振荡电路及555定时器应用设计报告

合集下载

555定时器 实验报告

555定时器 实验报告

555定时器实验报告555定时器实验报告引言:555定时器是一种常用的集成电路,具有广泛的应用领域。

本实验旨在通过对555定时器的实验研究,探索其工作原理和特性,并进一步了解其在电子电路中的应用。

一、实验目的本实验的主要目的是:1. 了解555定时器的基本结构和工作原理;2. 掌握555定时器的基本参数和特性;3. 学习使用555定时器设计和实现简单的定时器电路。

二、实验原理555定时器是一种集成电路,由比较器、RS触发器和输出驱动器组成。

它可以工作在单稳态、多稳态和振荡器模式下,具有广泛的应用。

555定时器的主要参数有供电电压、触发电平、输出电流等。

三、实验步骤1. 实验前准备:准备好实验所需的555定时器芯片、电源、电阻、电容等器件。

2. 搭建电路:按照实验指导书上的电路图搭建555定时器电路。

3. 调试电路:根据实验指导书上的调试步骤,逐步调整电路参数,确保电路正常工作。

4. 测量参数:使用万用表等仪器,测量电路中的电压、电流等参数,并记录下来。

5. 分析结果:根据实验数据,分析555定时器的工作特性和参数变化规律。

6. 总结实验:总结实验过程中遇到的问题和解决方法,总结实验结果和心得体会。

四、实验结果与分析在实验过程中,我们观察到555定时器在不同电路条件下的稳定工作。

通过调整电路参数,我们成功实现了定时器电路的设计和实现。

根据测量数据和分析结果,我们得出以下结论:1. 555定时器的稳定工作与供电电压、触发电平等参数密切相关;2. 555定时器的输出电流能力有一定限制,需要根据具体应用场景选择合适的驱动电路;3. 555定时器可以通过改变电阻和电容值来调整输出波形的频率和占空比。

五、实验应用555定时器具有广泛的应用领域,常见的应用包括:1. 交通信号灯控制:通过555定时器实现交通信号灯的定时控制,实现交通流畅和安全;2. 脉冲发生器:利用555定时器的振荡特性,设计和实现各种脉冲发生器电路;3. 声音发生器:通过555定时器产生不同频率的方波,实现声音发生器电路;4. 脉宽调制:利用555定时器的占空比可调特性,实现脉宽调制电路。

555定时器应用电路的设计与调试

555定时器应用电路的设计与调试

555定时器应用电路的设计与调试1.555定时器的原理概述2.555定时器的基本工作原理555定时器的基本工作原理是通过外部RC电路产生的时间常数来控制输出的时间周期。

具体来说,当电源正常通电后,555定时器的电源引脚将被高电平激活,通过内部比较器将电压与阀值进行比较,并将结果传递给RS触发器。

RS触发器的输出信号会控制放电开关,根据输入信号的变化来控制电容的放电与充电,从而实现定时和脉冲控制功能。

3.555定时器的应用电路设计(1)单稳态触发器电路单稳态触发器电路常用于产生固定宽度的脉冲信号。

通过一个电容和一个电阻连接到555定时器的触发脚,当电源通电或接收到外部触发脉冲信号时,555定时器会产生一个固定宽度的脉冲信号输出。

(2)Astable多谐振荡器电路Astable多谐振荡器电路常用于产生固定频率和变量占空比的方波信号。

通过一个电容和两个电阻连接到555定时器的控制脚与放电脚,当电源通电后,555定时器会自动产生方波信号输出。

4.实验步骤与调试方法(1)准备实验所需材料,包括555定时器芯片、电容、电阻、开关和示波器等。

(2)按照设计电路图连接实验电路,注意正确连接每个元件的引脚。

(3)接通电源,通过示波器观察输出信号,并根据需要调整电容和电阻的数值以达到所需的定时和脉冲控制效果。

(4)通过实验数据和示波器观察结果,对实验电路进行调试和优化,直至达到预期的结果。

5.实验注意事项(1)实验时要注意正确连接元件的引脚,避免引脚连接错误导致电路无法正常工作。

(2)实验中可以选择合适的电阻和电容数值以达到所需的定时和脉冲控制效果。

(3)在实验过程中可以适当添加一些调试电路,如LED灯、蜂鸣器等,以便更直观地观察电路的工作情况和调试结果。

6.本文总结本文对555定时器应用电路进行了设计与调试的详细解析,介绍了555定时器的基本工作原理和应用电路设计,以及相关的实验步骤和调试方法。

通过合理的设计和调试,可以实现各种定时和脉冲控制功能,满足不同场合的需求。

555定时器非稳态振荡电路设计

555定时器非稳态振荡电路设计

555定时器非稳态振荡电路设计在电子电路设计中,时间控制功能对于许多应用来说至关重要。

555集成电路是一种广泛应用在定时器和调制解调器电路中的集成电路,它经常用于非稳态振荡电路设计。

在下面的文章中,我将为您阐述如何设计一种基于555定时器的非稳态振荡电路。

第一步骤:基本电路设计我们可以利用555定时器的基本电路设计来构建非稳态振荡器。

在这个设计中,我们需要通过跨接2和6脚以及接入一个电容器来实现正常的工作电压。

在电容器的两端接入电阻器,他们的接合点通向6号引脚,这可以为我们的电路提供一个反馈路径。

同时,我们还需要将8号脚通过一个电阻器接地,以确保电路的稳定性。

第二步骤:选择适当的电容器在非稳态振荡电路设计中使用的电容器通常是可变电容器。

这种电容器的电容可以随着电压的变化而变化,所以我们可以通过调整电容来改变振荡频率。

然而,由于可变电容器很难获取,我们也可以使用稳定的电容器。

注意:在选择电容器时,一定要注意电容值是否适合你的设计。

如果你使用的电容器大于实际需要的电容值,则会导致频率太低,反之,则会导致频率太高。

我们可以使用公式f = 1.44 / ((R1 +2R2)* C)来计算我们的频率。

第三步骤:连接LED如果您想在电路中添加LED,则可以使用两个电阻器将LED连接到电路中。

一个电阻器接在LED的正极上,另一个接在LED的负极上,以及接地。

这不仅可以使电路更加美观,还可以让您更好地了解电路的运作状态。

第四步骤:测试与调整一旦您完成了所有必要的连接,就可以开始测试并调整您的电路。

在测试之前,您需要确保电路的所有部件都已正确连接,并且电路的电源电压已设置为正确的值。

如果一切正常,您应该能够在LED上看到明显的闪烁。

如果您需要调整振荡频率,请尝试更换电阻器和电容器的值,以便获得所需的频率。

总结非稳态振荡电路设计中使用的555定时器提供了很多优点,包括可靠,易于使用和灵活。

在上面的步骤中,我们为您提供了所有需要注意的要素,以帮助您在您的项目中构建一个成功的非稳态振荡电路。

555集成定时器的应用试验报告.doc

555集成定时器的应用试验报告.doc

555集成定时器的应用试验报告.doc555集成定时器广泛应用于电路的计时、频率分频、波形发生、触发延迟、稳幅调制、电压控制振荡器等领域,是电子技术领域中使用最为广泛的集成电路之一。

本文通过实验验证了555定时器在不同工作模式下的应用。

一、实验目的1、了解555定时器的基本结构和工作原理;2、实现555定时器在单稳态触发器、多谐振荡器、方波振荡器、脉冲发生器等不同工作模式下的应用。

二、实验器材1、555集成定时器芯片;2、电阻和电容器;3、数字万用表;4、示波器;5、电源。

三、实验步骤1、单稳态触发器将555芯片的控制端(TRIG)和复位端(RESET)分别通过电阻连接到正电源VCC,将电容器C1放在电阻R1和GND之间,将555的输出端(Q)连接到LED灯和电阻R2上,电源VCC接入电阻R3和LED;利用数字万用表测量电容器充电时间和放电时间,并测量LED闪烁的频率。

2、多谐振荡器将电容器C1、电阻R1、电阻R2和555芯片组成的多谐振荡器电路,电容器C1连接到555芯片的引脚6和2上,电阻R1、电阻R2连接到引脚7和6上,通电后用示波器测量输出波形。

3、方波振荡器4、脉冲发生器四、实验结果本次实验,我们测得电容器充电时间为4.6ms,放电时间为16.0ms。

LED闪烁频率约为31Hz。

本次实验,我们测得输出波形频率为1.26 KHz,波形持续时间为0.7ms。

1、555定时器应用广泛,能够实现不同的工作功能;2、555定时器在多谐振荡器和方波振荡器中能够发挥稳定的输出作用;3、555定时器在脉冲发生器中能够实现精确的脉冲控制。

总之,555定时器的应用十分灵活,能够满足不同电路的需要。

同时,在实践中,我们需要根据具体情况合理地选择电容器、电阻等元器件,以达到更好的实验效果。

555定时器及其应用实验报告

555定时器及其应用实验报告

555定时器及其应用【实验目的】(1) 掌握555的工作原理及其性能特点 (2) 掌握555组成的基本电路及应用。

【实验要求】(1) 用555组成一个时钟脉冲信号发生器,要求输出:标准秒脉冲,20Hz~20kHz 范围内任意频率可调、占空比可调的脉冲信号。

(2) 设计一个触摸开关,要求每触发一次其输出端维持10秒钟的高电平。

(3) 用555设计一个分频器,要求输入时钟脉冲的频率为1KHz ,其输出为100Hz 。

【实验器材】面包板,555芯片一片,函数发生器,直流稳压电源,万用表,示波器,电阻、电容、导线若干。

【实验原理】 (1) 时钟脉冲产生器555组成的多谱振器可以用作各种时钟脉冲发生器,如图1所示,通过D1,D2两个二极管将电路的充电支路与放电支路分开,则由RC 电路的充放电时间公式得,充电时间为:110.7t R C = ,放电时间为230.7t R C =,因此输出脉冲的频率为131.43()f R R C=+ ,占空比为111213t R t t R R =++ 。

通过调节R1和R3的阻值便可实现输出不同频率与占空比的脉冲信号。

图 1 时钟脉冲发生器(2) 触摸开关555组成的单稳态触发器可以用作触摸开关,电路如图2所示,其中M 为触摸金属片(或导线)。

静态时无触发脉冲输入,555的输出为低电平即U O =0,发光二极管不亮,当用手触摸金属片M 时,相当于2端输入一负脉冲,555的内部比较器A2翻转,使输出变为高电平即U O =1,发光二极管亮,直到电容C 上的电压充电23C DD U U = 。

发光二极管亮的时间为 1.1tp RC = 。

图 2 触摸开关电路(3) 分频电路由555组成的单稳态触发器可以构成分频比率很大的分频电路,如图3所示。

设输入信号Ui 为一列脉冲串,第一个负脉冲触发2端后,555的输出Uo 变为高电平,电容C 开始充电,由于Uc 未达到23DD U ,Uo 将一直保持为高电平,在这段时间里,输入负脉冲再出发也不起作用。

555定时器的实验报告

555定时器的实验报告

555定时器的实验报告555定时器的实验报告引言:555定时器是一种广泛应用于电子电路中的集成电路,它具有稳定可靠、功能强大的特点。

本次实验旨在通过对555定时器的实际操作,进一步了解其原理和应用。

一、实验目的:通过555定时器的实验,掌握其基本工作原理和使用方法,进一步了解其在电子电路中的应用。

二、实验器材:1. 555定时器集成电路芯片2. 电源3. 电阻、电容等元件4. 示波器5. 多用途实验板三、实验步骤:1. 搭建基本的555定时器电路首先,将555定时器芯片插入多用途实验板中,并根据电路图连接所需的电阻、电容等元件。

接下来,将电源连接到实验板上,并确保电路连接正确无误。

2. 测量输出信号频率使用示波器测量555定时器输出信号的频率。

调节电阻和电容的数值,观察输出信号频率的变化。

记录不同参数下的频率值,并进行比较分析。

3. 观察输出信号波形通过示波器观察555定时器输出信号的波形。

调节电阻和电容的数值,观察波形的变化。

分析不同参数对波形的影响,并记录观察结果。

4. 实现定时功能利用555定时器的稳定性和精确性,设计并实现一个简单的定时器电路。

通过调节电阻和电容的数值,设置所需的定时时间。

观察定时器的准确性和稳定性,并记录实验结果。

四、实验结果和分析:通过实验,我们得到了不同参数下555定时器输出信号的频率和波形。

实验结果表明,电阻和电容的数值对555定时器的工作频率和波形有较大的影响。

较大的电阻和电容数值将导致较低的频率和较长的周期,而较小的数值则会得到相反的结果。

此外,我们还实现了一个简单的定时器电路。

通过调节电阻和电容的数值,我们成功设置了所需的定时时间,并观察到定时器的准确性和稳定性。

这进一步证明了555定时器在电子电路中的实用性和可靠性。

五、实验总结:通过本次实验,我们深入了解了555定时器的工作原理和应用。

通过调节电阻和电容的数值,我们可以灵活地控制555定时器的输出频率和波形。

555定时器应用实验报告

555定时器应用实验报告

555定时器应用实验报告555定时器应用实验报告引言:555定时器是一种经典的集成电路,具有广泛的应用。

本实验旨在通过实际操作,探索555定时器的基本原理和应用。

一、实验目的本实验的目的是通过555定时器的应用实验,了解555定时器的基本工作原理、特性和应用场景。

二、实验器材1. 555定时器芯片2. 电源3. 电阻、电容、电感等元件4. 示波器5. 连线电缆等三、实验步骤1. 搭建基本的555定时器电路,包括电源、555芯片、电阻、电容等元件。

2. 连接示波器,观察输入和输出信号的波形。

3. 调节电阻和电容的数值,观察波形的变化。

4. 尝试不同的输入信号,如方波、正弦波等,观察输出信号的响应。

5. 探索不同的应用场景,如脉冲发生器、频率分频器等,观察555定时器的工作情况。

四、实验结果与分析在实验过程中,我们观察到了以下现象和结果:1. 通过调节电阻和电容的数值,可以改变555定时器的输出频率和占空比。

2. 输入信号的不同波形对输出信号的响应也有影响,方波信号能够得到更稳定的输出。

3. 在不同的应用场景中,555定时器表现出了良好的性能,如在脉冲发生器中能够产生稳定的脉冲信号,在频率分频器中能够实现精确的频率分频。

通过对实验结果的分析,我们可以得出以下结论:1. 555定时器是一种非常实用的集成电路,具有广泛的应用前景。

2. 通过调节电阻和电容的数值,可以实现对555定时器的频率和占空比的精确控制。

3. 在不同的应用场景中,555定时器表现出了良好的稳定性和可靠性。

五、实验总结通过本次实验,我们深入了解了555定时器的基本原理和应用。

通过实际操作,我们掌握了555定时器的调节方法和应用技巧。

同时,我们也发现了555定时器在不同应用场景中的优势和局限性。

通过对实验结果的分析和总结,我们对555定时器有了更深入的理解。

总之,555定时器作为一种经典的集成电路,在电子领域有着广泛的应用。

通过实验,我们对555定时器的工作原理和应用场景有了更深入的了解。

555定时器的应用实验报告

555定时器的应用实验报告

555定时器的应用实验报告引言555定时器是一种广泛应用于电子电路中的集成电路,它具有稳定性高、成本低、可靠性强等特点。

在本次实验中,我们将通过实际操作,探索555定时器的应用。

实验材料•555定时器芯片•电阻•电容•LED灯•面包板•杜邦线•电源实验步骤第一步:搭建电路1.将555定时器芯片插入面包板中。

2.连接电阻和电容,以及其他所需元件。

具体连接方式如下所示:–将一个电阻的一端连接到芯片的引脚1(GND),另一端连接到引脚8(VCC)。

–将一个电阻的一端连接到引脚7(DIS),另一端连接到引脚8(VCC)。

–将一个电容的负极连接到引脚2(TRIG),正极连接到引脚6(THRES)。

–将一个电容的负极连接到引脚6(THRES),正极连接到引脚2(TRIG)。

–将一个电阻的一端连接到引脚6(THRES),另一端连接到引脚7(DIS)。

–连接LED灯,将正极连接到引脚3(OUT),负极连接到引脚1(GND)。

第二步:设置参数1.将电源连接到面包板上的合适位置,并打开电源。

2.调节电源电压为合适的数值,一般为5V。

3.根据实际需求,选择合适的电阻和电容值,并将其连接到电路中。

第三步:测试实验结果1.完成电路搭建后,按下555定时器芯片上的复位按钮,开始实验。

2.观察LED灯的亮灭情况,并记录下来。

3.根据实验结果,可以对555定时器的工作原理进行分析和解释。

结果分析根据实验结果,我们可以得出以下结论:1.当电容充电至阈值电压时,引脚3(OUT)输出高电平,LED灯亮起。

2.当电容放电至触发电压时,引脚3(OUT)输出低电平,LED灯熄灭。

3.通过调节电阻和电容的数值,可以改变LED灯亮灭的时间间隔。

结论通过本次实验,我们深入了解了555定时器的工作原理和应用。

通过调节电阻和电容的数值,我们可以实现不同的定时功能。

在实际应用中,555定时器被广泛用于计时器、脉冲发生器、频率分频器等电子电路中,具有重要的实际意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八、结论
电路由反相器U3A、U4B以及反馈电阻R2、保护电阻R1和耦合电容C1;通过时反相器工作在放大状态,这时只要反相器输入电压有点变化,就会被正反馈回路放大而引起震荡,此时电路是不稳定的。此电路可以通过调节R和C的值改变输出信号的振荡频率。
石英晶体和非门构成多谐振荡器:
一、设计任务与要求
1.要求多谐振荡器的工作频率稳定性更高;
2.用555时基电路构成单稳态触发器,具有可重复触发特性;
二、方案设计与论证
任务一:多谐振荡器
1.方案一、非门构成对称型多谐振荡器
对称型多谐振荡器原理:
(1)静态(未振荡)时应是不稳定的
此电路是由两个反相器及滑动变阻器经耦合电容C1连接起来的正反馈振荡电路,并设法使反相器工作在放大状态,即给他们设置适合的偏置电压,这个偏置电压可以通过在反相器的输出端与输出端之间接入反馈电阻来得到。
通过分析,结合设计电路性能指标、器件的性价比,本设计电路选择方案二。
三、单元电路设计与参数计算
非对称式多谐振荡器由反相器,电阻和电容构成,非对称式多谐振荡器的组成框图3-1所示。
参数计算:振荡周期为:
取频率为6KHz,电容值为0.1uf,可根据上述公式可得电阻阻值为750Ω
图3-1
四、总原理图及元器件清单
七、性能、功能测试与分析
1、.功能电路测试与分析
(1)测试步骤
1、接入5v电压源;
2、接好电路后,用示波器显示波形。
(2)测试数据
测试得到的波形周期为T=3.6格*0.05ms
(3)误差计算
误差=((0.18-0.16)/0.18)*100%=11.1%
(4)误差分析
接入的电阻值不可能是理想值,存在一定的误差,从而造成波形的周期与理论值周期有误差。
1.总原理图
2.元件清单
表1元件清单
型号
主要参数
数量
74hc04
反相器
1个
电阻R1、R2
10K、750Ω
2个
开关
1个
电容
0.1uf
1个
导线
若干
五、仿真
仿真图:
仿真波形:
仿真结论:
在输入电压低于Vth时反相器的输入电流不能忽略不计,所以电容充、放电的等效电路略显复杂一些,而且输出电压波形的占空比不等于50%。
六、安装与调试
1.电路安装
安装是在设计的电路原理图的基础上进行排版布线,然后进行焊接。焊接所用到的仪器有:(1)、电烙铁(2)、焊锡丝(3)、铁架台和松香(4)、吸锡器
在焊接之前要用万用表测试所用元件的好坏,焊接好电路板之后,接入5v电源供电,并开始调试。
2.电路调试
如果电路不能正常工作,如:在示波器上没有显示,可检查电路板的连接电路是否连接正确以及焊接是否正确。
振荡电路设计报告
设计课题பைடு நூலகம்自激多谐与单稳态
专业班级:12电信卓越班
学生姓名:万松
学 号:120802034
指导教师:许老师
设计时间:2013-12-25
自激多谐与单稳态
一、设计任务与要求
1.用非门设计构成多谐振荡器,振荡频率为6KHz;用非门设计构成晶振振荡器,晶振为4MHz;555时基电路构成多谐振动器;
方案二、非门构成非对称型多谐振荡器
非对称型多谐振荡器原理:
在方案一的电路中反相器G1输入端串接一个足够大的保护电阻R,则G1的输入电流可以忽略不计,即R远大于R(N)和R(P),非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度tw1═RC,tw2═1.2RC T═2.2RC,调节R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改变电位器R实现输出频率的细调。
2.要求用石英晶体作为信号频率的基准
相关文档
最新文档