数电课程设计

合集下载

数电简单课程设计

数电简单课程设计

数电简单课程设计一、教学目标本课程旨在通过数电简单课程设计,让学生掌握数字电路的基本概念、基本原理和基本分析方法,培养学生运用数字电路知识解决实际问题的能力。

具体目标如下:1.知识目标:(1)理解数字电路的基本概念,如逻辑门、逻辑函数、逻辑代数等。

(2)掌握基本逻辑门电路的构建和功能,如与门、或门、非门、异或门等。

(3)了解组合逻辑电路和时序逻辑电路的原理及应用,如编码器、译码器、触发器等。

(4)熟悉数字电路的设计方法和步骤,能够运用所学知识分析和解决实际问题。

2.技能目标:(1)能够运用逻辑门电路构建简单的数字电路。

(2)能够分析组合逻辑电路和时序逻辑电路的功能和性能。

(3)能够运用数字电路知识设计简单的数字系统。

(4)具备一定的实验操作能力和问题解决能力。

3.情感态度价值观目标:(1)培养学生对数字电路学科的兴趣和好奇心,激发学生的学习热情。

(2)培养学生团队合作精神,提高学生沟通与协作能力。

(3)培养学生勇于探索、敢于创新的精神,锻炼学生的动手实践能力。

二、教学内容本课程的教学内容主要包括以下几个部分:1.数字电路基本概念:逻辑门、逻辑函数、逻辑代数等。

2.基本逻辑门电路:与门、或门、非门、异或门等。

3.组合逻辑电路:编码器、译码器、多路选择器、算术逻辑单元等。

4.时序逻辑电路:触发器、计数器、寄存器等。

5.数字电路设计方法及应用:数字系统的设计与分析,实际案例解析等。

6.实验操作:基本逻辑门电路的搭建,组合逻辑电路和时序逻辑电路的设计与验证。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行授课:1.讲授法:通过讲解基本概念、原理和实例,使学生掌握数字电路的基本知识。

2.讨论法:学生进行小组讨论,培养学生的思考能力和团队协作精神。

3.案例分析法:分析实际案例,使学生能够将所学知识应用于实际问题。

4.实验法:通过实验操作,让学生动手实践,加深对数字电路的理解和应用能力。

50个数电课程设计

50个数电课程设计

50个数电课程设计一、课程目标知识目标:1. 学生能够理解数字电路的基本概念,掌握数字逻辑门的功能与原理。

2. 学生能够识别并描述常见数字电路元件,如触发器、计数器等。

3. 学生能够解释数字电路中的编码与译码过程,掌握二进制、BCD码等转换方法。

技能目标:1. 学生能够运用所学知识设计简单的数字电路图,并进行仿真实验。

2. 学生能够分析数字电路的工作原理,解决基本的数字逻辑问题。

3. 学生能够利用数字电路知识解决实际生活中的问题,提高实践操作能力。

情感态度价值观目标:1. 培养学生对数字电路的兴趣,激发学习热情,形成积极探索的精神风貌。

2. 培养学生团队合作意识,学会与他人共同解决问题,提高沟通与协作能力。

3. 培养学生严谨的科学态度,注重实践与理论相结合,养成勤奋好学的习惯。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握数字电路基础知识的基础上,提高实践操作能力和创新思维能力,培养良好的学习态度和团队协作精神。

通过分解课程目标为具体的学习成果,为后续教学设计和评估提供依据。

二、教学内容本章节教学内容依据课程目标,结合教材第三章“数字电路基础”进行组织,具体安排如下:1. 数字电路概述:介绍数字电路的基本概念、特点及应用,引导学生了解数字电路的发展历程。

2. 数字逻辑门:讲解基本逻辑门(与、或、非、异或)的功能、原理及符号表示,分析逻辑门电路的应用。

3. 组合逻辑电路:讲解组合逻辑电路的设计方法,分析常用的组合逻辑电路(如编码器、译码器、数据选择器等)。

4. 触发器:介绍触发器的分类、功能及工作原理,重点讲解RS触发器、D触发器、JK触发器等常见触发器。

5. 时序逻辑电路:分析时序逻辑电路的组成、特点及设计方法,举例说明计数器、寄存器等时序逻辑电路的应用。

6. 数字电路仿真实验:结合Multisim等软件,指导学生进行数字电路设计与仿真实验,提高实践操作能力。

7. 数字电路在实际应用中的案例分析:分析数字电路在日常生活、通信、计算机等领域中的应用,激发学生兴趣。

较简单的数电课程设计

较简单的数电课程设计

较简单的数电课程设计一、课程目标知识目标:1. 让学生掌握数字电路基础知识,理解常用逻辑门电路的原理及其功能。

2. 学会分析简单的数字电路,并能正确使用逻辑门电路进行组合设计。

3. 掌握二进制、八进制和十六进制数的概念及其转换方法。

技能目标:1. 培养学生运用所学知识进行数字电路分析和设计的能力。

2. 培养学生运用逻辑门电路解决实际问题的能力。

3. 提高学生动手实践和团队协作的能力。

情感态度价值观目标:1. 培养学生对数字电路的兴趣,激发学生探索电子世界的热情。

2. 培养学生严谨、细致的学习态度,树立良好的科学素养。

3. 增强学生的团队合作意识,培养学生的沟通与协作能力。

分析课程性质、学生特点和教学要求,本课程旨在帮助学生掌握数字电路基础知识,培养学生运用所学知识解决实际问题的能力。

课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果。

通过本课程的学习,学生将能够熟练运用数字电路知识,为后续相关课程打下坚实基础。

二、教学内容1. 数字电路基础知识:逻辑门电路原理、功能及其符号表示;数字信号与数字电路的特点。

2. 常用逻辑门电路:与门、或门、非门、与非门、或非门、异或门等。

3. 数字电路分析与设计:组合逻辑电路的分析方法,逻辑门电路的设计方法。

4. 数制及其转换:二进制、八进制、十六进制数的概念及其相互转换方法。

5. 实践操作:动手实践,运用逻辑门电路进行组合设计,完成简单的数字电路搭建。

教学内容按照以下进度安排:第一课时:数字电路基础知识,介绍常用逻辑门电路的原理和功能。

第二课时:数字电路分析与设计,学会分析组合逻辑电路。

第三课时:数制及其转换,掌握二进制、八进制、十六进制数的转换方法。

第四课时:实践操作,分组进行数字电路搭建,巩固所学知识。

教学内容与教材章节关联性如下:第一章:数字电路基础第二章:逻辑门电路第三章:组合逻辑电路分析与设计第四章:数制及其转换第五章:数字电路实践操作三、教学方法本课程采用以下教学方法,旨在激发学生的学习兴趣,提高教学效果:1. 讲授法:教师以清晰、生动的语言,结合多媒体教学手段,系统讲解数字电路基础知识、逻辑门电路原理及功能,使学生在短时间内掌握课程核心内容。

电气工程数电课程设计

电气工程数电课程设计

电气工程数电课程设计一、课程目标知识目标:1. 理解数字电路的基本概念、组成原理及其功能。

2. 掌握数字逻辑门、组合逻辑电路、时序逻辑电路的分析与设计方法。

3. 学会使用电气工程相关的数电实验仪器与设备,了解其工作原理。

技能目标:1. 能够运用所学知识,分析并解决数字电路中的实际问题。

2. 独立设计简单的组合逻辑电路和时序逻辑电路,进行电路仿真与验证。

3. 培养动手实践能力,提高电路调试与排故技巧。

情感态度价值观目标:1. 培养学生严谨的科学态度,注重实验数据的真实性,养成良好的实验习惯。

2. 增强学生的团队协作意识,培养沟通与表达能力,提高合作解决问题的能力。

3. 激发学生对电气工程及数字电路的兴趣,培养创新精神和探索欲望。

本课程针对高中年级电气工程兴趣小组的学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果,以便后续的教学设计和评估。

通过本课程的学习,使学生能够掌握数字电路的基本知识,具备一定的电路设计与实践能力,培养科学素养和团队协作精神。

二、教学内容1. 数字逻辑基础:包括数字逻辑的概念、数字信号与数字电路的特点、逻辑门的功能与真值表、逻辑函数及其表达方法。

教材章节:第一章 数字逻辑基础2. 组合逻辑电路:介绍组合逻辑电路的设计与分析方法,包括编码器、译码器、多路选择器、算术逻辑单元等。

教材章节:第二章 组合逻辑电路3. 时序逻辑电路:讲解触发器、计数器、寄存器等时序逻辑电路的工作原理与设计方法。

教材章节:第三章 时序逻辑电路4. 数字电路实验:组织学生进行组合逻辑电路和时序逻辑电路的实验,包括电路搭建、仿真与调试。

教材章节:第四章 数字电路实验5. 数字电路设计与实践:结合实际案例,指导学生进行数字电路设计与实践,培养动手能力和创新能力。

教材章节:第五章 数字电路设计与实践根据课程目标,教学内容按照由浅入深的原则进行组织,确保学生能够逐步掌握数字电路的基本知识、分析与设计方法。

数电课程设计(血型遗传规律分析电路)报告精选全文完整版

数电课程设计(血型遗传规律分析电路)报告精选全文完整版

可编辑修改精选全文完整版课程设计课程名称:数字电子技术设计题目:血型遗传分析电路院系:指导教师:专业:学号:姓名:年月日目录No table of contents entries found.第一章设计目的1.本实验设计的研究目的主要是帮助学生掌握组合逻辑电路的分析和计算方法,培养学习专业知识能力。

2.通过血型遗传规律分析电路的设计,使学生在查阅资料、设计方案、参数选择、电路制作、系统调试等方面得到训练,并使学生在电路设计方面具有进一步发挥的余地。

3.根据遗传学中血型遗传规律,设计一种血型遗传规律分析电路。

使用时,只要按钮输入一组父母的血型,仪器能立即显示出子女可能的血型第二章设计要求1、根据电路设计指标的要求,本次设计血型遗传规律分析电路考虑由常用的TTL集成电路设计,由译码电路、按钮控制输入电路、译码显示电路等组成,用探针作为显示指示灯,显示子女的可能的血型。

图1 血型遗传规律分析电路设计方框图方案:血型遗传规律分析电路由两片74LS138译码器,若干与非门完成;方案材料表序号元器件名称规格型号数量备注1 3,8线译码器74LS138D 22、方案要经济实惠,还要更加直观方便的实现电路的功能,元件尽量少,连线布置更简单,维修方便。

第三章总体方案本设计用两片74LS138 线译码器以及逻辑门设计了一种血型遗传分析电路,电路中用单刀双掷开关控制输入端的高低电平来表示父母的血型情况,用灯泡的亮灭代表子女的可能的血型。

实现了输入父母血型就可以实现子女可能血型的设计。

通过用multisim的逻辑电路的仿真成功完成了电路测试。

血型遗传规律分析电路总原理图如图所示:图2 血型遗传电路原理图其主要功能为实现血型遗传规律的电路设计,电路主要由单刀双掷开关、3,8线译码器、与非门、探针组成.其工作原理如下:AB 代表父亲血型,CD代表母亲血型,则一共有16种血型配对的可能,所以本实验采用两片74LS138(译码器)级联,可完成4输入16输出功能血型配对真值表如下:在电路设计上,我们从子女的血型可能性入手,设计输出六组信号,每一组代表在父母的血型影响下孩子可能出现的血型根据设计指标中提供的血型配对表格,可多得到以下结果:实验电路图中对应的 ProdeX1 代表——B型和O型。

数电实验课程设计

数电实验课程设计

数电实验课程设计一、课程目标知识目标:1. 理解数字电路基础知识,掌握常用数字电路元件的原理与功能;2. 学会使用数字电路实验箱,正确搭建和测试基本数字电路;3. 掌握数字电路的仿真软件,能够进行简单数字电路的仿真设计与分析。

技能目标:1. 培养学生动手操作能力,能够正确使用实验仪器,熟练进行数字电路的搭建与调试;2. 培养学生运用所学知识解决实际问题的能力,能够设计简单的数字电路;3. 提高学生团队协作能力,能够在小组内进行有效沟通,共同完成实验任务。

情感态度价值观目标:1. 培养学生对数字电路的兴趣,激发学生主动学习的积极性;2. 培养学生严谨的科学态度,注重实验数据的真实性,遵循实验操作规范;3. 培养学生创新意识,鼓励学生勇于尝试新方法,善于发现问题、解决问题。

分析课程性质、学生特点和教学要求,本课程旨在通过实践操作,使学生在掌握数字电路基础知识的基础上,提高实际操作能力和团队合作能力。

课程目标具体、可衡量,有助于学生和教师在教学过程中明确预期成果,并为后续的教学设计和评估提供依据。

二、教学内容本课程依据课程目标,选取以下教学内容:1. 数字电路基础知识:包括数字逻辑、逻辑门、触发器等基本概念;- 教材章节:第一章 数字逻辑基础2. 常用数字电路元件:重点学习与门、或门、非门、异或门等逻辑门电路;- 教材章节:第二章 常用逻辑门电路3. 数字电路实验操作:使用数字电路实验箱,进行基本数字电路的搭建与测试;- 教材章节:第三章 数字电路实验操作4. 数字电路仿真软件应用:学习使用Multisim、Proteus等软件进行数字电路仿真;- 教材章节:第四章 数字电路仿真软件及其应用5. 简单数字电路设计:培养学生设计能力,完成如计数器、定时器等电路设计;- 教材章节:第五章 简单数字电路设计教学大纲安排如下:1. 数字电路基础知识(2课时)2. 常用数字电路元件(2课时)3. 数字电路实验操作(3课时)4. 数字电路仿真软件应用(2课时)5. 简单数字电路设计(3课时)教学内容具有科学性和系统性,与教材紧密关联,确保学生能够逐步掌握数字电路知识,提高实践操作能力。

数电-课程设计-60进制计数器

数电-课程设计-60进制计数器

表1 十进制计数器功能表CP RD` LD` EP ET 工作状态×0 ××置零↑ 1 0 ××预置数× 1 1 0 1 保持× 1 1 ×0 保持↑ 1 1 1 1 计数连接方式如图:图2 十进制计数器(个位)2、十进制计数器(十位)电路图3 十进制计数器(十位)3、时钟脉冲电路图4 时钟脉冲电路4、置数电路图5 置数电路5、进位电路图6 进位电路6、译码显示电路图7 译码显示电路三、绘制原理图1、完整原理图图7 计数器原理图2、选定仪器列表仪器名称型号数量用途同步十进制计数器74LS160 2片极联构成60进制计数器与门与非门非门74LS21D74LS00D74LS04D各1个辅助设计构成其他计数器共阴极显示器DCD-HEX 2只显示数字计数电压源1个提供脉冲电压表二原理图仪器列表四、测试方案测试步骤:1)进入Multisim7界面图8 软件页面2)右击空白处,选择放置元件,进入元器件选择区,选择要放置的元件,然后单击好。

图9 放置元件3)放置好各种器件之后,即可进行线路连接,同时标明所需参数值。

设置元器件的参数时,用鼠标双击,弹出属性对话框,分别给元件赋值,并设置名称标号。

图10 元器件属性图4)确认电路无误后,即可单击仿真按钮,实现对电路的仿真工作。

5)观察结果看是否与理论分析的预测结果相同。

五、测试验证结果与分析1、验证结果以下两个仿真结果分别是计数器计数的仿真起点00和仿真终点59,之后计数器会自动恢复原来的00起点继续进行循环计数,并且进位输出灯会在59时发光。

图11 60进制计数器起点00 图12 60进制计数器终点592、理论分析本计数器由两个10进制计数器构成60进制计数器的接线图,右边的10进制计数器作为个位,左边的10进制计数器作为十位。

输入端全部接地,计数开始循环一周后通过置位法自动进行归00,之后再继续循环计数。

数字电子课程设计

数字电子课程设计

数字电子课程设计一、课程目标知识目标:1. 让学生掌握数字电子技术的基本概念,如逻辑门、触发器、计数器等。

2. 培养学生运用数字电子技术解决实际问题的能力,如设计简单的数字电路。

3. 使学生了解数字电子技术在日常生活和科技发展中的应用。

技能目标:1. 培养学生动手实践能力,能够正确使用数字电子实验仪器和设备。

2. 提高学生运用所学知识进行数字电路设计与分析的能力,形成严谨的科学态度。

3. 培养学生团队合作能力,学会与他人共同完成课程设计任务。

情感态度价值观目标:1. 培养学生对数字电子技术的兴趣和好奇心,激发创新精神。

2. 引导学生树立正确的科技观,认识到数字电子技术对社会发展的积极作用。

3. 培养学生勇于面对挑战,克服困难的意志品质,增强自信心。

课程性质:本课程为实践性较强的课程,注重理论联系实际,强调学生动手能力的培养。

学生特点:高年级学生,已具备一定的数字电子技术基础,具有较强的学习能力和实践欲望。

教学要求:结合学生特点,注重启发式教学,引导学生主动参与,培养实际操作能力。

在教学过程中,关注学生的个体差异,提供个性化指导,确保课程目标的实现。

将课程目标分解为具体的学习成果,以便于后续教学设计和评估。

二、教学内容1. 数字逻辑基础:逻辑门电路、逻辑函数及其化简、逻辑门电路的应用。

- 教材章节:第一章 数字逻辑基础2. 组合逻辑电路:编码器、译码器、数据选择器、数据比较器等。

- 教材章节:第二章 组合逻辑电路3. 时序逻辑电路:触发器、计数器、寄存器等。

- 教材章节:第三章 时序逻辑电路4. 数字电路设计方法:Verilog HDL语言基础、数字电路设计流程。

- 教材章节:第四章 数字电路设计方法5. 数字电路仿真与测试:Multisim软件的使用、仿真实验、测试与调试。

- 教材章节:第五章 数字电路仿真与测试6. 实践项目:设计并实现一个简单的数字时钟、数字温度计等。

- 教材章节:第六章 实践项目教学内容安排与进度:1. 数字逻辑基础(2课时)2. 组合逻辑电路(2课时)3. 时序逻辑电路(2课时)4. 数字电路设计方法(2课时)5. 数字电路仿真与测试(2课时)6. 实践项目(4课时)在教学过程中,将结合教材内容,按照以上安排进行教学,确保学生能够系统地掌握数字电子技术知识,为实践项目打下坚实基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要频率是周期信号每秒钟内所含的周期数值。

输入电路:由于输入的信号可以是正弦波,方波。

而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

在整形之前由于不清楚被测信号的强弱的情况。

所以在通过整形之前通过放大衰减处理。

当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。

当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。

本次设计电路主要由具有使能功能的两位十进制计数器,锁存器及译码显示电路,控制电路以及频率计顶层电路组成不,基本满足本次课程设计要求,电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。

根据设计的要求我是按照第一种方法设计的,是直接测频法。

可以见一定范围内的信号输入后直接测的信号的频率。

一、引言数字式频率计数器是以数字方式对信号参数进行精密测量的仪器。

衡量频率计数器主要指标是测量范围、测量功能、精度和稳定性。

频率计数器的应用非常广泛,它被广泛应用于航天、电子、测控等领域。

在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

本次课程设计的目的是根据已经学到的知识,按照这次课程设计的要求设计一个简易的数字频率计,要求频率计范围内能测出所输入信号的频率。

测量频率的方法有多种,中电子计数器测量频率具有精度高、使用方便、测量迅速,其以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

二、设计目的及要求(1)了解数字频率计的构成,并组成一个简单的数字频率计。

(2)理解几种常用芯片的工作原理和应用方法。

(3)会运用电子技术课程的理论知识,独立完成课题(4)通过查阅手册和文献资料,培养独立分析和解决问题的能力,培养严肃工作作风和科学态度。

(5)频率计被测信号为TTL脉冲信号;频率计显示的频率范围为0-99Hz;用LED数码管显示频率数值。

三、电路设计的硬件组成由逻辑电路组成的频率计,大多是由中小规模的集成芯片按照逻辑原理组合而成,其结构复杂,组装、调试比较麻烦;但是我们所学的知识大部分是集成芯片,所以只用中小型规模的集成芯片组成的逻辑电路,有多个单元组成而成的简易数字频率计。

原理方框图测频法:又称为M法测量频率的原理框图如上图.测量频率共有4个档位。

被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。

时基信号由555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。

被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。

对频率是f的周期信号,测频的实现方法,是有一个标准闸门信号(闸门宽度为Tg)对周期信号的重复周期数进行计数,当计数结果为N1时,其信号的频率为:f=N1/Tg,式中Tg为标准闸门的宽度(s),N1是由计数器记录的脉冲个数(重复周期数)。

如图所示:测量电路在检测到脉冲信号的上升沿的时候打开计数器, 并且在检测到下降沿的时候关闭计数器, 设脉冲宽度为Tg, 计算公式为: Tg = N1/f各元件及其功能74LS390芯片简介74LS390是集成双十进制计数器,每片芯片中含有两个独立的BCD码十进制计数器。

每个计数器中包含一个二进制计数器和一个五进制计数器,既可单独用于二、五进制计数,也可串联成十进制计数器。

用一片74LS390可构成一个一百进制计数器,若加上少量的门电路则可构成100以内的任意进制计数器,应用灵活方便。

74LS390为高电平清零。

54/74154为4线-16线译码器,当选通端(G1 G2)均为低电平可将地址端(ABCD)的二进制编码在一个对应的输出端,以低电平译出。

如果将G1和G2中的一个作为数据的输入端,由ABCD对输出寻址,74LS154还可做1线-16线数据分配器。

功能表如下54/742484线——七段译码器/驱动器(BCD输入,有上拉电阻)简要说明:248为有内部上拉电阻的BCD—七段译码器/驱动器,共有54/74248和54/74LS248两种线路结构型式。

其主要电特性的典型值如下(不同厂家具体值有差别):IOL型号VO(OFF)PD输出端(a~g)为低电平有效,可直接驱动指示灯或共阴极LED。

当要求输入0~15时,消隐输入(/BI)应为高电平或开路,对于输出 0时还要求脉冲消隐输入(/RBI)为高电平或开路。

当BI为低电电平,不管其它输入端状态如何,a~g均为低电平。

当/RBI和地址端(A~D)均为低电平,并且灯测试(/LT)为高电平时,a~g均为低电平,脉冲消隐输出(/RBO)为低电平。

当BI为高电平开路时,/L T的低电平可使a~g为高电平。

248与48的引出端排列,功能和电特性分别相同,差别仅在显示的字形6和9,248的为和,48为和。

引出段符号:A,B,C,D 译码地址输入端 /BI,/RBO 消隐输入(低电平有效)脉冲消隐输出(低电平有效) /LT 灯测试输入端(低电平有效) /RBI 脉冲消隐输入端(低电平有效) a~g 段输出(低电平有效)54/74374八上升沿D触发器(3S,时钟输入有回环特性)简要说明:374为具有三态输出的八D边沿触发器,共有54/74S374和54/74LS374两种线路结构型式,其主要电器特性的典型值如下(不同厂家具体值有差别):fmPD 型号374的输出端O0~O7可直接与总线相连。

当三态允许控制端OE为低电平时,O0~O7为正常逻辑状态,可用来驱动负载或总线。

当OE为高电平时,O0~O7呈高阻态,即不驱动总线,也不为总线的负载,但锁存器内部的逻辑操作不受影响。

当时钟端CP脉冲上升沿的作用下,O随数据D而变。

由于CP端施密特触发器的输入滞后作用,使交流和直流噪声抗扰度被改善400mV。

四、单元电路设计1 计数器电路设计含有时钟使能的2位十进制计数器电路设计原理如图所示,频率计的核心元件之一是含有时钟使能及进位扩展输出的十进制计数器。

为此这里拟用一个双十进制计数74390和其它一些辅助元件来完成。

图中74390连接成两个独立的十进制计数器,待测频率信号clk通过一个与门进入74390的第1个计数器的时钟输入端1CLKA,与门的另一端由计数使能信号enb控制:当enb = '1' 时允许计数;enb = '0' 时禁止计数。

计数器1到4位输出q[3]、q[2]、q[1]和q[0]并成总线表达方式即q[3..0],由图左下角OUTPUT 输出端口向外输出计数值,同时由一个4输入与门和两个反相器构成进位信号进入第2个计数器的时钟输入端2CLKA。

第2个计数器的4位计数输出是q[7]、q[6]、q[5]和q[4],总线输出信号是q[7..4]。

这两个计数器的总的进位信号,即可用于扩展输出的进位信号由一个6输入与门和两个反相器产生,由cout输出。

clr是计数器的清零信号。

该电路对应的元件名是jishuqi。

含有时钟使能的2位十进制计数器波形仿真, 当clk输入时钟信号时,clr信号具有清0功能,当enb为高电平时允许计数,低电平时禁止计数;当低4位计数器计到9时向高4位计数器进位,另外由于图中没有显示高4位计数器计到9,故看不到count的进位信号。

2 频率计主结构电路的设计根据频率计的测品原理,其频率计主体结构的电路设计如图所示。

两位十进制频率计顶层设计原理图文件在图所示电路中,74374是8位锁存器,74248是7段BCD译码器,它的7位输出可以直接与7段共阴极数码管相连,该图上方的74248显示的的是个位频率计数值,下方的74248显示的是十位频率计数值,erjsq是电路图2.1含有时钟使能的2位十进制计数器构成的元件。

频率计波形如图所示。

由波形图可以清楚的了解电路的工作原理。

F_IN是待测频率,设周期为620ns;CNT_EN是对待测频率脉冲计数允许信号,设周期为2μs;CNT_EN高电平时允许计数,低电平时禁止计数。

由仿真波形显示,当CNT_EN为高电平时允许erjsq对F_IN计数,低电平时erjsq停止计数有锁存信号LOCK发出的脉冲,将erjsq中的两个4位二进制数“26”锁存进74374中,并且74374分高低位通过总线H[6..0]和L[6..0]输出给74248译玛输出显示。

这就是测得的频率值。

十进制显示值“26”的7段译玛值分别是“1111101”和“1011011”。

此后由清零信号CLR对计数器erjsq清零,以备下一周期计数之用。

进位信号COUT是留待频率计扩展用的。

在实际测频中,CNT_EN是待测控制信号,如果其频率选定为0.5Hz,则其允许的计数的脉宽为1s,这样,数码管就能直接显示F_IN的值了。

3.时序控制电路设计为实现频率计自动测频,还需增加一个测频时序控制电路,产生时序关系。

输出三个控制信号:CNT_EN、LOCK和CLR,以便使频率计顺利的完成计数、锁存和清领三个重要功能,其电路设计如图所示。

该电路对应的元件名是KZ。

时序控制电路原理图该电路由三个部分组成,4位二进制计数器7493、4-16译玛器74154和两个由双与非门构成的RS触发器。

进行仿真,其仿真结果如图所示。

4 频率计顶层电路设计频率计顶层电路设计如图所示。

电路中只有两个输入信号:待测频率输入信号F_IN和测频控制时钟CLK。

频率计顶层电路原理图其仿真结果如图所示。

在波形图中F_IN周期620ns,测频控制信号CLK的周期取2μs。

这个结果与图2.8的结果完全一样。

由该结果可知,测频计数中的计数值q[3..0]、q[7..0]随着F_IN脉冲的输入而不断发生变化,但由于74374的锁存功能,两个74248的输出测频结果L[6..0]和H[6..0]始终分别稳定在“1111101”和“1011011”上,在7段译码显示管上分别译码显示2和6。

五、心得体会刚接到课程设计的时候完全没有思路,不知该如何下手,好像自己学到的东西一点都用不上,后来经过翻阅资料就有了思路,在整个课程设计完后,总的感觉是:有收获。

在这个过程中,我的确学得到很多在书本上学不到的东西,如:如何利用现有的元件组装得到设计利用计算机来画图等等。

在学习中的小问题在课堂上不可能犯,在动手的过程中却很有可能犯。

但现在回过头来看,还是挺有成就感的。

我的动手能力又有了进一步的提高,我感到十分的高兴,再此,还得感谢老师给了我们这次动手实践的课题,使我明白了很多,让我觉自己学到的知识是这么的有用,还了解了在实际的应用中许多应该注意的但没有注意到的问题,这对以后的应用实践有很大的帮助。

相关文档
最新文档