计算方法-1,2张-习题答案
计算方法练习题与答案

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.–作为x的近似值一定具有6位有效数字,且其误差限。
()2.对两个不同数的近似数,误差越小,有效数位越多。
()3.一个近似数的有效数位愈多,其相对误差限愈小。
()4.用近似表示cos x产生舍入误差。
( )5.和作为的近似值有效数字位数相同。
( )二、填空题1.为了使计算的乘除法次数尽量少,应将该表达式改写为;2.–是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;3.误差的来源是;4.截断误差为;5.设计算法应遵循的原则是。
三、选择题1.–作为x的近似值,它的有效数字位数为( ) 。
(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。
(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x近似表示e x所产生的误差是( )误差。
(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。
(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为的近似值,有( )位有效数字。
(A) 3; (B) 4; (C) 5; (D) 6。
四、计算题1.,,分别作为的近似值,各有几位有效数字?2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?3.利用等价变换使下列表达式的计算结果比较精确:(1), (2)(3) , (4)4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。
现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。
5*. 采用迭代法计算,取k=0,1,…,若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。
计算方法与实习答案1-2

绪论
习题1——10:设 f ( x) = 8 x 5 − 0.4 x 4 + 4 x 3 − 9 x + 1 用秦九韶法求f(3)。 解:
8 − 0.4
24 8 23.6
0
−9
1
x=3
70.8 74.8
224.4 224.4
673.2 664.2
1992.6 1993.6
∴ f(3)=1993.6
第一章 绪论 练习
1.《计算方法》课程主要研究以计算 机为工具的 数值 分析方法 ,并评价 该算法的计算误差。 2.近似值作四则运算后的绝对误差限 公式为 ε ( x1 − x2 ) ≤ ε ( x1 ) + ε ( x2 ) ,近似值 1.0341的相对误差限不大于 1 ×10−2 , 则它至少有三位有效数字。 4
ln(103 ) ∴k ≥ ln(2) ≥ 9.965
2 2 2
∴需二分10次 需二分 次
方程求根——二分法
习题2——2:用二分法求方程2e-x-sinx=0在区 间[0,1]内的1个实根,要求3位有效数字。
解:1)判断是否在该区间有且仅有一个根 f(0)=2>0,f(1)=2/e-sin1≈-0.1<0, f’(x)=-2e-x-cosx,f’=-3,-2/e-cos1<0 2)判断二分次数 由(b-a)/2k+1=1/2k+1≤1/2*10-3,解得k≥3ln10/ln2≥9.965, 所以需要二分10次,才能满足精度要求。
∴ x≈2.981
方程求根
f (xk )(xk − xk −1) xk +1 = xk − f (xk ) − f (xk −1)
习题2——11:用割线法求方程x3-2x-5=0的根,要 求精确到4位有效数字,取x0=2, x1=2.2。
计算方法习题集及答案(总结版)

雅克比法:
3 10 12 5
3 (k ) 2 (k ) x1( k +1) = − 5 x2 − 5 x3 −
,x
( k +1) 2
(k ) 1 (k ) =1 4 x1 − 2 x 3 + 5
18 i
,x
( k +1) 3 −4
(k ) 3 =−1 + 10 x (2 k ) + 5 x1
取初始向量 x
(2) x (3) x
3
= 1+ x2 =
,对应迭代公式 x 对应迭代公式 x
0
k +1
= 3 1 + x k2 ;
2
1 , x −1
k
+1 =
1 xk − 1
。
0
判断以上三种迭代公式在 x 解: (1) ϕ ( x) = 1 + x1
2
= 1 .5
的收敛性,选一种收敛公式求出 x
2 x3
−
2 3
= 1 .5
5
习题 3
1.
设有方程组
5 x1 + 2 x 2 + x3 = −12 − x1 + 4 x 2 + 2 x3 = 20 2 x − 3x + 10 x = 3 2 3 1
( k +1) (k )
∞
(1)
考察用 Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; −x (2) 用 Jacobi 法及 Gauss-Seidal 法解方程组,要求当 x
1.
x
k +1 k k
'
<1
公式收敛
计算方法与实习 第四版 (孙志忠 著) 东南大学出版社 课后答案

2
ww
w.
kh
da
w.
co
∗ − y | → ∞, 计算过程不稳定。 注 :此题中,|yn n
m
× 10−3 .
w.
n = 1, 2, · · ·
co m
e2 e2 r r = . 1 + er 1 − er
w.
课后答案网
aw . kh d
∗ − y | = 510 e ≤ n = 10时,|yn n 0
√ 计算到y100 , 若取 783 ≈ 27.982 (5位有效数字),试问计算到y100 将有多大误差? √ 答 :设x∗ = 783, x = 27.982, x∗ = x + e.
−2 ∗ = y∗ yn n−1 − 10 (x + e), yn = yn−1 − 10−2 x,
1 √ 783, 100
概率与数理统计 第二, C语言程序设计教程 第 西方经济学(微观部分) C语言程序设计教程 第 复变函数全解及导学[西 三版 (浙江大学 三版 (谭浩强 张 (高鸿业 著) 中 二版 (谭浩强 张 安交大 第四版]
社区服务
社区热点
进入社区
/
2009-10-15
ww
er − er = er −
e2 e e 1 r = . = e − = e − r r x∗ e+x 1 + er 1 + e1 r ·········
7. 设y0 = 28, 按递推公式
案 答
yn = yn−1 −
网 课 后
1 2
6. 机器数–略。
w. kh da
∗ −y |=e≤ n = 100时,|yn n
课后答案网
计算方法-刘师少版课后习题答案

1.1 设3.14, 3.1415, 3.1416分别作为π的近似值时所具有的有效数字位数解 近似值x =3.14=0.314×101,即m =1,它的绝对误差是 -0.001 592 6…,有31105.06592001.0-*⨯≤=- x x .即n =3,故x =3.14有3位有效数字. x =3.14准确到小数点后第2位.又近似值x =3.1416,它的绝对误差是0.0000074…,有5-1*10⨯50≤00000740=-.. x x即m =1,n =5,x =3.1416有5位有效数字.而近似值x =3.1415,它的绝对误差是0.0000926…,有4-1*10⨯50≤00009260=-.. x x即m =1,n =4,x =3.1415有4位有效数字.这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字 1.2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限: 2.0004 -0.00200 9000 9000.00解 (1)∵ 2.0004=0.20004×101, m=1绝对误差限:4105.0000049.020004.0-*⨯≤≤-=-x x x m -n =-4,m =1则n =5,故x =2.0004有5位有效数字1x =2,相对误差限000025.010221102151)1(1=⨯⨯=⨯⨯=---n r x ε(2)∵ -0.00200= -0.2×10-2, m =-25105.00000049.0)00200.0(-*⨯≤≤--=-x x xm -n =-5, m =-2则n =3,故x =-0.00200有3位有效数字1x =2,相对误差限3110221-⨯⨯=r ε=0.0025(3) ∵ 9000=0.9000×104, m =4,0105.049.09000⨯<≤-=-*x x xm -n =0, m =4则n =4,故x =9000有4位有效数字4110921-⨯⨯=r ε=0.000056 (4) ∵9000.00=0.900000×104, m =4,2105.00049.000.9000-*⨯<≤-=-x x xm -n =-2, m =4则n =6,故x =9000.00有6位有效数字 相对误差限为6110921-⨯⨯=rε=0.000 00056由(3)与(4)可以看到小数点之后的0,不是可有可无的,它是有实际意义的.1.3 ln2=0.69314718…,精确到310-的近似值是多少?解 精确到310-=0.001,即绝对误差限是ε=0.0005,故至少要保留小数点后三位才可以.ln2≈0.6932.1 用二分法求方程013=--x x在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少?解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211xx +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。
数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法第三版课后习题答案

习题一解答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,223.1428571430.3142857143107==⨯,m=1。
计算方法练习题与答案

练习题与答案练习题一练习题二练习题三练习题四练习题五练习题六练习题七练习题八练习题答案练习题一一、是非题1.*x=–作为x的近似值一定具有6位有效数字,且其误差限41021-⨯。
()2.对两个不同数的近似数,误差越小,有效数位越多。
( )3.一个近似数的有效数位愈多,其相对误差限愈小。
( )4.用212x-近似表示cos x产生舍入误差。
( )和作为π的近似值有效数字位数相同。
( )二、填空题1.为了使计算()()2334912111y x x x =+-+---的乘除法次数尽量少,应将该表达式改写为 ;2.*x =–是x 舍入得到的近似值,它有 位有效数字,误差限为 ,相对误差限为 ;3.误差的来源是 ;4.截断误差为 ;5.设计算法应遵循的原则是 。
三、选择题1.*x =–作为x 的近似值,它的有效数字位数为( ) 。
(A) 7; (B) 3;(C) 不能确定 (D) 5.2.舍入误差是( )产生的误差。
(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值(C) 观察与测量 (D) 数学模型准确值与实际值3.用 1+x 近似表示e x 所产生的误差是( )误差。
(A). 模型 (B). 观测 (C). 截断 (D). 舍入4.用s *=21g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在时间t 内的实际距离,则s t s *是( )误差。
(A). 舍入 (B). 观测 (C). 模型 (D). 截断5.作为2的近似值,有( )位有效数字。
(A) 3; (B) 4; (C) 5; (D) 6。
四、计算题1.,,227分别作为π的近似值,各有几位有效数字2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少3.利用等价变换使下列表达式的计算结果比较精确: (1)1||,11211<<+-++x x x x , (2) 1||1112<<+⎰+x dt t x x(3) 1||,1<<-x e x , (4) 1)1ln(2>>-+x x x4.真空中自由落体运动距离s 与时间t 的关系式是s =21g t 2,g 为重力加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f(x0)=-1 f(x1)=1.248
f(x2)=-0.0621 f(x3)=-0.0036 f(x4)=0.00001
0.0621* (2.089 2.2) x3 2.089 2.094 0.0621 1.248 0.0036 * (2.094 2.089) x4 2.094 2.095 0.0036 0.0621 0.00001* (2.095 2.094) x5 2.095 2.095 0.00001 0.00361
解: f(x)=x5-235.4, f’(x)=5x4 1)写出迭代公式: xk 1 xk 2)迭代计算: x0=3.0 x1=2.977 x2=2.982 x3=2.981
5 xk5 235.4 4 xk 235.4 4 5 xk 5 xk4
x4=2.981
∴ x≈2.981
第一章 绪论 练习
3.设数据x1,x2的绝对误差限分别为0.05和 0.005,那么两数的乘积x1x2的绝对误差限 (x1x2)= 0.05 x2 0.005 x1 。 4. 0.00234711 具有 5 位有效数字的近似值 是: ( b )
5. 在β=10,t=5,-L=U=5的截断机上, 与数410037对应的规格化浮点数是: ( d )
3.2590
4.3820
0.00078925
绪论
习题1——4:已知下列近似值x1=4.8675, x2=4.08675, x3=0.08675,求x1+x2+x3 的误差限。 4 5 5 e ( x ) 0 . 5 * 10 , e ( x ) 0 . 5 * 10 , e ( x ) 0 . 5 * 10 1 2 3 解:
d. ' ( x) r 1
方程求根——练习1
用二分法求方程在区间[1, 1.5]内的近似 根,要求精确到小数点后第2位,则至少 ba 6 需要二分 次。 ln
k
ln 2
1
用迭代法求方程根的关键问题是:
a.精确地选定初值 c.正确构造一个迭代公式
b.选定一个粗糙的初值 d.编好计算程序
e( x1 x2 x3 ) e( x1 ) e( x2 ) e( x3 ) e( x1 x2 x3 ) e( x1 ) e( x2 ) e( x3 )
e( x1 ) e( x2 ) e( x3 ) 0.5 *10 4 0.5 *10 5 0.5 *10 5 0.6 *10 4
方程求根
习题2——3:用简单迭代法求方程ex-4x=0的 根,并验证收敛性,精确到4位有效数字。
解:2.在区间[0,1]上构造收敛的公式并计算
x=ln(4x)= φ2(x) (1)两种等价形式: x=ex/4=φ1(x); xk (2) x=ex/4=φ1(x): e |φ1’(x)|=ex/4<1 (收敛), 迭代公式为: xk 1 (3) x=ln(4x)= φ2(x): |φ2’(x)|=1/x>1 (发散) (4) 计算:x0=0 x1=0.2500 x4=0.3529 x5=0.3558 x9=0.3574 x8=0.3573 x2=0.3210 x6=0.3568 x10=0.3574
1) 2) 4) 3)
x=1+1/x2 x3=1+x2 x2=x3-1 x2=1/(x-1)
方程求根
解:1) x 1 1 2 x
|1’(x)|= | -2 1 x3 |= 2
(x)
1
1.53 | x0=1.5 =0.59 <1(收敛 )
2) x 3 1 x 2
| 2’(x)|= | 1 3
解:1)求单调区间 f’(x)=-1-cosx,可知在(3.14, 0)区间 f’(x)<0,单调递减 2)在(3.14, 0)区间逐步搜索 f(0)=1-0-sin0=1>0,f(1)=1-1-sin1=-sin1<0 ∴ 方程 1-x-sinx=0在[0,1]中有且只有1个根。 ba 1 1 3)求二分次数 k 1 k 1 *103
(1)单调区间:
令f’(x)=ex-4=0, x=ln4≈1.4,所以有两个单调区间: [- ∞,1.4](递减)和[1.4, ∞](递增)
(2)有根区间:∴ 存在两个有根区间为:[0,1] 和[2,3]
[- ∞,1.4]区间:f(0)=1>0,f(1)=e-4<0,所以有根区间为:[0,1] [1.4,+ ∞]区间:f(2)=e2-8<0,f(3)=e3-12>0,所以有根区间为:[2,3]
迭代公式为:
xk 1 ln(4 xk )
x3=2.137 x8=2.153
(4) 计算:x0=2 x4=2.146 x5=2.150
x1=2.079 x2=2.118 x6=2.152 x7=2.153 ∴ x ≈ 2.153
方程求根
习题2——6:方程x3-x2-1=0在1.5附近有一根,将方 程写成如下不同的等价形式,判断是否满足迭代收 敛的条件,并选择一种最好的迭代格式,以x0=1.5 为初值求方程的根,要求精确到4位有效数字。
(1 x )
2 2 3
2 2 | x ( 1 x ) 2x | = 3
2 3
| x 0 1.5
=0.4557 <1(收敛 )
∴ 2比 1收敛快
∵ | 2’(x)|<|1’(x)|
方程求根
解:3) x x3 1
1 3 3 2 2 3 ' ( x) ( x 1) 2 3x x ( x 1) 2 x0 1.5 2.89 2 2 1 1
4
x3=0.3466 x7=0.3572 ∴ x ≈ 0.3574
方程求根
习题2——3:用简单迭代法求方程ex-4x=0的 根,并验证收敛性,精确到4位有效数字。
解:2.在区间[2,3]上构造收敛的公式并计算
x=ln(4x)= φ2(x) (1)两种等价形式: x=ex/4=φ1(x); (2) x=ex/4=φ1(x): |φ1’(x)|=ex/4>1 (发散) (3) x=ln(4x)= φ2(x): |φ2’(x)|=1/x<1 (收敛),
4) x
1 x 1
>1(不收敛)
|’(x)|= | 1
( x 1)
3 2
| x 0 1.5 =1.4142 >1(不收敛)
2 ∵ | 2’(x)|<|1’(x)| ∴ 2比 1收敛快
xk 1 1 x
3
2 k
方程求根
习题2——6:方程x3-x2-1=0在1.5附近有一根,将方 程写成如下不同的等价形式,判断是否满足迭代收 敛的条件,并选择一种最好的迭代格式,以x0=1.5 为初值求方程的根,要求精确到4位有效数字。
方程求根
f ( xk )( xk xk 1 ) xk 1 xk f ( xk ) f ( xk 1 )
习题2——11:用割线法求方程x3-2x-5=0的根,要 求精确到4位有效数字,取x0=2, x1=2.2。
解: x0=2.0 x1=2.2 1.248 * (2.2 2) x2 2.2 2.089 1.248 (1)
解:计算根
1)迭代公式: xk 1
2)迭代计算: x0=1.5
1 x
3
2 k
x1=1.481
x2=1.473 x6=1.466
x3=1.469
x4=1.467
x5=1.466
∴ x ≈ 1.466
方程求根
习题2——9:用牛顿迭代法求方程 x5-235.4=0的根, 要求精确到4位有效数字,取初值为3。
a.5位 b.6位 c.7位 d.8位
7. 数13.013627……的有四位有效数字 的近似值是: ( d )
a.13.00 c.13.014 b.13.02 d.13.013
方程求根
习题2——1:证明方程1-x-sinx=0在[0,1]中有 且只有1个根,用二分法求误差不大于1/2*10-3 的根需要迭代多少次?
a. 0.41003×106 c. 4.10037×105 b. 0.41004×106 d. 上溢 a.0.00235 c.0.0023 b.0.0023471 d.0.00234711
第一章 绪论 练习
6. 自然数e*=2.718281828459045…,取 e≈2.71828,那么e的有效数字是: ( b )
绪论
习题1——10:设 f ( x) 8x5 0.4 x 4 4 x3 9 x 1 用秦九韶法求f(3)。 解:
8
0.4
24
4
0
9
1
x3
8
70.8
224.4
673.2 664.2
1992.6
23.6
74.8
224.4
1993.6
∴ f(3)=1993.6
第一章 绪论 练习
计算方法(数值分析)
习题答案——第一、二章
教师:马英杰 成都理工大学 核自学院
绪论