大一高数上ppt课件

合集下载

高等数学上册PPT课件

高等数学上册PPT课件

R( x)
1 q
,
0 ,
x p ( p, q Z , p 为 既 约 真 分 数 ,)
q
q
x 0 ,1 和 (0 ,1) 内 的 无 理 数.
y
1 2
1 3 1 4 1 8 o
y R( x)
1 1 1 3 1 5 2 3 7 1
x
8 4 38 2 8 3 4 8
三. 函数的初等性质
显然,x R, 有
称为非负小数部分函数
0 {x} 1 , x [x] {x} .
y
y {x}
1
4 3 2 1 o 1 2 3 4
x
例3 符号函数 x x sgn x ,
1,
sgn
x
0
,
1 ,
当 x 0, 当 x 0, 当 x 0.
sgn x 起 了 x 的 符 号 的 作 用.
否 则 ,f ( x) 称 为 非 奇 非 偶 函 数.
例7 设 f ( x) 为定义在(l , l ) (l 0) 内的任意函数, 证明 f ( x) 在(l , l ) 内能表成奇函数与偶函数的和.
证 令 F ( x) 1 [ f ( x) f ( x)] , 偶函数
2
G( x) 1 [ f ( x) f ( x)] , 奇函数 2
f (x2 )
o
o x
D
x
D
当 f ( x)在 D 上单调递增或单调递减 时,则称 f ( x)
在 D 上是单调的; f ( x) 为D 上的单调函数.
如果 x1 , x2 D, 当 x1 x2时,
恒有: f ( x1 ) ( ) f ( x2 ), 则称函数f ( x)在区间D 上是单调不减( 增 ) .

大一高数课件第一章 1-3-1 数列的极限

大一高数课件第一章 1-3-1   数列的极限
1 2 n
x3
x1
x 2 x4
xn
2.数列是整标函数
xn f (n).
三、数列的极限
( 1)n1 观察数列{1 } n 当 n 时的变化趋势.
播18-28放
三、数列的极限
( 1)n1 观察数列{1 } n 当 n 时的 变化趋势.
三、数列的极限
( 1)n1 观察数列{1 } n 当 n 时的 变化趋势.
n
所以,
n
lim xn C .
说明:常数列的极限等于同一常数. 小结: 用定义证数列极限存在时,关键是任意给定 0, 寻找N,但不必要求最小的N.
四、数列极限的性质
1、有界性
定义: 对数列 x n , 若存在正数 M , 使得一切自 然数 n, 恒有 xn M 成立, 则称数列 x n 有界, 否则, 称为无界.
1
1 使得当n N时, 有 xn a 成立, 2 1 1 即当n N时, xn (a , a ), 2 2
区间长度为1.
而xn无休止地反复取 1, 1 两个数,
不可能同时位Leabharlann 长度为1的区间内.事实上, { xn }是有界的, 但却发散.
注意:有界性是数列收敛的必要条件.
定理3
收敛数列的任一子数列也收敛.且极限相同.
推论:如果一个数列有两个子数列收敛于不同的极限,那么 这个数列发散。 例如
xn 1
n1
的子列 x2k 1,
x2k 1 1
xn 发散
发散的数列也可能有收敛的子列。
五、小结
数列:研究其变化规律; 数列极限:极限思想、精确定义、几何意义; 收敛数列的性质:

大一高数课件第一章 1-1-1

大一高数课件第一章 1-1-1

第一章 函数与极限
第一节
• • • • • 一、基本概念 二、函数概念 三、函数的特性 四、反函数 五、小结
函数
一、基本概念
总体. 1.集合: 具有某种特定性质的事物的总体 1.集合: 具有某种特定性质的事物的总体. 集合 组成这个集合的事物称为该集合的元素. 组成这个集合的事物称为该集合的元素. 元素 a∈ M, a∉ M,
y
y = f ( x)
f ( x1 )
f ( x2 )
x1
恒有
f ( x1 ) > f ( x2 ),
o
x2
则称函数 f ( x )在区间 I上 是单调减少的 ;
I
x
3.函数的奇偶性: 函数的奇偶性:
设D关于原点对称 , 对于∀x ∈ D, 有
f (− x ) = f ( x )
y
y = f ( x)
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 集合, 区间, 邻域, 常量与变量, 绝对值 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 有界性,单调性,奇偶性,周期性. 反函数
思考题
1 设 ∀x > 0 , 函 数 值 f ( ) = x + 1 + x , 求 函 数 x
前言
高等数学》 《高等数学》是研究变量及变量间依赖关系的 一门数学课程。 一门数学课程。它的内容包括一元及多元函数微 积分学、空间解析几何、无穷级数和微分方程。 积分学、空间解析几何、无穷级数和微分方程。 高等数学》共讲授192学时,共计12 192学时 12学分 《高等数学》共讲授192学时,共计12学分 高等数学》的研究方法主要应用极限法。 《高等数学》的研究方法主要应用极限法。

大一高数上_PPT课件_第一章

大一高数上_PPT课件_第一章

几个数集:
R表示所有实数构成的集合,称为实数集。
Q表示所有有理数构成的集合,称为有理集。 Z表示所有整数构成的集合,称为整数集。 N表示所有自然数构成的集合, 称为自然数集。 子集: 若xA,则必有xB,则称A是B 的子集, 记 为AB(读作A包含于B)。 显然,N Z ,Z Q ,Q R 。
的上方。
y y=f(x) O x
y=K2
如果存在数 M,使对任一 xX,有 | f(x) |M, 则称函数f(x)在X上有界;如果这样的M不存在, 则称函数f(x)在X上是无界函数,就是说对任何M ,总存在 x1X,使|f(x)|>M。 有界函数的图形特点: 函数y = f(x)的图形在直线y = - M和y = M y 的之间。
高等数学研究的主要对象是函数,主要研 究函数的分析性质(连续、可导、可积等)和 分析运算(极限运算、微分法、积分法等)。 那么高等数学用什么方法研究函数呢?这个方 法就是极限方法,也称为无穷小分析法。从方 法论的观点来看,这是高等数学区别于初等数 学的一个显著标志。 由于高等数学的研究对象和研究方法与初 等数学有很大的不同,因此高等数学呈现出 以下显著特点:
周期函数的图形特点:
y
y=f(x)
-2l
-l
O
l
2l
x
四、反函数与复合函数
1. 反函数 设函数y=f(x)的定义域为D,值域为W。 对于任一数值 yW,D上可以确定唯一数值 x 与 y 对应,这个数值 x 适合关系 f(x)=y。
如果把 y看作自变量,x 看作因变量,按 照函数的定义就得到一个新的函数,这个 新函数称为函数y=f(x)的反函数,记作 x=f -1(y)。
什么样的函数存在反函数?

大一高数上 PPT课件 第二章

大一高数上 PPT课件 第二章
xh x 解:解:f(x)lim ff((x h)) ff((x)) lim lim lim 解:f (x) hh0 0 hh0 0 h h
sin(x h)) sin x sin(x h sin x h h h sin 1 h h h lim 2 cos(x ) sin lim cos(x ) 2 cos h0 h 2 2 h0 2 h 2 cos x。
即 (sin x) cos x。类似地可求得 (cos x )sin x。
(a x) a x ln a,(e x ) e x 。 4.指数函数的导数: 例7.求函数f(x)ax(a>0,a 1)的导数。
f ( x h) f ( x ) a xh a x lim a x lim lim lim lim 解: f ( x) lim h 0 h 0 h h h
t 越小, 近似的程度越好, 于是当 t 0 时,
s t 的极限即为
st 0 t st 0 vt 0 lim t 0 t
v t0 .
s t s t0 lim t t0 t t0
s lim t 0 t
2 曲线的切线的斜率
左右导数:
f ( x0 x) f ( x0 ) f (x0) lim , x 0 x
f ( x0 x) f ( x0 ) f (x0) lim 。 x 0 x 导数与左右导数的关系:
显然,当且仅当函数在一点的左、右导数存在且相 等时,函数在该点才是可导的。 函数在闭区间上的可导性:
x0
x0 x
tan
越接近于 k ,
y f ( x0 x) f ( x0 ) tan x x

大一高数课件ch2-5极限存在准则两个重要极限连续复利

大一高数课件ch2-5极限存在准则两个重要极限连续复利

两个重要极限的应用
总结词
两个重要极限在微积分、概率论和统计 学等领域有广泛应用。
VS
详细描述
第一个重要极限常用于解决一些微积分问 题,例如求不定积分和定积分;第二个重 要极限则常用于解决一些概率论和统计学 问题,例如计算概率和期望值等。两个重 要极限都是微积分和概率论中非常重要的 概念,对于理解这些学科的基本原理和解 决问题具有重要意义。
在一些特定的金融产品中,如指数基金、期权等,连续复利的应用尤为重 要。
连续复利还可以用于评估企业的价值,如市盈率、市净率等指标的计算中 ,连续复利的应用也是不可忽视的。
CHAPTER 04
极限存在准则与连续复利的 关系
极限存在准则对连续复利的影响
01
极限存在准则为连续复利的计算提供了理论基础, 确保了复利计算的正确性和可靠性。
CHAPTER 03
连续复利
连续复利的概念
连续复利
是一种计算利息的方式,它假设本金在每个时间点上都获得利息 ,而不是在固定的时间段内获得利息。
与离散复利的区别
离散复利假设本金在固定的时间段内获得利息,而连续复利则假设 本金在每个时间点上都获得利息。
连续复利的计算公式
A=P*e^rt,其中A是未来的总金额,P是本金,r是年利率,t是时 间。
详细描述
柯西收敛准则是一个非常强大的工具,用于证明数列的收敛性。这个准则表明,如果一个数列的任意 两项之间的差的绝对值可以任意小,那么这个数列就是收敛的。柯西收敛准则可以用来证明许多复杂 的数列的收敛性,尤其是在处理无穷级数时非常有用。
极限存在准则三
总结词
极限存在准则三是闭区间套定理,它指出如果一个数列的项构成一个闭区间套, 即每个区间端点的极限相等且等于该数列的项,则该数列收敛于这个极限。

大一高数课件ch2-7函数的连续性

大一高数课件ch2-7函数的连续性
第七节 函数的连续性
一、函数的连续性的概念 二、函数的间断点 三、初等函数的连续性 四、小结 思考题
一、函数的连续性
1.函数的增量
设变u量 从它的u初 1变值 到终 u2则 值 uu2u1
称为变 u的 量增. 量
注意:(1) u可正可负;
(2) u是一个整体,不能看作 与u的乘积.
设函 f(x)数 在 U (x0,)内有 ,当 定 x在 U 义 (x0,)
如果 f(x)在点 x0处的极, 限但 存在 lx ixm 0 f(x)Af(x0),或f(x)在点 x0处无定 义则x 称 0为点 函f(数 x)的可去.间断点
例4 讨论函数
y y1x
f
(
x)

2 1,
x,
0 x 1, x 1
1 x, x 1,
在x 1处的连续性 .
x0为f(x)的间,断 有点 以下三 :种
(1) f(x)在点 x0处没有; 定义
(2)limf(x)不存;在
xx0
(3)
f(x)在x点 0处
有,定 lim 义 f(x)存 x x0

但x l ixm 0 f(x)f(x0).
1.可去间断点(a removable discontinuity)
函数 f ( x)当 x x0 时的极限存在,且等于它在
点x 0 处的函数值 f ( x0 ),即
lim
x x0
f (x)
f(x ) 0
那末就称函数 f ( x)在点x0 连续.
""定义 :
0,0,使x当 x0时 , 恒f有 (x)f(x).
0
从 这 个 定 义 我 们 可 以 看 出 , 函 数 f(x)在 点 x0

大一上学期同济版高数第四章不定积分ppt课件

大一上学期同济版高数第四章不定积分ppt课件
故 ( x ) F ( x ) C 0 (C0 为某个常数 ) F ( x ) C . 属于函数族 定理3:设 (x) 和 F ( x) 是 f ( x ) 的两个不同的原函数, 则它们之间只差一个常数。
7
I 定义 2. f (x) 在区间 I 上的全体原函数称为 f (x)在
上的不定积分, 记作 f (x )d x, 其中
由 x ( 0 ) x ,得 C x ,于是所求运动规律为 0 2 0
2 1 x ( t ) g t v t x 0 0 2
12
从不定积分定义可知: d f (x)dx (1) f ( x )或 d f (x)d x f ( x ) d x dx 或 ( 2 ) x C d C F(x) F(x) F(x) F(x) d 可见,微分法和积分法是互逆运算,当积分运算记号
质点抛出时刻为 t 0, 此时质点位置为 x0 , 初速为 v 0 .
x ( t ) ,则 设时刻 t 质点所在位置为 x
dx v (t ) dt
(运动速度) 再由此求 x(t )
x
x x ( t)
x x ( 0 ) 0
o
11
d2 x d v g (加速度) 2 dt dt 先由此求 v (t )
与微分运算记号 d 连在一起时,或相互抵消,或
抵消后只差一个常数。即
利用逆向思维
“先积后微,形式不变;先微后积,差个常数。” 二、 基本积分表 (P188)
( 1 )
d xkxC k
( k 为常数)
13
( 2 )
x— 积分变量; 若F 则 ( x ) f ( x ) ,
例如,
— 积分号;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有一点(a b),使等式
f (a) F (a)
f (b) F (b)
f F
' () 成立. ' ()
Cauchy定理又称为广义微分中值定理
结构图
特例
推广
Rolle定理
Lagrange定理
Cauchy定理
拉格朗日中值定理又称微分中值定理.
第二节 洛必达法则
一、0 型及 型未定式解法: 洛必达法则 0
M
B
N
D
线平行于弦 AB.
o a 1 x
2 b
x
推论 如果函数f(x)在区间I上的导数恒为零,那 么f(x)在区间I上是一个常数。
证明:在区间I上任取两点x1,x2(x1<x2),应用拉 格朗日中值定理,就得
f(x2)f(x1)f ()(x2x1) (x1< < x2)。 由假定,f ()0,所以f(x2)f(x1)0,即
ln(1 x) x 。 1
又由0<<x,有
x ln(1 x) x 。 1 x
三、柯西(Cauchy)中值定理
柯西(Cauchy)中值定理 如果函数 f ( x)及F ( x)
在闭区间[a, b]上连续,在开区间(a, b)内可导,且F ' ( x)
在(a, b)内每一点处均不为零,那么在(a, b)内至少
例如, f ( x) x2 2x 3 ( x 3)(x 1).
在[1,3]上连续, 在(1,3)内可导, 且 f (1) f (3) 0,
f ( x) 2( x 1), 取 1, (1 (1,3)) f () 0.
几何解释:
y
C
y f (x)
若连续曲线弧的两个
端点的纵坐标相等,
f(x2)f(x1)。 因此 f(x)在区间I上是一个常数。
例 2.证明当 x>0 时, x ln(1 x) x 。 1 x
证明:设f(x)ln(1x),显然f(x)在区间[0, x]上满足 拉格朗日中值定理的条件,根据定理,就有
f(x)f(0)f ()(x0),0<<x。
由于 f(0)0, f (x) 1 ,因此上式即为 1 x
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
f (b) f (a) f ( )
ba
y 几何解释:
在曲线弧 AB 上至少有
一点 C ,在该点处的切
A
C
y f (x)
且除去两个端点外处 o a 处有不垂直于横轴的
1
2 b x
切线,在曲线弧AB上至少有一点C ,在该点处的
切线是水平的.
注① Rolle定理有三个条件:闭区间连续;开区间可导
区间端点处的函数值相等; 这三个条件只是充分条件,而非必要条件
如:y=x2在[-1,2]上满足(1),(2),不满足(3) 却在(-1,2)内有一点 x=0 使
例 1 . 不 求 函 数 f(x)(x1)(x2)(x3) 的 导 数 , 判 断 方程f (x)0有几个实根,以及其所在范围。
解:f(1)f(2)f(3)0,f(x)在[1, 2],[2, 3]上满足 罗尔定理的三个条件。
在 (1, 2) 内至少存在一点 1,使 f (1)0,1是
f (x)=0的一个实根。
y x0 2x x0 0 但定理的条件又都是必须的,即为了保证结论成立 三个条件缺一不可。
例如, y x , x [2,2];
在[2,2]上除f (0)不存在外, 满足罗尔定理的 一切条件, 但在内找不到一点能使f ( x) 0. 又例如, f ( x) 1 x, x (0,1], f (0) 0;
另外还要注意点ξ并未具体指出,即使对于给定 的具体函数,点ξ也不一定能指出是哪一点,
如 f ( x) x ln( x 2)
在[-1,0]上满足罗尔定理的全部条件,而
f ( x) x ln( x 2) x2
但却不易找到使 f ( x) 0的点
但根据定理,这样的点是存在的.即便如此,我们 将会看到,这丝毫不影响这一重要定理的应用.
二、0 , ,00 ,1 ,0型未定式解法
一、0 型及 型未定式解法: 洛必达法则 0
定义 如果当 x a (或 x ) 时,两个函数
f (x) 与 F (x) 都趋于零或都趋于无穷大,那么
极限 lim f (x) 可能存在、也可能不存在.通 xa F (x)
( x )
常把这种极限称为 0 或 型未定式. 0
在[0,1]上除去x=0不连续外,满足罗尔定理的
一切条件, 但在(0,1)内找不到一点能使f (x) 0.
再例如 f ( x) x, x [0,1].
在[0,1]上除去端点的函数值不相等外,满足罗尔 定理的一切条件,但也找不到使f ( x) 0的点. ②罗尔定理的结论是在开区间内至少有一使导数 等0的点。有的函数这样的点可能不止一个;
大一高数上课件
§3. 1 微分中值定理
一、罗尔(Rolle)定理
定理(Rolle) 若函数f ( x ) 满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)在区间端点处的函数值相等f(a)=f(b)
则在(a,b)内至少存在一点 , (a,b)使得函数 f ( x)在该点的导数为零,即 f ( ) 0
在(2, 3)内至少存在一点 2,使f (2)0,2也是
f (x)=0的一个实根。 f (x) =0是二次方程,只能有两个实根,分别在
区间(1, 2)及(2, 3)内。
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 (1)如果函数 f(x)在 闭区间[a, b]上连续(,2在) 开区间(a, b)内可导,那么在 (a, b)内至少有一点(a b),使等式
例如,
lim tan x , ( 0 )
ቤተ መጻሕፍቲ ባይዱx0 x
0
lim ln sin ax , ( ) x0 ln sin bx
定理 设 (1) 当 x a时,函数 f ( x) 及 F ( x) 都趋于零; (2) 在 a 点的某去心邻域内, f ( x)及 F( x) 都存在 且 F( x) 0; (3) lim f ( x) 存在(或为无穷大); xa F ( x) 那末 lim f ( x) lim f ( x) . xa F ( x) xa F ( x)
相关文档
最新文档