分子标记技术综述
分子标记技术的原理和应用

分子标记技术的原理和应用1. 简介分子标记技术是一种用于标记和检测生物分子的方法。
通过在目标分子上引入特定标记物,可以实现对这些分子进行定量、定位及特异性检测。
本文将介绍分子标记技术的原理和应用。
2. 原理分子标记技术主要通过以下步骤来实现对目标分子的标记和检测:•选择标记物:标记物通常是具有特异性的分子或结构,如荧光染料、酶、金纳米颗粒等。
根据标记物的特性和应用需求,选择合适的标记物。
•引入标记物:将选定的标记物与目标分子进行结合。
这可以通过化学反应、酶促反应或物理吸附等方法实现。
•检测标记物:使用适当的检测方法,如光谱分析、电化学方法等,对标记物进行定量或定性检测。
这些方法可以根据标记物的特性和需求选择。
3. 应用分子标记技术在许多领域都有广泛的应用。
以下是一些主要的应用领域:3.1 生物医学研究•免疫组织化学:通过标记特定抗体来检测组织中的蛋白质,用于研究疾病诊断、治疗反应和组织学研究。
•分子诊断:使用分子标记技术检测体液中的特定生物分子,如DNA、RNA和蛋白质,用于早期疾病诊断和个体化治疗。
•药物研发:利用分子标记技术对药物与靶标的相互作用进行研究,加速药物研发过程。
3.2 食品安全检测•农药残留检测:使用分子标记技术检测食品中的农药残留物,保证食品安全。
•食品成分分析:通过标记特定分子,检测食品中的成分和添加物。
3.3 环境监测•水质检测:使用分子标记技术检测水中的有害物质和污染物,保护环境和人类健康。
•大气污染监测:通过标记特定分子,检测大气中的污染物,评估空气质量。
3.4 基因组学研究•基因定位:使用分子标记技术对基因组中特定序列进行定位和研究。
•基因表达分析:通过标记RNA或蛋白质,研究基因在各个组织中的表达情况。
4. 总结分子标记技术以其高灵敏度、高特异性和高可视性等优势,在生物医学研究、食品安全检测、环境监测和基因组学研究等领域具有广泛的应用前景。
随着技术的不断发展和创新,相信分子标记技术将在未来发挥更大的作用,并为各个领域的研究和应用带来更多的突破。
分子标记技术

多组学数据整合
采用降维技术对高维数据进行处理,如主成分分析、t-SNE等,以降低数据复杂度并提高可视化效果。
数据降维处理
结合多种分析方法对整合后的数据进行联合分析,如聚类分析、差异表达分析、功能注释等,以深入挖掘数据中的生物学意义。
02
CHAPTER
DNA分子标记方法
利用随机引物对基因组DNA进行PCR扩增,通过电泳等方法检测扩增产物多态性。
原理
特点
应用
实验操作简便、快速、成本低,但稳定性较差,重复性有待提高。
适用于遗传多样性分析、品种鉴定、基因定位等研究。
03
02
01
基于DNA单链在非变性条件下的构象多态性,通过电泳等方法检测不同构象的DNA单链。
前景展望
随着基因组学、转录组学等高通量测序技术的不断发展,未来分子标记技术将更加精准、高效和便捷。同时,随着人工智能和大数据技术的融合应用,分子标记技术将在更多领域发挥重要作用,如精准医疗、个性化治疗、生态环境监测等。此外,随着合成生物学和基因编辑技术的不断发展,利用分子标记技术进行基因定位和编辑将成为可能,这将为遗传性疾病的治疗和农作物遗传改良提供新的思路和方法。
原理
微小RNA(miRNA)和长非编码RNA(lncRNA)是两类重要的非编码RNA,它们在基因表达调控中发挥关键作用。miRNA通过靶向mRNA导致其降解或抑制其翻译来发挥作用,而lncRNA则通过多种机制调节基因表达。
原理
miRNA和lncRNA作为分子标记在疾病诊断、预后评估和治疗靶点筛选等方面具有潜在应用价值。例如,在癌症研究中,特定miRNA或lncRNA的表达水平与癌症的发生、发展和转移密切相关,可作为癌症诊断和治疗的生物标志物。此外,miRNA和lncRNA还可用于研究细胞分化、发育和逆境胁迫等生物学过程。
分子标记种类及概述

分子标记种类及概述分子标记是一种在生物学、生物化学和药理学研究中广泛应用的技术。
它主要通过将分子或化合物与特定的标记物相结合,以便于对其进行检测、跟踪和定量分析。
分子标记的种类非常多样,包括荧光标记、放射性标记、酶标记和生物素标记等。
每种标记方法都有其特定的优势和适用范围,下面将详细介绍这些分子标记的类型及其概述。
1.荧光标记:荧光标记是最常用且广泛应用的一种分子标记方法。
它通过将目标分子与荧光染料结合,利用目标分子与激发光源相互作用后发出荧光信号来进行检测和定量分析。
荧光标记具有灵敏度高、非破坏性、实时监测能力强等特点,适用于细胞生物学、分子遗传学和生物化学等研究领域。
2.放射性标记:放射性标记是利用放射性同位素来标记目标分子的一种方法。
通过将放射性同位素(如3H、14C、32P等)与目标分子结合,可以通过放射性衰变的特性来检测和定量分析目标分子。
放射性标记具有极高的敏感性和特异性,适用于分子生物学、药理学和临床药理学等研究领域。
3.酶标记:酶标记是利用酶来标记目标分子的一种方法。
通过将酶与目标分子结合,然后加入适当的底物来触发酶的催化反应,可以产生可见色素或荧光信号,从而实现对目标分子的检测和定量分析。
酶标记具有高度特异性和灵敏度,适用于生物化学、免疫学和临床检验等研究领域。
4.生物素标记:生物素标记是利用生物素(一种小分子)与目标分子结合,然后利用亲和性层析或荧光染料来检测和定量分析目标分子的一种方法。
生物素标记具有快速、简单和高效的特点,适用于生化学、药理学和分子生物学等研究领域。
除了以上几种常见的分子标记方法外,还有许多其他的分子标记方法,比如金纳米颗粒标记、蛋白质标记和DNA标记等。
这些标记方法可以根据研究的具体需求来选择和应用。
标记方法的选择应考虑到目标分子的性质、研究目的和实验条件等因素。
分子标记在生物学研究中有着广泛的应用,如细胞成像、蛋白质定位、基因表达研究等。
它们在分子和细胞水平上为我们提供了许多有关生物学过程和分子机制的信息。
常用分子标记技术原理及应用

单链制备
通过加热或化学方法 将双链DNA变性为 单链。
凝胶电泳
将单链DNA在聚丙 烯酰胺凝胶上进行电 泳,并观察迁移率变 化。
结果分析
通过比较正常和突变 DNA的迁移率,确 定是否存在基因突变。
应用实例
遗传病诊断
SSCP技术可用于检测与遗传病相关的 基因突变,如囊性纤维化、镰状细胞 贫血等。
肿瘤研究
特点
高分辨率、高灵敏度、可重复性和可 靠性,能够检测出微小的基因组差异 ,广泛应用于遗传育种、生物多样性 保护、人类医学等领域。
分子标记技术的应用领域
遗传育种
通过分子标记技术对动植物进行遗传资源鉴定、品种纯度 鉴定、遗传连锁分析和基因定位等,提高育种效率和品质。
生物多样性保护
利用分子标记技术对物种进行遗传结构和亲缘关系分析, 评估物种的遗传多样性和濒危程度,为保护生物多样性提 供科学依据。
人类医学
分子标记技术在人类医学中用于疾病诊断、药物研发、个 体化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
常用分子标记技术简介
RFLP(限制性片段长度多态性)
SSR(简单序列重复)
利用限制性内切酶对DNA进行切割,产生 不同长度的片段,通过电泳和染色检测多 态性。
利用串联重复的DNA序列多态性进行标记 ,通过PCR扩增和电泳检测多态性。
分子标记辅助育种
利用AFLP技术标记控制重要性状 的基因,辅助育种者快速筛选具 有优良性状的个体。
植物分子生态学研
究
利用AFLP技术分析植物种群遗传 结构、物种演化和生态适应性等 方面的研究。
04
SSR技术
原理
简单序列重复标记(SSR)是一种基于PCR的分子标记技 术,利用微卫星序列的重复单元进行扩增,通过检测等位 基因的长度多态性来识别基因组中的变异。
遗传学中的分子标记技术

遗传学中的分子标记技术遗传学是研究遗传现象的一门学科,而分子标记技术则是其中的一个重要领域。
它不仅可以帮助我们研究物种间的遗传联系,还可以应用于医学和农业领域,为人们的生活带来更多便利和进步。
本文将介绍遗传学中的分子标记技术,探讨其在实践中的应用以及未来的发展方向。
一、分子标记技术简介分子标记技术是利用分子水平的遗传标记对个体、品系或群体进行鉴别、分类、分子配对等分析的一种技术。
目前常用的几种分子标记技术包括限制性片段长度多态性(RFLP)、随机扩增多态性(RAPD)、序列标记位点(SSR)和单核苷酸多态性(SNP)等。
RFLP技术是一种基于DNA序列限制性切割位点的分析方法。
通过将基因组DNA切成不同的长度片段,然后对这些片段进行电泳分离,最后通过DNA探针的帮助确定特定位点的DNA序列。
RAPD技术则是一种无需事先知道DNA序列的技术,通过使用随机序列的寡核苷酸为引物进行PCR扩增,经过电泳分离后可以得到特定长度的DNA条带。
SSR技术则是利用序列中重复核苷酸序列的多态性,选取特定的序列扩增后进行电泳分离,得到条带后可以确定所研究物种基因组的遗传变异情况。
SNP技术则是一种最新的分子标记技术,它是基于单核苷酸变异位点的方法,通过测量单个碱基的点突变来分析遗传多样性。
二、分子标记技术的应用1.遗传分析分子标记技术在遗传学研究中可以用于基因型鉴定、亲缘关系分析、遗传多样性评估等方面。
例如,利用SSR技术可以分析豆科作物的遗传多样性,帮助育种学家定位有用的基因,并加速豆科作物的育种进程。
另外,RFLP技术还可以用于协助医学领域的DNA指纹分析,对于识别罪犯身份、证明亲子关系等方面都有巨大贡献。
2.病理学研究在病理学研究中,分子标记技术可以用于检测各种疾病的基因突变、表达谱的差异、重要调节基因的变化等。
例如,SNP技术可以用于筛查患有代谢性疾病的患者,SSR技术可以用于评价肿瘤的恶性程度。
3.农业领域分子标记技术在农业领域中的应用越来越普遍,可以用于作物品种鉴别、繁殖方式分析、作物改良等方面。
综述-分子标记

分子标记遗传标记作为识别基因型的表现形式,在生物基因研究方面起到了重要作用,目前通过遗传标记的方法定位基因位置已成为基因定位的常用方法。
遗传标记主要有形态标记(morphological marker)、细胞标记(cytological markers)、生化标记(Biochemical marker)和分子标记(molecular marker)四种类型。
形态标记、细胞标记因其自身局限性的原因,目前鲜有使用。
虽然以同工酶标记为代表的生化标记得到了广泛的发展,但由于其检测的范围狭窄、统计难度大等缺陷,目前仅在少数方面有所应用。
从20世纪70年代分子标记出现至今的40年,分子标记因其无比的优越性,使得其成为目前应用最广泛的遗传标记方法。
一、分子标记的概念分子标记是指以生物大分子的多态性为基础的一种遗传标记。
广义的分子标记是指可遗传并能检测的蛋白质或DNA序列。
而狭义的分子标记仅仅是指基于DNA分子多态性构建的标记方法。
二、分子标记的特点理想的分子标记一定要达到以下标准:1、具有高的多态性;2、共显性遗传即利用分子标记可鉴别二倍体中杂合和纯合基因型;3、能明确辨别等位基因;4、遍布整个基因组;5、除特殊位点的标记外要求分子标记均匀分布于整个基因组;6、选择中性即无基因多效性;7、检测手段简单、快速如实验程序易自动化;8、开发成本和使用成本尽量低廉;9、在实验室内和实验空间重复性好便于数据交换。
目前,在现实条件下并没有这种绝对理想的分子标记,但相比形态标记、细胞标记、生化标记,分子标记依旧有着明显的优越性:1、直接以DNA形式表现,在生物体各组织、各时期均可检测,不受环境限制;2、数量多,遍布全基因组,有近乎无限的检测座位;3、多态性高;4、表现为中性,不影响目标性状的表达;5、许多标记为共显性,能区别纯合体与杂合体。
三、分子标记的分类分子标记技术通常被分为基于分子杂交的分子标记技术(RFLP)(或叫做非PCR基础上的分子标记技术)、基于PCR技术的分子标记技术和同时基于分子杂交和PCR两种技术的分子标记技术三大类型。
dna分子标记技术概述

dna分子标记技术概述DNA分子标记技术是一种基于DNA序列的分析方法,可以用来研究生物体的遗传变异和基因表达。
它是现代分子生物学和遗传学研究的重要工具之一,被广泛应用于农业、医学、生态学等领域。
DNA分子标记技术的基本原理是利用DNA序列的差异性,通过特定的方法将其转化为可检测的标记,然后利用这些标记来分析不同生物体之间的遗传关系和基因表达差异。
常用的DNA分子标记技术包括PCR-RFLP、RAPD、AFLP、SSR、SNP等。
PCR-RFLP是一种利用PCR扩增DNA片段后,通过酶切鉴定其长度差异的方法。
RAPD是一种利用随机引物扩增DNA片段后,通过其长度和数量的差异来分析不同生物体之间的遗传关系的方法。
AFLP是一种利用限制性内切酶和连接酶对DNA片段进行特异性扩增的方法。
SSR是一种利用特定的引物扩增含有重复序列的DNA片段的方法。
SNP是一种利用单核苷酸多态性来分析不同生物体之间的遗传关系和基因表达差异的方法。
DNA分子标记技术具有高度的灵敏性、准确性和可重复性,可以用来研究不同生物体之间的遗传关系、基因表达差异、基因型鉴定等问题。
它在农业领域的应用主要包括品种鉴定、遗传多样性分析、杂交种育种等方面。
在医学领域,DNA分子标记技术可以用来研究遗传疾病的发生机制、基因诊断、药物反应等问题。
在生态学领域,DNA分子标记技术可以用来研究物种多样性、种群遗传结构、生态系统功能等问题。
总之,DNA分子标记技术是一种重要的分子生物学和遗传学研究工具,具有广泛的应用前景。
随着技术的不断发展和完善,它将在更多领域发挥重要作用,为人类的生产和生活带来更多的福利。
分子标记技术概述

分子标记技术概述现代生物技术是近几十年来发展起来的以现代生命科学为基础,利用生物体系和现代工程原理,集中多学科的新知识生产生物制品和创造新物种的综合科学技术。
随着分子生物学的快速发展,现代生物技术为作物育种提供了强有力的工具,分子标记辅助选择(MAS)是其中一项重要的技术手段,弥补了传统作物育种中选择效率低的缺点,加快了育种进程,为育种家广泛采用。
一、分子标记的定义与特点遗传标记(genetic marker)是指可追踪的染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。
在遗传分析上遗传标记可用作标记基因,它具有两个基本特征,即可遗传性和可识别性,生物的任何有差异表型的基因突变型均可作为遗传标记。
传统的遗传标记主要包括形态标记、组织细胞标记、生化标记与免疫学标记等,这些标记都是基因表达的产物,易受生理状态、贮藏加工等多个因素的影响,具有较大的局限性。
Bostein 等(1980)利用限制性片段长度多态性(restriction fragment length polymorphism,RFLP)作为遗传标记分析的手段,开创了应用生物体DNA多态性发展遗传标记的新阶段。
分子标记是根据基因组DNA 存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上差异的一类遗传标记,它是继形态学标记、细胞学标记、生化标记之后发展起来的新型遗传标记技术。
广义的分子标记是指可遗传的并可检测的DNA 序列或蛋白质分子。
而通常所说的分子标记是指以DNA 多态性为基础的遗传标记,是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,直接反映出生物个体或种群间基因组中某种差异的特异性DNA片段。
相对于传统的遗传标记,DNA 分子标记的优势在于:DNA 分子标记多为共显性标记,能够简单直观地分辨出纯合和杂合的基因型,对隐性性状的选择十分有利;多态性高,由于自然界中存在丰富的基因组变异,能够开发出几乎无限的DNA 分子标记;稳定性好,不受环境和生物生长与发育阶段的影响,任何时候任何组织的DNA 都可用于标记分析;由于DNA 分子标记是在DNA 水平上开发而来,表现为中性,不会与其他性状连锁,因此不影响目标性状的表达;检测手段简便、迅速,成本低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子标记技术及其在植物药材亲缘关系鉴定中的应用分子标记技术分子标记(Molecular Markers)是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接反映[1]。
与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有极大的优越性:大多数分子标记为共显性,对隐性性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速[2]。
技术种类及原理分子标记技术自诞生起已研究出数十种,尽管方法差异显著,但都具有一个共同点,即用到了分子杂交、聚合酶链式反应(PCR)、电泳等检测手段。
应用较为广泛的技术有以下几种:1.限制性片段长度多态性(Restriction Fragment Length Polymorphisms,RFLP)RFLP是最早开发的分子标记技术,指基因型间限制性内切酶位点上的碱基插入、缺失、重排或突变引起的,是由Grodzicker等于1974年创立的以DNA-DNA杂交为基础的遗传标记。
基本原理是利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况[3]。
通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern 杂交和放射显影,即获得反映个体特异性的RFLP图谱。
它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。
由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。
RFLP的等位基因其有共显性特点,可靠性高,不受环境、发育阶段或植物器官的影响。
RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个,标记结果稳定,重复性好。
RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,RFLP分析工作量大,成本高,使用DNA量大,使用放射性同位素和核酸杂交技术,不易自动化,尽管结合PCR技术,RFLP仍在应用,但已不再是主流分子标记。
2.随机扩增多态性DNA(Random Amplification Polymorphism,RAPD)RAPD技术是1990年由William和Welsh等人利用PCR技术发展的检测DNA多态性的方法,其基本原理是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。
扩增片段多态性便反映了基因组相应区域的DNA多态性。
RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性[4]。
就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。
与RFLP技术相比,RAPD技术操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物,扩增产物具有丰富的多态性。
但RAPD也存在一些缺点:(1)RAPD标记是一个显性标记,不能鉴别杂合子和纯合子;(2)存在共迁移问题,凝胶电泳只能分开不同长度DNA 片段,而不能分开那些分子量相同但碱基序列组成不同的DNA片段;(3)RAPD技术中影响因素很多,所以实验的稳定性和重复性差[5]。
为了得到较稳定的结果,各种反应参数,例如温度,Mg2+、dNTP、引物、模板DNA、TaqDNA聚合酶的浓度都必须事先进行优化,以得到令人满意的结果。
3.扩增片段长度多态性(Amplified Fragment Length Polymorphism,AFLP)AFLP是RFLP与PCR相结合的产物,其基本原理是先利用限制性内切酶水解基因组DNA产生不同大小的DNA片段,再使双链人工接头的酶切片段相边接,作为扩增反应的模板DNA,然后以人工接头的互补链为引物进行预扩增,最后在接头互补链的基础上添加1—3个选择性核苷酸作引物对模板DNA基因再进行选择性扩增,通过聚丙烯酰胺凝胶电泳分离检测获得的DNA扩增片段,根据扩增片段长度的不同检测出多态性[6]。
引物由三部分组成:与人工接头互补的核心碱基序列、限制性内切酶识别序列、引物3’端的选择碱基序列(1—10bp)。
该技术的独特之处在于所用的专用引物可在知道DNA信息的前提下就可对酶切片段进行PCR扩增。
为使酶切浓度大小分布均匀,一般采用两个限制性内切酶,一个酶为多切点,另一个酶切点数较少,因而AFLP分析产生的主要是由两个酶共同酶切的片段。
AFLP结合了RFLP和RAPD两种技术的优点,具有分辨率高、稳定性好、效率高的优点;所需DNA量少,可通过改变限制性内切酶和选择性的碱基种类与数目调节扩增的条带数,具有较强的多肽分析能力;不受环境、季节的限制,聚类敏感,定位专一。
但它的技术费用昂贵,对DNA的纯度和内切酶的质量要求很高。
尽管AFLP技术诞生时间较短,但可称之为分子标记技术的又一次重大突破,被认为是目前一种十分理想、有效的分子标记。
4.简单重复序列(Simple Sequence Repeat,SSR)SSR又叫微卫星DNA。
卫星是指以少数几个核苷酸(一般1~6个)为单位多次串联重复的DNA序列,微卫星广泛均匀地分布在基因组上,其重复数和重复单位序列都是可变的,故多态信息含量大。
微卫星两侧区域的DNA序列较为保守,且重复基因数变化不一,可与两侧保守的DNA序列相互补的方式设计特定的寡居核苷酸引物进行PCR扩增,扩增产物可用电泳进行分离[7]。
其基本原理是根据微卫星序列两端互补序列设计引物,通过PCR反应扩增微卫星片段,由于核心序列串联重复数目不同,因而能够用PCR的方法扩增出不同长度的PCR产物,将扩增产物进行凝胶电泳,根据分离片段的大小决定基因型并计算等位基因频率。
SSR具有以下一些优点:(1)一般检测到的是一个单一的多等位基因位点;(2)微卫星呈共显性遗传,故可鉴别杂合子和纯合子;(3)所需DNA量少;(4)同连锁群或染色体具有对应关系,有助于图谱的连锁群或染色体的归并和不同连锁群的整合,并能有效准确区分大量的等位基因,因而可以区分同一物种不同基因型,甚至亲缘关系非常近的材料。
显然,在采用SSR技术分析微卫星DNA多态性时必须知道重复序列两端的DNA序列的信息,因此一般都需要建立和筛选基因组文库、克隆、测序等一系列操作,成本较高。
5.简单重复序列间扩增(Inter-Simple Sequence Repeats,ISSR)ISSR(inter-simple sequence repeat)是Zietkeiwitcz等于1994年发展起来的一种微卫星基础上的分子标记。
其基本原理是用锚定的微卫星DNA为引物,即在SSR序列的3'端或5'端加上2-4个随机核苷酸,在PCR反应中,锚定引物可引起特定位点退火,导致与锚定引物互补的间隔不太大的重复序列间DNA片段进行PCR扩增。
所扩增的inter SSR区域的多个条带通过聚丙烯酰胺凝胶电泳得以分辨,扩增谱带多为显性表现[8]。
ISSR引物的开发不像SSR引物那样需测序获得SSR两侧的单拷贝序列,开发费用降低。
与SSR标记相比,ISSR引物可以在不同的物种间通用,不像SSR标记一样具有较强的种特异性;与RAPD和RFLP相比,ISSR揭示的多态性较高,可获得几倍于RAPD的信息量,精确度几乎可与RFLP相媲美,检测非常方便,因而是一种非常有发展前途的分子标记。
6.相关序列扩增多态性(Sequence-Related Amplified Polymorphism,SRAP)SRAP是一种基于PCR的新型标记,具有产率中等,重复性好,操作简单等优点。
其基本原理是该标记通过独特的双引物设计对基因的ORFs(Open reading frames)的特定区域进行扩增,上游引物长17bp,对外显子区域进行特异扩增。
下游引物长18bp,对内含子区域、启动子区域进行特异扩增[9]。
因不同个体以及物种的内含子、启动子与间隔区长度不同而产生多态性。
在该技术中,引物的设计很关键,上游引物5’端前10个碱基为“填充”序列,无任何特异组成,接着为CCGG序列,该序列组成核心序列及3’端3个选择性碱基;下游引物5’前11个碱基为“填充”序列,紧接着是AATT,该序列组成核心序列即3’端3个选择性碱基。
正反引物分别针对序列相对保守的外显子与变异极大的内含子、启动子和间隔序列,因此多数SRAP标记在基因组中的分布是均匀的。
分子标记技术在植物药材亲缘关系中的应用1.RAPD技术的应用RAPD技术引起操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物等优势在植物药材鉴定及亲缘关系分析中应用尤为广泛。
中药真伪鉴别:我国中药材品种来源复杂,互混、互代现象时有发生。
传统的鉴定中药的方法对于某些品种,特别是经过多道工序加工后的药材无法准确鉴定。
采用RAPD指纹分析技术既可以鉴定一般经典方法不能鉴定的药材,又可以克服经典方法的局限性。
黄丰[10]等对诃子(Folium Chebulae)及其混淆品进行DNA多态性比较,有效地鉴别了诃子及其混淆品。
罗恒[11]等从62条引物中筛选出4条引物,用于海风藤(CaulisPiperis Kadsurae)与其替代品的鉴别,对于制品和原植物的鉴别都获得了成功。
Shaw等用RAPD方法对人参(Panax ginseng C.A.Mey)、西洋参(Panax quiquefolium L.)、三七(Panax pseudo-ginseng Wall.var.japonicus)及伪品进行鉴别,根据扩增产物有效地鉴别了3种药材。
种属的鉴别:种间的鉴别是关系中药材质量的一个因素。
采用分子标记技术在部分中草药同科同属不同种或品种、亚种、变种之间的鉴别中取得了比较满意的结果。
刘塔斯[12]等采用RAPD技术对不同产地的商品药材前胡进行多态性分析,并构建聚类树型图解决了不同产地的商品药材前胡不易区分的难题,其聚类树形图与经典前胡分类结果一致。
盛丽[13]等用筛选出的7个随机引物对来自甘肃省不同产区的20个当归(Angelica sinensis)样品的基因组DNA进行了RAPD及其聚类分析,共扩增出82个位点、其中多态性位点58个,占70.7%。