

- 提取公因式:将代数式中的公因式提取出来,例如将2x + 4y提取公因式得到2(x + 2y)。

- 合并同底数的指数:将同底数的指数相加或相减,例如将x^2 *x^3 = x^5。

通过运用这些方法和技巧,我们可以将复杂的代数式化简为简洁而易于理解的形式,从而更好地解决问题。

二. 代数式的应用举例代数式的计算和化简在实际问题中具有广泛的应用。

下面通过两个具体的例子来说明代数式的应用。

1. 例子一:面积计算假设一个正方形的边长为x,我们想要计算该正方形的面积。

根据正方形的定义,正方形的面积等于边长的平方。

初中数学竞赛——代数式的求值

初中数学竞赛——代数式的求值

初中数学竞赛代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解求x2+6xy+y2的值.解3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x 2-4x+|3x -y|=-4,求y x的值. 解例9 未知数x ,y 满足(x 2+y 2)m 2-2y(x+n)m+y 2+n 2=0, 其中m ,n 表示非零已知数,求x ,y 的值. 解5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:解练习六2.已知x+y=a ,x 2+y 2=b 2,求x 4+y 4的值.3.已知a +b+c=3,a 2+b 2+c 2=29,a 3+b 3+c 3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.(第一个分母改为x )5.设a+b+c=3m ,求(m -a)3+(m -b)3+(m -c)3-3(m -a)(m -b)(m -c)的值.8.已知13x 2-6xy+y 2-4x+1=0,求(x+y)^13·x^10的值.。

初一数学代数式化简及求值

初一数学代数式化简及求值

初一数学训练二-----代数式及其化简求值一、代数式的定义:代数式是用运算符号(加、减、乘、除、乘方、…)把数或者表示数的字母连接而成的式子,特别的单独的一个数或者字母也是代数式。

如:1、学习代数式应掌握什么技能?掌握代数式的知识,既应会用语言表述代数式的意义,也要会根据语言的意义列出代数式2、用语言表达代数式的意义一定要理清代数式中含有的各种运算及其顺序.4、列代数式的实质是理清问题语句的层次,明确运算顺序。

例练:一个数的1/8与这个数的和;m 与n 的和的平方与m 与n 的积的和例练:用代数式表示出来(1)x 的343倍 (2)x 除以y 与z 的积的商 例练:代数式3a+b 可表示的实际意义是_______________________二、代数式的书写格式: 1、数字与数字相乘时,中间的乘号不能用“• ”代替,更不能省略不写。

2、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。

3、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性如:4、当字母和带分数相乘时,要把带分数化成假分数。

5、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。

6、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。

如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本三、同类项及合并同类项1、同类项具备的条件① ②2、同类项与系数无关,与字母的排列顺序无关例练:下列各题中的两项是不是同类项?为什么(1)2x 2y 与5x 2y (2)2ab 3与2a 3b (3)4abc 与4ab (4)3mn 与-nm (5)-5与+3例练:⑴若单项式x m y 4 与-2x 3y n -2是同类项,则m=____,n=____3、关于同类项中的概念(1单项式: 特征:数字和字母相乘。

单项式的系数 : 数字为系数 ;单项式的次数: 所含字母的指数和味单项式的次数(2)多项式:特征:几个单项式的和。

代数式的化简与求值

代数式的化简与求值

代数式的化简与求值第三十三讲代数式的化简与求值1.在前面几讲中我们分别学习了整式、分式以及根式的恒等变形与证明,其中也涉及到它们的化简与求值.本讲主要是把这兰种类型的代数式综合起,其中求值问题是代数式运算中的非常重要的内容.2.对于代数式的化简、求值,常用到的技巧有:(1)因式分解,对所给的条、所求的代数式实施因式分解,达到化繁为简的目的;(2)运算律,适当运用运算律,也有助于化简;(3)换元、配方、待定系数法、倒数法等;(4)有时对含有根式的等式两边同时实施平方,也不失为一种有效的方法.例题求解【例1】已知,求的值.思路点拨由已知得(x-4)2=3,即x2-8x+13=0.所以原式=.注本题使用了整体代换的作法.【例2】已知:x+ +x=3a(a ≠0),求:的值.思路点拨由得:解设,,,∴∴原式= (可将两边平方的得到)【例3】已知,求的值.思路点拨设∴,然后对和两种情况进行讨论,原式= 和.【例4】已知,,,求(1)的值:(2)的值.思路点拨先由条求出,可得,.注这道题充分体现了三个数的平方和,三个数的立方和,及三个数四次方和的常规用法,这些常用处理方法对我们今后的学习是十分重要的.【例】(2003年河北初中数学应用竞赛题)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是(a>0,b>0);丙商场:第一次提价的百分率为b,第二次提价的百分率为a,则提价最多的商场是( )A.甲B.乙.丙D.不能确定思路点拨乙商场两次提价后,价格最高.选B【例6】已知非零实数a、b、满足,,求的值.思路点拨原条变形为:∴为±1或0.【例7】(2001年重庆市)阅读下面材料:在计算3++7+9+11+13+1+17+19+21时;我机发现,从第一个数开始,以后的每个数与它的前一个数的差都是一个相同的定值.具有这种规律的一列数,除了直接相加外,我们还可以用公式计算它们的和.(公式中的n表示数的个数,a表示第一个数的值,d表示这个相差的定值.)那么3++7+9+11+13+1+17+19+21= .用上面的知识解决下列问题:为保护长江,减少水土流失,我市某县决定对原有的坡荒地进行退耕还林.从199年起在坡荒地上植树造林,以后每年又以比上一年多植相同面积的树木改造坡荒地,由于每年因自然灾害、树木成活率、人为因素等的影响,都有相同数量的新坡荒地产生,下表为199、1996、1997年的坡荒地面积和植树的面积的统计数据.假设坡荒地全部种上树后,不再有水土流失形成新的坡荒地,问到哪一年,可以将全县所有的坡荒地全部种上树木.199年1996年1997年每年植树的面积(亩)100014001800植树后坡荒地的实际面积(亩)22002400022400思路点拨1996年减少了2200-24000=1200,1997年减少了24000-22400=1600,…年减少了1200+400×(—1996).1200+1600+…+1200+400(—1996)=2200.令n=—199,得,或(舍去)∴=199+n =2004.∴到2004年,可以将坡荒地全部种上树木.【例8】( “信利杯”)某校初三两个毕业班的学生和教师共100人一起在台阶上拍毕业照留念,摄影师要将其排列成前多后少的梯形队阵{排数≥3),且要求各行的人数必须是连续的自然数,这样才能使后一排的人均站在前一排两人间的空挡处,那么,满足上述要求的排法的方案有( )A.1种B.2种.4种D.0种思路点拨设最后一排有个人,共有n排,那么从后往前各排的人数分别为,+1,+2,…,+(n—1),由题意可知,即n=200.因为,n 都是正整数,且n≥3,所以n<2+(n—1),且n与2+(n—1)的奇偶性不同.将200分解质因数,可知n=或n=8.当n=时,=l8;当n=8时,=9.共有两种不同方案.选B【例9】(江苏省竞赛初三)有两道算式:好+好=妙,妙×好好×真好=妙题题妙,其中每个汉字表示0~9中的一个数字,相同汉字表示相同数字,不同汉字表示不同数字.那么,“妙题题妙”所表示的四位数的所有因数的个数是.思路点拨从加法式得“好”<,“妙”≠0,因此“好”=1,“妙”=2或“好”=2,“妙”=4或“好”=3,“妙”=6或“好”=4,“妙”=8.显然,中间两种情形不满足乘法式,所以只能是:(1)“好”=1,“妙”=2,从而乘法式变为2×11×(真×10+1)=2002+题×110,即真×10+1=91+题×.上式左边≤91,右边≥91,所以两边都等于91.由此得“真”=,“题”=0“妙题题妙”=2002.(2)“好”=4,“妙”=8,乘法式为8×44×(真×10十4)=8008+题×110.即704+1760×真=4004十题×.在0~9中,只有“真”=2,“题”=4满足上式,但此时“好”与“题”表示相同的数字,与题意不符.故四位数“妙题题妙”有唯一解2002.由2002=2×7×11×13,知2002的所有因数的个数为24=16.【例9】设,,且.求的值.思路点拨设,显然,于是,,,代入已知得,即,由,,可知,,,∴,原式=1.学力训练(A级))1.当在可取值范围内取不同的值时,代数式的最小值是( )A.0 B..3 D.92.已知:a、b都是负实数,且,那么的值为( )A.B..D.3.如a、b、是三个任意整数,那么、、( )A.都不是整数B.至少有两个整数.至少有一个整数D.都是整数4.如果,那么的值是( )A.0 B.1 .2 D.4.已知:,,,且,试求的值.6.已知,那么的值是多少?(B级)1.设等式在实数范围内成立,其中a、x、是两两不同的实数,则的值是( )A.3 B..2 D.2.已知>0,n>0,且,求的值.3.已知2,试求的值.4.已知,且x≠,求的值..设a、b、均不为0,且,,求证:a、b、中至少有一个等于1998.6.已知a、b、为整数,且满足,求的值.A级1.B 2.3.4 .D .1 6.20B级1.B.2.3 3.4 4..提示:,分解得,于是,,中必有一个为0.6.。

初中数学竞赛专题辅导_代数式地求值

初中数学竞赛专题辅导_代数式地求值

初中数学竞赛专题辅导代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法.解x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即(x-2)2+|3x-y|=0.所以y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即(mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛专题培训第四讲分式的化简与求值
分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.
例1 化简分式:
分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.
=[(2a+1)-(a-3)-(3a+2)+(2a-2)]
说明本题的关键是正确地将假分式写成整式与真分式之和的形式.
例2 求分式
当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),
可将分式分步通分,每一步只通分左边两项.
例3 若abc=1
,求
分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.
解法1 因为abc=1,所以a,b,c都不为零.
解法2 因为abc=1,所以a≠0,b≠0,c≠0.
例4 化简分式:
分析与解 三个分式一齐通分运算量大,可先将每个分式的分
母分解因式,然后再化简.
说明
互消掉的一对相反数,这种化简的方法叫“拆项相消”法,
它是分式化简中常用的技巧.
例5 化简计算(式中a ,b ,c 两两不相等):
似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解
说明
本例也是采取“拆项相消”法,所不同的是利用
例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求
分析 本题字母多,分式复杂.若把条件写成
(x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解.
解 令x -a=u ,y -a=v ,z -a=w
,则分式变为
u 2+v 2+w 2
+2(uv+vw+wu)=0.
由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2
+v 2
+w
2
≠0,从而有
说明 从本例中可以看出,换元法可以减少字母个数,使运算
过程简化. 例7 化简分式:
适当变形,化简分式后再计算求值.
(x -4)2
=3,即x 2
-8x+13=0.
原式分子=(x 4
-8x 3
+13x 2
)+(2x 3
-16x 2
+26x)+(x 2
-8x+13)+10 =x 2
(x 2
-8x+13)+2x(x 2
-8x+13)+(x 2
-8x+13)+10
=10,
原式分母=(x2-8x+13)+2=2,
说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.
解法1 利用比例的性质解决分式问题.
(1)若a+b+c≠0,由等比定理有
所以
a+b-c=c,a-b+c=b,-a+b+c=a,
于是有
(2)若a+b+c=0,则
a+b=-c,b+c=-a,c+a=-b,
于是有
说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.
解法2 设参数法.令

a+b=(k+1)c,①
a+c=(k+1)b,②
b+c=(k+1)a.③
①+②+③有
2(a+b+c)=(k+1)(a+b+c),
所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.
当k=1时,
当a+b+c=0时,
说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.
练习四
1.化简分式:
2.计算:
3.已知:
(y-z)2+(z-x)2+(x-y)2
=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,
的值.。

相关文档
最新文档