高可用数据库架构设计完整版
如何设置高可用数据库服务器

如何设置高可用数据库服务器互联网的快速发展推动了大量数据的产生和存储,因此数据库服务器的高可用性显得尤为重要。
高可用数据库服务器可以确保数据库系统在面对硬件故障或网络中断等意外情况时仍能提供持续可靠的服务。
本文将介绍一些关键的设置和策略,帮助您搭建高可用的数据库服务器。
一、数据库服务器的冗余设置为了确保数据库系统的高可用性,首先需要进行服务器的冗余设置。
这意味着至少需要两台数据库服务器来提供冗余服务。
一台服务器作为主服务器,负责处理所有的读写请求,而另外一台服务器则作为备用服务器,监控主服务器的状态,并在主服务器发生故障时接管其职责。
为了实现这一设置,您可以考虑使用数据库复制技术。
数据库复制可以将主服务器上的数据同步到备用服务器上,确保备用服务器上的数据与主服务器上的数据保持一致。
当主服务器发生故障时,备用服务器可以立即切换为主服务器,继续提供服务。
二、实现高可用的网络架构除了服务器的冗余设置,高可用的数据库服务器还需要支持高可用的网络架构。
为了确保网络的可靠性,您可以考虑使用双机房部署。
将主服务器和备用服务器分别部署在不同的机房,通过跨机房的网络连接实现数据的同步和故障切换。
这样即使一台机房发生故障,另一台机房仍然可以继续提供服务。
此外,还可以考虑使用虚拟IP地址(VIP)技术来实现故障切换。
虚拟IP地址可以自动漂移到备用服务器上,确保在主服务器故障时,备用服务器可以立即接管主服务器的职责。
通过这种方式,可以实现数据库服务的无缝切换,减少业务中断的时间。
三、监控和故障转移要确保高可用数据库服务器的可靠性,监控和故障转移是必不可少的。
监控系统可以实时监测主服务器和备用服务器的状态,一旦发现主服务器出现故障,可以立即触发故障切换。
在故障发生时,需要及时进行故障转移,确保备用服务器可以立即接管主服务器的职责。
可以通过一些自动化的脚本或工具来实现故障转移的自动化,减少人工干预的时间和成本。
同时,为了保证数据库的数据完整性和一致性,还需要设置定期的数据备份和恢复策略。
高可用网络架构的设计与实施方法(四)

高可用网络架构的设计与实施方法1. 引言在当今数字化时代,网络已经成为了人们生活的重要组成部分。
为了确保网络的稳定性和可用性,高可用网络架构的设计和实施变得至关重要。
本文将讨论高可用网络架构的设计原则、方法和工具,并介绍一些实际案例。
2. 设计原则高可用网络架构的设计需要遵循一些基本原则,如冗余、负载均衡和容错性。
冗余:通过使用多个网络设备、连接和路径,确保网络服务的可靠性。
例如,使用多个交换机和路由器来提供冗余的网络连接。
负载均衡:通过分配网络流量到多个服务器或网络设备上,提高网络的性能和可扩展性。
负载均衡可以通过硬件设备或软件实现。
容错性:在网络设备或连接发生故障时,系统能够自动切换到备份设备或连接,以保持网络的连通性。
常见的容错性技术包括冗余网络路径和热备插槽。
3. 设计方法在进行高可用网络架构设计时,可以采用以下方法来实现稳定性和可用性。
可靠性评估:首先需要评估现有网络架构的可靠性,识别潜在的单点故障和性能瓶颈,并制定改进计划。
可利用网络监控工具来收集和分析网络流量和性能数据。
冗余部署:选择合适的网络设备和技术,确保至少有一个备份设备或连接能够接管正常运行的网络设备或连接的工作。
负载均衡策略:根据网络流量和性能要求,选择合适的负载均衡策略。
常见的负载均衡技术包括基于硬件的负载均衡器、DNS负载均衡和基于软件的负载均衡。
容错性实现:使用容错技术来确保网络在设备或连接故障时能够自动切换到备份设备或连接。
例如,使用热备插槽和链路聚合来提供冗余网络路径。
4. 实施工具在实施高可用网络架构时,可以利用一些工具来简化配置和管理过程。
网络监控工具:使用网络监控工具来实时监测网络设备和连接的运行状况。
通过监控工具,可以及时发现并解决潜在的故障和性能问题。
故障转移工具:通过使用故障转移工具,可以实现网络在主设备或连接发生故障时的自动切换。
例如,使用VRRP(虚拟路由冗余协议)来实现路由器的容错性。
配置管理工具:利用配置管理工具来统一管理和自动化网络设备的配置。
高可用设计方案

高可用设计方案高可用性是指系统在正常运行时,能够持续提供服务,即使遭受一些故障也能够维持在可接受的水平。
下面介绍一个高可用设计方案。
一、容错与冗余设计:1.硬件冗余:采用双机热备份技术(Active-Standby),将两台服务器连接在同一网络上,当主服务器出现故障时,备份服务器能够实时接收并处理请求。
2.数据冗余:采用主从复制技术,将数据存储在多个服务器上,当主服务器发生故障时,备份服务器能够接替主服务器继续提供服务。
3.多点连接:在不同的地理位置部署服务器,通过负载均衡技术将流量分散到不同服务器上,当某一地点的服务器出现故障时,其他地点的服务器能够接替继续提供服务。
二、监控与告警系统:1.实时监控:设置监控系统对服务器、网络、数据库等进行实时监控,及时发现故障。
2.告警与通知:当系统出现故障时,监控系统能够及时发出警报,并通过短信、邮件等方式通知相关人员,以便及时处理故障。
三、自动化运维:1.自动故障转移:通过自动化脚本或软件工具,实现故障转移,当主服务器发生故障时,能够快速将请求转移到备份服务器上,从而不影响正常运行。
2.自动扩展与收缩:根据系统负载情况,通过自动化工具监测,实现系统的弹性伸缩,当系统负载过高时,自动添加服务器来提供更多资源;当系统负载过低时,自动释放多余的资源,提高系统的效率和稳定性。
四、灾备与备份策略:1.灾备环境:在不同地理位置部署服务器,建立灾备环境,将数据实时备份至灾备服务器上。
当主服务器发生严重故障时,能够快速切换至灾备服务器,从而保障系统的可用性。
2.定期备份:定期对系统数据进行备份,备份数据存储在独立的存储介质上,以防止数据丢失。
以上是一个基本的高可用设计方案,具体方案应根据具体业务需求和系统规模来设计。
高可用性架构设计

高可用性架构设计一、引言在当今的信息时代,对于系统的高可用性需求越来越高。
无论是企业的业务系统还是互联网的应用程序,都需要在面对各种故障和意外情况时保证系统的持续可用性。
本文将针对高可用性架构设计进行探讨,介绍常见的架构模式及其特点,并提出一些设计原则和最佳实践。
二、高可用性架构模式1. 负载均衡负载均衡是保证高可用性的基础。
通过将用户请求分发到多个服务器上,均衡系统的负载,提高系统的性能和可用性。
常见的负载均衡算法有轮询、随机和基于权重的算法。
2. 冗余备份冗余备份是通过复制系统的各个组件,确保系统在某个组件出现故障时可以无缝切换到备份组件,实现故障的快速恢复。
冗余备份可以应用在数据库、存储系统、网络设备等方面。
3. 容灾设计容灾设计是为了应对自然灾害、人为故障或其他灾难性事件而制定的一套应急计划。
通过将系统的不同组件部署在不同的地理位置或数据中心,确保即使出现灾难,系统仍能保持可用。
4. 无单点故障单点故障是指系统中存在一个关键组件,一旦该组件出现故障,整个系统将无法正常工作。
为了避免单点故障,需要将关键组件进行冗余设计,保证在某个组件故障时,系统能够自动切换到备用组件。
5. 异地多活异地多活是指将系统的不同实例部署在不同地理位置,实现跨地域的实时数据同步和故障切换。
通过异地多活架构,可以提高系统的容错能力和灾难恢复能力。
三、高可用性架构设计原则1. 设计要素模块化:将系统拆分为多个独立的模块,降低模块间的依赖性,提高系统的可扩展性和可维护性。
2. 引入冗余机制:在关键组件上引入冗余备份,保证系统在故障发生时的快速切换和恢复。
3. 多样化的故障恢复策略:系统应该具备多种故障恢复策略,包括自动切换、手动干预、数据回滚等方式。
4. 监控和告警:系统应该具备完善的监控系统,及时检测和预警异常情况,可以帮助运维人员快速响应并修复故障。
5. 定期测试和演练:对高可用性架构进行定期测试和演练,包括模拟故障、灾难恢复演练等,以验证系统的可用性和可恢复性。
海量并发下高可用库存中心的设计与实现

海量并发下高可用库存中心的设计与实现在海量并发下实现高可用的库存中心的设计至关重要,这可以确保系统能够稳定地处理大量的库存操作请求,并保证数据的准确性和一致性。
下面是一个可能的设计与实现方案:一、基础架构设计:1.库存中心采用分布式架构,包括多个库存节点,每个节点负责一部分库存数据的管理和处理。
2.使用主从复制的方式保证库存数据的可靠性和高可用性,每个节点都可以接收读操作请求,而写操作只能由主节点处理。
3.引入负载均衡的机制,将请求均匀地分发到各个库存节点,提高系统的吞吐量和并发处理能力。
二、一致性设计:1.引入分布式事务处理机制,确保库存操作的一致性。
通过如分布式锁、分布式事务协调器等技术来实现。
2.库存中心记录每次操作的流水日志,并定期对所有库存节点的数据进行校验和同步,以保证数据的准确性和一致性。
三、高可用性设计:1.使用可插拔式组件,将库存中心与外部系统解耦,以避免单点故障的问题。
2.设置监控系统和告警机制,及时发现和修复系统的故障,提高系统的可用性。
3.使用集群和冗余机制,确保系统在节点故障时仍能正常运行,同时要有自动重启和故障转移的机制。
四、性能优化设计:1.使用内存缓存技术,将热点数据保存在内存中,提高读写操作的性能。
2.利用异步处理和批处理机制,将一些耗时的操作异步化,并以批量方式执行,提高系统的吞吐量和并发能力。
3.优化数据库设计和索引,减少库存查询和更新的耗时,提高数据库的读写性能。
五、故障恢复设计:1.定期备份库存数据,以便在系统故障时能够及时恢复。
2.设计有效的灾难恢复机制,确保在灾难性事件发生时,能够快速将系统恢复到正常运行状态。
六、安全性设计:1.引入身份认证和权限控制机制,保护库存中心免受未经授权的访问和操作。
2.使用加密技术,保护库存数据在传输和存储过程中的安全性。
3.建立日志系统,记录所有的操作记录,以便进行安全审计和追踪。
总结:以上是一个可能的海量并发下高可用库存中心设计与实现的方案。
如何构建高可用架构

如何构建高可用架构随着互联网的飞速发展,各种业务系统走向线上,高可用架构已成为了企业建设基础设施不可或缺的一部分。
如何构建高可用架构,成为了每一位技术人员必备的技能之一。
一、什么是高可用架构高可用架构是指一个系统在经历部分组件或者硬件故障之后,仍然能够保持系统的可用性和稳定性。
高可用架构的目标是保证系统随时随地都能24小时全天候地运行。
二、高可用架构的实现1. 集群化架构应用服务器和数据库服务器都采用集群的方式来构建,通过负载均衡技术,将请求均衡分配到不同的节点上,实现了系统高效的响应和负载的分流,提升了系统的可用性。
2. 数据库主从复制通过主数据库和备份数据库采用异步复制以及数据同步机制,高可用架构可以在主数据库出现故障时,灵活切换到备份数据库,保证业务不会中断。
并且在数据同步时,备份数据库始终与主数据库保持同步状态,保证了数据的一致性和可靠性。
3. 负载均衡负载均衡技术在高可用架构中扮演着至关重要的角色。
它可以在多个节点之间平衡流量,防止某个节点负载过高造成的性能损失,提升系统的整体性能。
4. 健康检查系统运行时需要不断地检查各个组件,例如数据库、服务等组件是否运行正常。
一旦检查到某个组件出现问题,立即采取相应的措施,以保证系统的高可用性。
5. 故障容错故障容错技术可以在系统出现故障时,自动恢复。
这项技术的目的是保障系统在遇到故障时能够自动重启或自动切换,让系统在最短的时间内重新获得稳定性。
三、如何保障高可用架构的可靠性1. 设计合理的架构方案高可用架构的设计方案必须综合考虑业务需求、硬件设备、数据存储和负载等方面的因素,制定出一套合适的架构方案。
同时还需要考虑扩展性和灵活性,让整套系统具备更高的可靠性。
2. 运维保障系统建设对于运维人员来说,非常关键。
运维人员要具备一定的技术实力和相关知识,保障系统的日常运行和维护。
在常规备份、灾备恢复和系统升级等维护工作中,以快速响应、及时处理为原则,以保障系统运行状态。
高可用架构设计及实现方法

高可用架构设计及实现方法随着互联网技术的逐渐普及,许多企业开始注重技术的发展和架构的设计。
高可用架构是一种可以保证业务持续稳定运行的设计方案,而在实现高可用架构的过程中,涉及到的技术和策略也是非常关键的。
本文将就高可用架构的设计及实现方法做一些简单的介绍。
一、高可用架构设计概述高可用架构通俗的说法就是“高冗余度”架构,即通过多个节点、多个通道等方式提高整个系统的可靠性和稳定性。
在实际应用中,高可用的架构设计往往考虑的因素非常多,涉及的技术和策略都非常复杂。
其中,以下几个方面是设计高可用架构时必须要考虑的:1.节点冗余设计:我们可以通过备份多个节点来实现系统的整体冗余,即使一台服务器节点出现故障,也可以及时补充其他的节点保证业务的正常进行。
2.数据冗余设计:在系统存储层面,我们也可以通过备份数据、多副本等方式实现数据的冗余,保证我们的数据一旦丢失,可以快速从备盘中恢复。
3.链路冗余设计:在系统通讯方面,我们可以通过多个通道进行数据传输,避免单点故障导致业务中断。
4.负载均衡设计:一台服务器不可能承载所有的请求,因此我们需要将请求均衡地分配到多台服务器中去,以达到负载均衡的效果。
5.监控报警设计:在系统运行过程中,我们需要时刻监控各个节点和关键指标的状态,及时报警并做出相应的处理。
6.可扩展性设计:随着业务规模的不断扩大,我们需要预留足够的扩展空间和具备系统水平扩展的能力,因此在架构设计时需要考虑这方面的问题。
以上这些方面都是设计高可用架构时必须要考虑的,还需要考虑系统的应用场景、业务类型、技术选型等因素,最终综合考虑实现合适的高可用架构。
二、高可用架构的实现方法在高可用架构实现过程中,需要考虑执行上述方面的策略和技术,以下是实现高可用架构常用的方法:1.节点冗余实现方法:为了实现节点冗余,我们可以采用主备模式、双活模式、N+1等方式。
在主备模式下,我们将采用冗余服务器来备份主服务器,这样当主服务器宕机之后,冗余服务器会立即上线并提供服务。
数据库的容灾与高可用性架构设计

数据库的容灾与高可用性架构设计在现代企业中,数据库作为存储和管理重要数据的关键组件,在保障数据安全和可用性方面起着至关重要的作用。
为了在遇到灾难性故障时能够实现数据的恢复和系统的快速恢复,数据库的容灾与高可用性架构设计成为不可忽视的问题。
本文将从容灾和高可用性两个方面来探讨数据库架构的设计。
一、容灾架构设计容灾是指在遭受灾害或故障时,能够保证系统和数据的连续性、完整性和可用性的能力。
常见的容灾架构设计方案有备份和恢复、冷备份、热备份、以及异地多活等。
以下将介绍这些方案的特点和适用场景。
1. 备份和恢复备份和恢复是最基本也是最常用的容灾方案。
通过定期对数据库进行备份,并将备份文件保存在不同地点,以便在数据库故障时能够快速恢复。
备份可以是完整备份或增量备份,具体根据数据量和恢复的时间要求来决定。
备份和恢复需要有明确的策略和计划,包括备份频率、备份存储位置、备份验证等。
2. 冷备份冷备份是指在数据库故障时,将备份数据拷贝到目标服务器上,并启动该数据库实例的过程。
由于数据库备份是离线状态进行的,所以恢复数据库的时间较长。
冷备份适用于数据量较大、恢复时间要求相对宽松的情况。
3. 热备份热备份是指在数据库故障时,将备份数据拷贝到目标服务器上,并将该数据文件应用到实时数据库中。
这种方式下数据库恢复的时间较短,可以保证业务的连续性。
热备份适用于恢复时间要求比较短的情况。
4. 异地多活异地多活是指在两个或多个地理位置上构建相同的数据库环境,并通过数据同步来保持数据一致性。
当一个地点的数据库出现故障时,可以切换到另一个地点的数据库继续提供服务。
异地多活适用于对系统可用性要求较高的场景,但需要考虑数据同步和网络延迟等问题。
二、高可用性架构设计高可用性是指系统能够在故障发生时保持功能正常和高效运行的能力。
在数据库高可用性架构设计中,常见的方案有主从复制、主从复制+读写分离、集群等。
1. 主从复制主从复制是指将主数据库的数据实时复制到一个或多个从数据库上,从数据库作为备份和故障切换的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高可用数据库架构设计标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]MySQL数据库高可用架构设计目标:MySQL 数据库服务器不受单点宕机的影响,即时 A 服务器挂掉或者磁盘损坏物理故障导致数据库不可用也不会导致整个系统处于不可用状态,因为还有另外一台备用的数据库服务器可以提供服务。
派宝箱采取方案双机主从热备 (Mater Slave 模式)背景:双机热备的概念简单说一下,就是要保持两个数据库的状态自动同步。
对任何一个数据库的操作都自动应用到另外一个数据库,始终保持两个数据库数据一致。
这样做的好处:1. 可以做灾备,其中一个坏了可以切换到另一个。
2. 可以做负载均衡,可以将请求分摊到其中任何一台上,提高网站吞吐量。
对于异地热备,尤其适合灾备。
原理:MySQL Replication双机热备 + 每天自动sqldump出物理文件备份双机主从自动热备实现数据库服务的高可用加sqldump导出数据文件的方式备份。
双重保险!可能遇到的问题与挑战:主从数据库数据一致性问题宕机后主从切换的问题1 复制概述Mysql内建的复制功能(MySQL REPLICATION)是构建大型,高性能应用程序的基础。
将Mysql的数据分布到多个系统上去,这种分布的机制,是通过将Mysql的某一台主机的数据复制到其它主机(slaves)上,并重新执行一遍来实现的。
复制过程中一个服务器充当主服务器,而一个或多个其它服务器充当从服务器。
主服务器将更新写入二进制日志文件,并维护文件的一个索引以跟踪日志循环。
这些日志可以记录发送到从服务器的更新。
当一个从服务器连接主服务器时,它通知主服务器从服务器在日志中读取的最后一次成功更新的位置。
从服务器接收从那时起发生的任何更新,然后封锁并等待主服务器通知新的更新。
请注意当你进行复制时,所有对复制中的表的更新必须在主服务器上进行。
否则,你必须要小心,以避免用户对主服务器上的表进行的更新与对从服务器上的表所进行的更新之间的冲突。
mysql支持的复制类型:(1):基于语句的复制:在主服务器上执行的SQL语句,在从服务器上执行同样的语句。
MySQL默认采用基于语句的复制,效率比较高。
一旦发现没法精确复制时,会自动选着基于行的复制。
(2):基于行的复制:把改变的内容复制过去,而不是把命令在从服务器上执行一遍. 从开始支持(3):混合类型的复制: 默认采用基于语句的复制,一旦发现基于语句的无法精确的复制时,就会采用基于行的复制。
. 复制解决的问题MySQL复制技术有以下一些特点:(1) 数据分布 (Data distribution )(2) 负载平衡(load balancing)(3) 备份(Backups)(4) 高可用性和容错行 High availability and failover复制如何工作整体上来说,复制有3个步骤:(1) master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events);(2) slave将master的binary log events拷贝到它的中继日志(relay log);(3) slave重做中继日志中的事件,将改变反映它自己的数据。
下图描述了复制的过程:该过程的第一部分就是master记录二进制日志。
在每个事务更新数据完成之前,master 在二日志记录这些改变。
MySQL将事务串行的写入二进制日志,即使事务中的语句都是交叉执行的。
在事件写入二进制日志完成后,master通知存储引擎提交事务。
下一步就是slave将master的binary log拷贝到它自己的中继日志。
首先,slave开始一个工作线程——I/O线程。
I/O线程在master上打开一个普通的连接,然后开始binlog dump process。
Binlog dump process从master的二进制日志中读取事件,如果已经跟上master,它会睡眠并等待master产生新的事件。
I/O线程将这些事件写入中继日志。
SQL slave thread(SQL从线程)处理该过程的最后一步。
SQL线程从中继日志读取事件,并重放其中的事件而更新slave的数据,使其与master中的数据一致。
只要该线程与I/O线程保持一致,中继日志通常会位于OS的缓存中,所以中继日志的开销很小。
此外,在master中也有一个工作线程:和其它MySQL的连接一样,slave在master中打开一个连接也会使得master开始一个线程。
复制过程有一个很重要的限制——复制在slave上是串行化的,也就是说master上的并行更新操作不能在slave上并行操作。
2 .复制配置有两台MySQL数据库服务器Master和slave,Master为主服务器,slave为从服务器,初始状态时,Master和slave中的数据信息相同,当Master中的数据发生变化时,slave也跟着发生相应的变化,使得master和slave的数据信息同步,达到备份的目的。
要点:负责在主、从服务器传输各种修改动作的媒介是主服务器的二进制变更日志,这个日志记载着需要传输给从服务器的各种修改动作。
因此,主服务器必须激活二进制日志功能。
从服务器必须具备足以让它连接主服务器并请求主服务器把二进制变更日志传输给它的权限。
环境:Master和slave的MySQL数据库版本同为操作系统:unbuntuIP地址:、创建复制帐号1、在Master的数据库中建立一个备份帐户:每个slave使用标准的MySQL用户名和密码连接master。
进行复制操作的用户会授予REPLICATION SLAVE权限。
用户名的密码都会存储在文本文件中命令如下:mysql > GRANT REPLICATION SLAVE,RELOAD,SUPER ON *.*IDENTIFIED BY ‘1234’;建立一个帐户backup,并且只能允许从这个地址上来登陆,密码是1234。
(如果因为mysql版本新旧密码算法不同,可以设置:)、拷贝数据(假如是你完全新安装mysql主从服务器,这个一步就不需要。
因为新安装的master和slave有相同的数据)关停Master服务器,将Master中的数据拷贝到B服务器中,使得Master和slave中的数据同步,并且确保在全部设置操作结束前,禁止在Master和slave服务器中进行写操作,使得两数据库中的数据一定要相同!、配置master接下来对master进行配置,包括打开二进制日志,指定唯一的servr ID。
例如,在配置文件加入如下值:server-id=1log-bin=mysql-binserver-id:为主服务器A的ID值log-bin:二进制变更日值重启master,运行SHOW MASTER STATUS,输出如下:、配置slaveSlave的配置与master类似,你同样需要重启slave的MySQL。
如下:log_bin = mysql-binserver_id = 2relay_log = mysql-relay-binlog_slave_updates = 1read_only = 1server_id是必须的,而且唯一。
slave没有必要开启二进制日志,但是在一些情况下,必须设置,例如,如果slave为其它slave的master,必须设置bin_log。
在这里,我们开启了二进制日志,而且显示的命名(默认名称为hostname,但是,如果hostname改变则会出现问题)。
relay_log配置中继日志,log_slave_updates表示slave 将复制事件写进自己的二进制日志(后面会看到它的用处)。
有些人开启了slave的二进制日志,却没有设置log_slave_updates,然后查看slave的数据是否改变,这是一种错误的配置。
所以,尽量使用read_only,它防止改变数据(除了特殊的线程)。
但是,read_only并是很实用,特别是那些需要在slave上创建表的应用。
、启动slave接下来就是让slave连接master,并开始重做master二进制日志中的事件。
你不应该用配置文件进行该操作,而应该使用CHANGE MASTER TO语句,该语句可以完全取代对配置文件的修改,而且它可以为slave指定不同的master,而不需要停止服务器。
如下:mysql> CHANGE MASTER TO MASTER_HOST='server1',-> MASTER_USER='repl',-> MASTER_PASSWORD='p4ssword',-> MASTER_LOG_FILE='',-> MASTER_LOG_POS=0;MASTER_LOG_POS的值为0,因为它是日志的开始位置。
你可以用SHOW SLAVE STATUS语句查看slave的设置是否正确:mysql> SHOW SLAVE STATUS\G*************************** 1. row *************************** Slave_IO_State:Master_Host: server1Master_User: replMaster_Port: 3306Connect_Retry: 60Master_Log_File:Read_Master_Log_Pos: 4Relay_Log_File:Relay_Log_Pos: 4Relay_Master_Log_File:Slave_IO_Running: NoSlave_SQL_Running: No...omitted...Seconds_Behind_Master: NULLSlave_IO_State, Slave_IO_Running,和Slave_SQL_Running是No表明slave还没有开始复制过程。
日志的位置为4而不是0,这是因为0只是日志文件的开始位置,并不是日志位置。
实际上,MySQL知道的第一个事件的位置是4。
为了开始复制,你可以运行:mysql> START SLAVE;运行SHOW SLAVE STATUS查看输出结果:mysql> SHOW SLAVE STATUS\G*************************** 1. row ***************************Slave_IO_State: Waiting for master to send eventMaster_Host: server1Master_User: replMaster_Port: 3306Connect_Retry: 60Master_Log_File:Read_Master_Log_Pos: 164Relay_Log_File:Relay_Log_Pos: 164Relay_Master_Log_File:Slave_IO_Running: YesSlave_SQL_Running: Yes...omitted...Seconds_Behind_Master: 0在这里主要是看:Slave_IO_Running=YesSlave_SQL_Running=Yesslave的I/O和SQL线程都已经开始运行,而且Seconds_Behind_Master不再是NULL。