【三维设计】高中数学 教师用书 模块综合检测 苏教版必修1

合集下载

2021_2022学年新教材高中数学模块素养评价二含解析苏教版选择性必修第一册

2021_2022学年新教材高中数学模块素养评价二含解析苏教版选择性必修第一册

模块素养评价(二)(120分钟 150分)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.经过圆()x -1 2+()y +1 2=2的圆心C ,且与直线2x +y =0垂直的直线方程是( ) A .2x +y -1=0 B .2x +y +1=0 C .x -2y -3=0 D .x -2y +3=0【解析】选C.设与直线2x +y =0垂直的直线方程是x -2y +c =0,把圆()x -1 2+()y +1 2=2的圆心C(1,-1)代入可得1+2+c =0,所以c =-3, 故所求的直线方程为x -2y -3=0.2.(2021·某某高二检测)设S n 为等比数列{}a n 的前n 项和,已知3S 3=a 4-3,3S 2=a 3-3,则公比q =( )A .3B .4C .5D .6 【解析】3=a 4-3,3S 2=a 3-3, 两式作差得3S 3-3S 2=a 4-a 3=3a 3, 所以a 4=4a 3,即q =a 4a 3=4.3.从动点P ()a ,2 向圆C :()x +1 2+()y +1 2=1作切线,则切线长的最小值为( ) A .2 B .2 2 C .3 D .10【解析】选B.依题意,圆C :()x +1 2+()y +1 2=1,圆心是C ()-1,-1 ,半径是1. 从动点P ()a ,2 向圆C :()x +1 2+()y +1 2=1作的切线,PC ,圆心到切线的垂线组成一个直角三角形,当切线长最小时,PC 为最小, PC =()a +12+()2+12=()a +12+9 ,当a =-1时,PC 取得最小值3,此时切线长为PC 2-r 2 =9-1 =2 2 .4.已知数列{}a n 是以1为首项,2为公差的等差数列,{}b n 是以1为首项,2为公比的等比数列,设=ab n ,T n =c 1+c 2+…+()n ∈N * ,则当T n <2 020时,n 的最大值是( ) A .8 B .9 C .10 D .11【解析】{}a n 是以1为首项,2为公差的等差数列,所以a n =2n -1. 因为{}b n 是以1为首项,2为公比的等比数列,所以b n =2n -1. 所以T n =c 1+c 2+…+=ab 1+ab 2+…+ab n =a 1+a 2+a 4+…+a 2n -1=(2×1-1)+(2×2-1)+(2×4-1)+…+()2×2n -1-1 =2()1+2+4+…+2n -1 -n =2×1-2n1-2-n =2n +1-n -2.因为T n <2 020,所以2n +1-n -2<2 020,解得n≤9. 则当T n <2 020时,n 的最大值是9.5.(2021·某某高二检测)若实轴长为2的双曲线C :y 2a 2 -x 2b 2 =1(a>0,b>0)上恰有4个不同的点P i (i =1,2,3,4)满足P i B =2P i A ,其中A(-1,0),B(1,0),则双曲线C 的虚轴长的取值X 围为( ) A .⎝⎛⎭⎫677,+∞ B .⎝⎛⎭⎫0,677C .⎝⎛⎭⎫6147,+∞ D .⎝⎛⎭⎫0,6147【解析】选C.依题意可得a =1,设P ()x ,y , 则由PB =2PA , 得()x -12+y 2=2()x +12+y 2,整理得⎝⎛⎭⎫x +53 2+y 2=169.由⎩⎨⎧y 2-x 2b2=1,⎝⎛⎭⎫x +532+y 2=169,得⎝⎛⎭⎫1+1b 2 x 2+103x +2=0, 依题意可知Δ=1009 -8⎝⎛⎭⎫1+1b 2 >0,解得b 2>187 , 则双曲线C 的虚轴长2b>2187 =6147. 6.(2021·某某高二检测)一艘船的燃料费y(单位:元/时)与船速x(单位:km/h)的关系是y =1100x 3+x.若该船航行时其他费用为540元/时,则在100 km 的航程中,要使得航行的总费用最少,航速应为( )A .30 km/hB .3032 km/h C .3034 km/h D .60 km/h【解析】选A.由题意得,100 km 的航程需要100x 小时,故总的费用f(x)=⎝⎛⎭⎫1100x 3+x +540 ×100x . 即f(x)=x 2+100+54 000x.故f′(x)=2x -54 000x 2 =2(x 3-27 000)x 2.令f′(x)=0有x =30.故当0<x<30时f′(x)<0,f(x)单调递减,当x>30时f′(x)>0,f(x)单调递增.使得航行的总费用最少,航速应为30 km/h.7.(2021·某某高二检测)已知椭圆C 1:x 2m 2 +y 2=1()m>1 与双曲线C 2:x 2n 2 -y 2=1()n>0 的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( ) A .m>n 且e 1e 2>1 B .m>n 且e 1e 1<1 C .m<n 且e 1e 2>1 D .m<n 且e 1e 2<1【解析】选A.由于椭圆C 1和双曲线C 2的焦点重合,则m 2-1=n 2+1,则m 2-n 2=2>0,因为m>1,n>0,所以m>n.因为e 1=m 2-1m=1-1m2 ,e 2=n 2+1n=1+1n2 , 所以e 1e 2=⎝⎛⎭⎫1-1m 2⎝⎛⎭⎫1+1n 2 = 1+1n 2-1m 2-1m 2n 2 =1+m 2-n 2-1m 2n 2=1+1m 2n2 >1. 8.(2021·某某高二检测)已知f(x)=e x x -2t(l n x +x +2x )恰有一个极值点为1,则t 的取值X 围是( )A .⎝⎛⎦⎤-∞,14 ∪⎩⎨⎧⎭⎬⎫e 6 B .⎝⎛⎦⎤-∞,16 C .⎣⎡⎦⎤0,14 ∪⎩⎨⎧⎭⎬⎫e 6 D .⎝⎛⎦⎤-∞,14 【解析】选D.由题意,函数f(x)的定义域为()0,+∞ , 对函数f(x)求导得f′(x)=e x ()x -1x 2 -2t ⎝⎛⎭⎫1x +1-2x 2 =()x -1[]e x-2t ()x +2x 2,因为f(x)=e xx -2t ⎝⎛⎭⎫ln x +x +2x 恰有一个极值点为1, 所以e x -2t ()x +2 =0在()0,+∞ 上无解, 即t =e x2()x +2在()0,+∞ 上无解,令g ()x =e x2()x +2()x≥0 ,则g′()x =2e x ()x +2-2e x4()x +22=2e x ()x +14()x +22>0, 所以函数g ()x 在[)0,+∞ 上单调递增,当x ∈()0,+∞ 时, g ()x >g ()0 =14 ,所以t≤14.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分) 9.(2021·某某高二检测)下列结论正确的是( )A .已知点P ()x ,y 在圆C :()x -1 2+()y -1 2=2上,则y +2x 的最小值是43B .已知直线kx -y -k -1=0和以M ()-3,1 ,N ()3,2 为端点的线段相交,则实数k 的取值X 围为-12 ≤k≤32C .已知点P ()a ,b 是圆x 2+y 2=r 2外一点,直线l 的方程是ax +by =r 2,则l 与圆相交 D .若圆M :()x -4 2+()y -4 2=r 2()r>0 上恰有两点到点N ()1,0 的距离为1,则r 的取值X 围是()4,6【解析】选CD.A 选项,设k =y +2x,则y =kx -2,因为点P ()x ,y 在圆C :()x -1 2+()y -12=2上,所以直线y =kx -2与圆C :()x -1 2+()y -1 2=2有交点, 因此圆心到直线的距离d =||k -31+k 2≤2 ,解得k≤-7或k≥1,故A 错;B 选项,由kx -y -k -1=0得k ()x -1 -()y +1 =0,所以⎩⎪⎨⎪⎧x =1y =-1 ,即直线kx -y -k -1=0过点P ()1,-1 ,因为直线kx -y -k -1=0和以M ()-3,1 ,N ()3,2 为端点的线段相交,所以只需k≥k PN =2-()-13-1=32或k≤kPM =1-()-1-3-1=-12,故B 错;C 选项,圆x 2+y 2=r 2的圆心()0,0 到直线ax +by =r 2的距离d =r 2a 2+b 2,而点P ()a ,b是圆x 2+y 2=r 2外一点,所以a 2+b 2>r 2,所以d =r 2a 2+b2<r 2r =r ,所以直线与圆相交,故C 正确.D 选项,与点N ()1,0 的距离为1的点在圆(x -1)2+y 2=1上,由题意知圆M :()x -4 2+()y -4 2=r 2()r>0 与圆(x -1)2+y 2=1相交,所以圆心距d =MN =5满足r -1<d =5<r +1,解得4<r<6,故D 正确.10.(2021·某某高二检测)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的一个焦点坐标为(2,0),且两条渐近线的夹角为π3 ,则双曲线C 的标准方程为( )A .x 22 -y 22 =1B .x 23 -y 2=1C .x 2-y 23=1 D .x 2-y 2=1 【解析】选BC.因为焦点坐标为(2,0),所以c =2,设渐近线y =ba x 的倾斜角为θ,由两条渐近线的夹角为π3 ,可得2θ=π3 或π-2θ=π3 ,解得θ=π6 或θ=π3 ,所以b a =tan θ=33 或 3 ,又a 2+b 2=c 2=4,解得a = 3 ,b =1或a =1,b = 3 , 所以双曲线C 的方程为x 23 -y 2=1或x 2-y 23=1.11.(2021·揭阳高二检测)已知数列{}a n 的前n 项和为S n =33n -n 2,则下列说法正确的是( ) A .a n =34-2n B .S 16为S n 的最小值C .||a 1 +||a 2 +…+||a 16 =272D .||a 1 +||a 2 +…+||a 30 =450【解析】1=S 1=33-1=32,a n =S n -S n -1=33n -n 2-33()n -1 +()n -1 2=34-2n ()n≥2 , 对于n =1也成立,所以a n =34-2n ,故A 正确; 当n<17时,a n >0,当n =17时a n =0,当n>17时, a n <0,所以S n 只有最大值,没有最小值,故B 错误; 因为当n<17时,a n >0,所以||a 1 +||a 2 +…+||a 16 =S 16=33×16-162=17×16=272,故C 正确;||a 1 +||a 2 +…+||a 30 =S 16+(-a 17-a 18-a 19-…-a 30)=2S 16-S 30=2×272-(33×30-302) =544-90=454,故D 错误.12.(2021·某某高二检测)已知函数y =f ()x 在R 上可导且f ()0 =2,其导函数f′()x 满足f ′()x -f ()x x -2 >0,若函数g ()x 满足e x g ()x =f ()x ,下列结论正确的是( )A .函数g ()x 在()2,+∞ 上递增 B .x =2是函数g ()x 的极小值点 C .x≤0时,不等式f ()x ≤2e x 恒成立 D .函数g ()x 至多有两个零点 【解析】x g(x)=f(x), 所以g(x)=f (x )e x ,则g′(x)=f′(x )-f (x )e x,当x>2时,f′(x)-f(x)>0,故y =g(x)在(2,+∞)上递增,选项A 正确;x<2时,f′(x)-f(x)<0,故y =g(x)在()-∞,2 上递减, 故x =2是函数y =g(x)的极小值点,故选项B 正确; 由y =g(x)在(-∞,2)上递减,则y =g(x)在(-∞,0)上递减, 由g(0)=f (0)e 0 =2,得x≤0时,g(x)≥g(0),故f (x )e x ≥2,故f(x)≥2e x ,故选项C 错误;若g(2)<0,则y =g(x)有2个零点, 若g(2)=0,则函数y =g(x)有1个零点,若g(2)>0,则函数y =g(x)没有零点,故选项D 正确. 三、填空题(本题共4小题,每小题5分,共20分)13.《周髀算经》中有这样一个问题,从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则冬至的日影子长为______. 【解析】因为从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列{}a n ,冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,所以⎩⎪⎨⎪⎧a 1+a 4+a 7=3a 1+9d =37.5a 12=a 1+11d =4.5 ,解得⎩⎪⎨⎪⎧d =-1,a 1=15.5.所以冬至的日影子长为15.5尺. 答案:14.设定义域为R 的函数f ()x 满足f′()x >f ()x ,则不等式e x -1f ()x <f ()2x -1 的解集为________. 【解析】设F(x)=f ()x e x,则F′(x)=f ′()x -f ()x e x ,因为f′()x >f ()x , 所以F′(x)>0,即函数F(x)在定义域上单调递增. 因为e x -1f ()x <f ()2x -1 , 所以f ()x e x <f ()2x -1e 2x -1 ,即F(x)<F(2x -1), 所以x <2x -1,即x >1,所以不等式e x -1f ()x <f ()2x -1 的解集为()1,+∞ . 答案:()1,+∞15.(2021·某某高二检测)设f(x)与g(x)是定义在同一区间[a ,b]上的两个函数,若函数F(x)=f(x)-g(x)在[a ,b]上有两个不同的零点,则称f(x)与g(x)在[a ,b]上是“关联函数”.若f(x)=13x 3+m 与g(x)=12 x 2+2x 在[0,3]上是“关联函数”,则实数m 的取值X 围是________.【解析】令f(x)=g(x)得m =-13 x 3+12 x 2+2x ,设函数h(x)=-13 x 3+12x 2+2x ,则直线y =m 与函数y =h(x)在区间[0,3]上的图象有两个交点,h′(x)=-x 2+x +2=-(x -2)(x +1),令h′(x)=0,可得x =2∈[0,3],列表如下:h(0)=0,h(3)=32,如图所示:由图可知,当32 ≤m<103 时,直线y =m 与函数y =h(x)在区间[0,3]上的图象有两个交点,因此,实数m 的取值X 围是⎣⎡⎭⎫32,103 . 答案:⎣⎡⎭⎫32,10316.(2021·某某高二检测)设F 1,F 2分别为椭圆C :x 2a 2 +y 2a 2-1=1(a>1)的左、右焦点,P ()1,1为C 内一点,Q 为C 上任意一点.现有四个结论: ①C 的焦距为2;②C 的长轴长可能为10 ; ③QF 2的最大值为a +1;④若PQ +QF 1的最小值为3,则a =2. 其中所有正确结论的编号是________.【解析】对于选项①:因为c 2=a 2-()a 2-1 =1,所以椭圆C 的焦距为2c =2,故选项①正确;对于选项②:若椭圆C 的长轴长为10 ,则a 2=52 ,所以椭圆C 的方程为x 252 +y 232=1,因为152 +132>1,所以点P 在C 的外部,这与P 在C 内矛盾,所以选项②不正确.对于选项③:因为c =1,Q 为C 上任意一点,由椭圆的几何性质可知,QF 2的最大值为a +c =a +1,故选项③正确;对于选项④:由椭圆定义可知,PQ +QF 1=PQ -QF 2+2a ,因为||PQ -QF 2 ≤PF 2=1,所以PQ -QF 2≥-1,所以PQ -QF 2+2a≥2a -1=3,此时a =2,故选项④正确.答案:①③④四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在①a 1=1,a 1a 5=a 22 ;②S 3=9,S 5=25;③S n =n 2.这三个条件中任选一个补充在下面的问题中.已知等差数列{a n }的前n 项和为S n ,且公差d≠0,若______.(1)求数列{a n }的通项公式;(2)记b n =1a n a n +1,求数列{b n }的前n 项和T n . 注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)若选①:由a 1=1,a 1a 5=a 22 ,得a 1(a 1+4d)=(a 1+d)2,即1+4d =(1+d)2,所以d 2=2d ,因为d≠0,所以d =2,所以a n =1+2(n -1)=2n -1.若选②:设等差数列{a n }的首项为a 1,由S 3=9,S 5=25,得:⎩⎪⎨⎪⎧3a 1+3d =9,5a 1+5×42·d =25, 解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+2(n -1)=2n -1.若选③:当n =1时,a 1=S 1=1;当n≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,显然n =1时也满足a n =2n -1,所以a n =2n -1;(2)由(1)知a n =2n -1所以b n =1a n a n +1 =1(2n -1)(2n +1)=12 ⎝ ⎛⎭⎪⎫12n -1-12n +1 , 则T n =12 (1-13 +13 -15 +…+12n -1 -12n +1 )=12 (1-12n +1) =n 2n +1. 18.(12分)已知函数f ()x =x 2+a l n x.(1)当a =-2时,求函数f ()x 在点(e ,f(e))处的切线方程;(2)若g ()x =f ()x +2x在[1,+∞)上是单调递增的,某某数a 的取值X 围. 【解析】(1)当a =-2时,f ()x =x 2-2l n x ,定义域为(0,+∞),f′(x)=2x -2x =2x 2-2x ,所以函数f ()x 在点(e ,f(e))处的切线的斜率为f′(e)=2e 2-2e, 又f(e)=e 2-2,所以函数f ()x 在点(e ,f(e))处的切线方程为y -(e 2-2)=2e 2-2e (x -e),即y =2e 2-2ex -e 2. (2)因为g ()x =f ()x +2x =x 2+2x+a l n x 在[1,+∞)上是单调递增的, 所以g′(x)=2x -2x 2 +a x =2x 3+ax -2x 2≥0 在[1,+∞)上恒成立,即a≥2x-2x 2在[1,+∞)上恒成立, 因为y =2x -2x 2在[1,+∞)上是单调递减的,所以当x =1时,y =2x-2x 2取得最大值0, 所以a≥0.19.(12分)已知数列{a n }前n 项和为S n ,a 1=2,S n +1=S n +(n +1)⎝⎛⎭⎫3n a n +2 .(1)求数列{a n }的通项公式;(2)若b n =a n +n ,求数列{b n }的前n 项和T n .【解析】(1)由题意知a n +1=S n +1-S n =(n +1)⎝⎛⎭⎫3a n n +2 ,即a n +1n +1=3×a n n +2, 即a n +1n +1 +1=3⎝⎛⎭⎫a n n +1 , 因为a 1=2,所以a 1+1=3≠0,所以a n n+1≠0, 所以数列⎩⎨⎧⎭⎬⎫a n n +1 是首项为3,公比为3的等比数列, 所以a n n+1=3n ,所以a n =n×3n -n ; (2)由(1)知,b n =n×3n ,所以T n =1×3+2×32+3×32+…+n×3n ,①所以3T n =1×32+2×33+…+(n -1)×3n +n×3n +1,②①-②得,-2T n =3+32+33+…+3n -n×3n +1=3(1-3n )1-3-n×3n +1 =(1-2n )3n +12 -32, 所以T n =(2n -1)3n +14 +34. 20.(12分)(2021·某某高二检测)已知抛物线C :y 2=2px(p>0)的焦点为F ,O 为坐标原点,点P ,Q 是抛物线C 上异于点O 的两个不同的动点,当直线PQ 过点F 时,PQ 的最小值为8.(1)求抛物线C 的方程;(2)若OP ⊥OQ ,证明:直线PQ 恒过定点.【解析】(1)抛物线C 的焦点坐标为F ⎝⎛⎭⎫p 2,0 ,若直线PQ 过点F ,则直线PQ 的斜率一定不为0,不妨设直线PQ 的方程为x =my +p 2, 代入y 2=2px 得,y 2-2pmy -p 2=0,设P(x 1,y 1),Q(x 2,y 2),则y 1+y 2=2pm ,x 1+x 2=m(y 1+y 2)+p =2pm 2+p.所以PQ =PF +QF =x 1+p 2 +x 2+p 2=2p(m 2+1). 所以,当m =0时,PQ min =2p =8,所以p =4.所以抛物线C 的方程为y 2=8x.(2)由题意设直线PQ 的方程为x =ky +t(t≠0),P(x 1,y 1),Q(x 2,y 2),联立⎩⎪⎨⎪⎧y 2=8x x =ky +t ,得y 2-8ky -8t =0. 由题意得Δ=64k 2+32t>0.所以y 1+y 2=8k ,y 1y 2⊥OQ ,所以OP OQ =x 1x 2+y 1y 2=(ky 1+t)(ky 2+t)+y 1y 2=(k 2+1)y 1y 2+kt(y 1+y 2)+t 2=-8t(k 2+1)+8k 2t +t 2=t 2-8t =0,所以t =8,(t =0不符合题意,故舍去)所以直线PQ 的方程为x =ky +8,所以直线PQ 恒过定点(8,0).21.(12分)(2021·某某高二检测)已知椭圆C :x 2a 2 +y 2b 2 =1(a>b>0)的离心率为33,且椭圆C 过点⎝⎛⎭⎫32,22 . (1)求椭圆C 的标准方程;(2)过椭圆C 右焦点的直线l 与椭圆C 交于A ,B 两点,且与圆O :x 2+y 2=2交于E ,F 两点,求AB·EF 2的取值X 围.【解析】(1)由已知可得c a =33 ,所以c 2=13a 2, 故b 2=a 2-c 2=23 a 2,即a 2=32b 2, 所以椭圆的方程为x 232b 2 +y 2b 2 =1,将点⎝⎛⎭⎫32,22 代入方程得b 2=2,即a 2=3, 所以椭圆C 的标准方程为x 23 +y 22=1; (2)由(1)知,c 2=1,故椭圆的右焦点为(1,0),①若直线l 的斜率不存在,直线的方程为x =1,则A ⎝⎛⎭⎫1,233 ,B ⎝⎛⎭⎫1,-233 ,E(1,1),F(1,-1), 所以AB =433 ,EF 2=4,AB·EF 2=1633; ②若直线l 的斜率存在,设直线l 方程为y =k(x -1),设A(x 1,y 1),B(x 2,y 2),联立直线l 与椭圆方程⎩⎪⎨⎪⎧x 23+y 22=1y =k (x -1),可得(2+3k 2)x 2-6k 2x +3k 2-6=0, 则x 1+x 2=6k 22+3k 2 ,x 1x 2=3k 2-62+3k 2, 所以AB =(1+k 2)(x 1-x 2)2 = (1+k 2)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6k 22+3k 22-4×3k 2-62+3k 2 =43(k 2+1)2+3k 2 ,因为圆心(0,0)到直线l 的距离d =|k|k 2+1 , 所以在圆O :x 2+y 2=2中由⎝⎛⎭⎫12EF 2 =r 2-d 2知,EF 2=4(r 2-d 2) =4⎝ ⎛⎭⎪⎫2-k 2k 2+1 =4(k 2+2)k 2+1 , 所以AB·EF 2=43(k 2+1)2+3k 2 ·4(k 2+2)k 2+1=163(k 2+2)2+3k 2 =1633 ·k 2+2k 2+23=1633 (1+43k 2+23 ), 因为k 2∈[0,+∞), 则k 2+23 ∈⎣⎡⎭⎫23,+∞ , 1k 2+23 ∈⎝⎛⎦⎤0,32 , 故43k 2+23 ∈(0,2],1+43k 2+23∈(1,3], 故1633 (1+43k 2+23)∈(1633 ,16 3 ], 即AB·EF 2∈⎝⎛⎦⎤1633,163 , 综上,AB·EF 2∈⎣⎡⎦⎤1633,163 . 22.(12分)设函数f(x)=x 2+(a -2)x -a l n x(a ∈R ).(1)若a =1,求f(x)的极值;(2)讨论函数f(x)的单调性;(3)若n ∈N *,证明:122 +232 +342 +…+n (n +1)2<l n (n +1). 【解析】(1)f(x)的定义域为(0,+∞),当a =1时,f′(x)=2x -1-1x =(2x +1)(x -1)x, 若f′(x)>0,则x>1,若f′(x)<0,则0<x<1,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增. 所以f(x)极小值=f(1)=0,没有极大值.(2)f′(x)=2x -a x+(a -2) =(2x +a )(x -1)x(x>0), ①当a≥0时,若f′(x)>0,则x>1,若f′(x)<0,则0<x<1,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;②当0<-a 2<1,即-2<a<0时, 若f′(x)>0,则0<x<-a 2或x>1, 若f′(x)<0,则-a 2<x<1,所以f(x)在⎝⎛⎭⎫-a 2,1 上单调递减,在⎝⎛⎭⎫0,-a 2 ,(1,+∞)上单调递增;③当-a 2=1,即a =-2时,f′(x)≥0恒成立, 所以f(x)在(0,+∞)上单调递增;④当-a 2>1,即a<-2时, 若f′(x)>0,则0<x<1或x>-a 2; 若f′(x)<0,则1<x<-a 2, 所以f(x)在⎝⎛⎭⎫1,-a 2 上单调递减,在(0,1),⎝⎛⎭⎫-a 2,+∞ 上单调递增.综上所述:当a<-2时,f(x)在(1,-a 2 )上单调递减,在(0,1),(-a 2,+∞)上单调递增; 当a =-2时,f(x)在(0,+∞)上单调递增;当-2<a<0时,f(x)在⎝⎛⎭⎫-a 2,1 上单调递减, 在⎝⎛⎭⎫0,-a 2 ,(1,+∞)上单调递增; 当a≥0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;(3)由(1)知f(x)=x 2-x -l n x 在(0,1)上单调递减, 所以x ∈(0,1)时,x 2-x -l n x>f(1)=0,所以x 2-x>l n x ,令x =n n +1 ,得x 2-x =-n (n +1)2 , 所以-n (n +1)2 >l n n n +1=-l n n +1n , 即l n n +1n >n (n +1)2, 所以l n 2>122 ,l n 32 >232 , l n 43 >342 ,…,l n n +1n >n (n +1)2, 将以上各式左右两边相加得:l n 2+l n 32 +l n 43 +…+l n n +1n >122 +232 +342 +…+n (n +1)2, 所以l n (n +1)>122 +232 +342 +…+n (n +1)2.。

苏教版数学高一苏教版必修1教案1.3交集、并集

苏教版数学高一苏教版必修1教案1.3交集、并集

1.3 交集、并集整体设计教材分析本节是集合的运算,引导学生从日常生活中的现象中抽象出用数学符号来表示实际问题,再拓宽到数学化的问题.从学生的认知背景出发,培养学生会从感性到理性来研究问题、认知世界.学习中要注意概念的建立,让学生初步认识交集、并集的概念和表示方法,并逐步读懂数学语言,会对语言之间进行转化.三维目标1.理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2.能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.3.学生通过观察和类比,借助Venn图理解集合的基本运算.4.感受集合作为一种语言,在表示数学内容时的简洁性和准确性.重点难点教学重点:交集与并集的概念.教学难点:理解交集与并集的概念,符号之间的区别与联系.课时安排1课时教学过程导入新课设计思路一(复习导入)问题1:我们知道,实数有加法运算.类比实数的加法运算,集合是否也可以“相加”呢?问题2:请同学们考察下列各个集合,你能说出集合C与集合A、B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={有理数},B={无理数},C={实数}.引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.设计思路二(情境导入)我们看下面图(用投影仪打出,软片做成左右两向遮启式,便于同学在“动态”中进行观察).【设问】1.第一次看到了什么?2.第二次看到了什么?3.第三次又看到了什么?4.阴影部分的界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集合A、集合B元素有何关系?推进新课新知探究1.并集:—般地,由所有属于集合A或者属于集合B的元素构成的集合,称为A与B的并集(union set),记作:A∪B,读作:A并B.其含义用符号表示为:A∪B={x|x∈A,或x∈B}.用Venn图表示如下:请同学们用并集运算符号表示问题2中A、B、C三者之间的关系.2.交集思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A∩B与集合C之间有什么关系?(1)A={2,4,6,8,10},B={3,5,8,12},C={8};(2)A={x|x是国兴中学2004年9月入学的高一年级女同学};(3)B={x|x是国兴中学2004年9月入学的高一年级同学};(4)C={x|x是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考、讨论和交流,得出结论,从而得出交集的定义:一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集(intersection set),记作:A∩B,读作:A交B.其含义用符号表示为:A∩B={x|x∈A,且x∈B}.接着教师要求学生用Venn图表示交集运算.记忆技巧符号“A∩B”形如帽子戴在头上,产生“交”的感觉,所以开口向下,切记该符号不要与表示子集的符号“⊂”、“⊃”混淆.符号“∪”形如“碰杯”时的杯子,产生并的感觉,所以开口向上.切记,不要与“∩”混淆,更不能与“⊆,⊇”等符号混淆.性质:(1)A∩B=B∩A,A∩B⊆A,A∩B⊆B;(2)若A⊆B,则A∩B=A;(3)A∪B=B∪A,A⊆A∪B,B⊆A∪B;(4)若B⊆A,则A∪B=A;(5)A∪A=U.归纳:(1)交集:两集合的公共元素构成集合.(2)并集:把两个集合合在一起,但要注意元素的互异性.(3)基本方法:抽象的集合关系可用韦恩图表示,实数集中的运算可在数轴上表示.注意点:空集是任何集合的子集;空集与任何集合的交集仍为空集.3.区间为了叙述的方便,在以后的学习中,我们常常会用到区间的概念.设a,b∈R,且a<b,规定:[a,b]={x|a≤x≤b};(a,b)={x︱a<x<b};[a,b)={x︱a≤x<b};(a,b]={x︱a<x≤b};(a,+∞)={x︱x>a};(-∞,b)={x︱x<b};(-∞,+∞)=R.[a,b]叫闭区间,(a,b)叫开区间,[a,b),(a,b]叫半开半闭区间;a,b叫做相应区间的端点.应用示例思路1例1 (1)设A={4,5,6,8},B={3,5,7,8},求A ∪B.(2)设集合A={x|-1<x <2},集合B={x|1<x <3},求A ∪B. 分析:使用交集定义就可以,同时借助数轴.解:(1)A ∪B={3,4,5,6,7,8};(2)A ∪B={x|-1<x <3}.例2 (1)设平面内直线l 1上点的集合为L 1,直线l 2上点的集合为L 2,试用集合的运算表示l 1与l 2的位置关系;(2)学校里开运动会,设A={x|x 是参加一百米跑的同学},B={x|x 是参加二百米跑的同学},C={x|x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B 与A∩C 的含义. 分析:这是两个应用问题,要注意题意的领会和条件的转化.解:(1)L 1∩L 2=∅时,两条直线平行;L 2=L 1时;两条直线重合;L 1∩L 2≠∅时,两条直线相交.(2)学校的规定是A∩B ,A∩C ,C∩B ,A ,B ,C ;A∩B={既参加一百米跑的又参加二百米跑的同学},A∩C={既参加一百米跑的又参加四百米跑的同学}.例3 A={x|x 2-px+15=0},B={x|x 2-5x+p=0},A ∪B={2,3,5},求p ,q. 分析:先利用交集的性质寻找相关的根.解:利用根与系数的关系,由题意可知A={3,5},B={2,3},所以p=8,q=6. 点评:集合的涉及面比较广,要注意知识间的联系.例4 设全集U=R ,A=⎭⎬⎫⎩⎨⎧⎩⎨⎧<->+0302|x x x ,B={x|x-a >0};当a 为何实数时分别使(1)A是B 的真子集;(2)A∩B=∅;(3)A ∪B={x|x >-2}.分析:先化简集合A ,就可以解决问题了. 解:A={x|-2<x <3},B={x|x >a}, (1)由图得a≤-2;(2)由图得a≥3;(3)由图得-2≤a <3.点评:利用数轴,直观明了.例5 设集合A={x 2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A ∪B.解:因为A∩B={9},所以9∈A ,所以2x-1=9或x 2=9,解得x=5或x=3或x=-3. 当x=5时,x 2=25,2x-1=9,x-5=0,1-x=-4,得出A∩B={-4,9}不合题意,故舍去; 当x=3时,x 2=9,2x-1=5,x-5=-2,1-x=-2不满足集合元素互异性,故舍去; 当x=-3时,x 2=9,2x-1=-7,x-5=-8,1-x=4成立. 综上所述,x=-3.点评:注意前后知识点的联系和解题的格式.思路2例1设全集I=R,A={x|-1<x<2},B={x|-3≤x<21-或21≤x<3},则(1)A∩B=____________;(2)A∪B=____________;(3)A∪B=_____________;(4)A∪B=________;(5)A∩B=____________.分析:使用定义和数轴.解:(1)A∩B={x|-1<x<21-或21≤x<2};(2)A∪B={x|-3≤x<3};(3)A∪B={x|x<-3或-1<x<2或x≥3};(4)A∪B=(A∩B)={x|x≤-1或21-≤x<21或x≥2};(5)A∩B=(A∪B)={x|x<-3或x≥3}.点评:这是一组问题,解决时要注意它们之间的关系.例2A={x|x2-3x+2=0},B={x|x2-mx+2m=0},若A∩B=B,求实数m的取值范围.分析:一元二次方程是一个较为灵活的知识,要注意讨论.解:A={1,2},A∩B=B⇒B⊆A;(1)当B=∅时,Δ=m2-2m<0,0<m<2;(2)当B={1}时,m=2;(3)当B={2}时,m无解;(4)B={1,2}时,m无解.综上所述,0<m≤2.点评:本题是对集中情况的讨论问题,有利于培养严密的思维.变式训练1.A={m2,m+1,-3},B={m-3,2m-1,m2+1},若A∩B={-3},求m的值.解:(1)m-3=-3⇒m=0,A={0,1,-3},B={-3,-1,1}(舍);(2)2m-1=-3⇒m=-1,A={1,0,-3},B={-4,-3,2},所以m=-1.2.A={x|2x2-px+q=0},B={x|6x2+(p+2)x+(5+q)=0,若A∩B={21},求A∪B.解:⎩⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧=++•++•=+•-•,4,7,0521)2()21(6,021)21(222qpqpqp所以A={21,-4},B={21,31},所以A∪B={-4,21,31}.例3A={x|x2+(p+2)x+1=0},若A∩{x|x>0}=∅,求p的取值范围.分析:根据题意,方程无实数根或有两个负根.解:(1)当A=∅时,Δ=(p+2)2-4<0⇒-4<p<0;(2)当A≠∅时,方程的根均为负数,则⎪⎩⎪⎨⎧><+-≥∆,01,0)2(,0p 得p≥0.综上所述,p >-4.点评:无实数根是最容易遗忘的,初中对这类问题研究的较少.例4 五年级一班共45人,其中语文得优者20人,数学得优者15人,均不得优者20人,则两门功课均得优者多少人?分析:这是一个应用问题,是以前的难题,属于推理的一种问题,这里可用Venn 图处理.解:利用文氏图设双优者x 人,所以45=20-x+x+15-x+20,所以x=10. 点评:感觉还是比较容易理解,体现了图形的直观性. 知能训练课本第13页练习1、2、3、4、5任选2—3道题. 解答:1.A∩B={2,4},A ∪B={-2,0,2,4,6};2.A ,A ,∅,A ,∅,U ;3.A∩B={0},A ∪B=R ;4.{(1,2)};5.A(或B),∅,Z ,A(或B). 课堂小结本节课主要讲了两个概念:一是由所有属于集合A 且属于集合B 的元素构成的集合,称为A 与B 的交集,记作:A∩B ;二是由所有属于集合A 或属于集合B 的元素构成的集合,称为A 与B 的并集;记作:A ∪B. 作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集、交集和补集的现实含义.3.课本第13页习题1.3 2、4、5.设计感想本节课研究了两个集合之间的运算及一些符号,从一些实际的情境中产生一些数学概念,他们可以用三种语言:文字、符号、图象,这样能够用简洁的语言来描述世界.但在学习中要注意符号不要混乱,对每个符号的意义都要搞清楚,不然就会适得其反.教师的角色是学生建构知识的忠实支持者,教师的作用从传统的传递知识的权威转变为学生学习的辅导者,成为学生学习的高级伙伴或合作者.教师应该给学生提供复杂的真实问题,他们不仅必须开发或发现这些问题,而且必须认识到复杂问题有多种答案,激励学生对问题解决的多种观点,这显然是与创造性的教学活动宗旨紧密相吻合的.教师必须创设一种良好的学习环境,学生在这种环境中可以通过实验、独立探究、合作学习等方式来展开他们的学习.教师必须保证学习活动和学习内容保持平衡.教师应认识教学目标包括认知目标和情感目标,教学是逐步减少外部控制、增加学生自我控制学习的过程.习题详解课本第13页习题1.31.填表∩∅ A B ∪∅ A B ∅∅∅∅∅∅ A BA ∅ A A∩B A A A A∪BB ∅A∩B B B B A∪B B∩∅ A A ∪∅ A A ∅∅∅∅∅∅ A AA ∅ A ∅ A A A UA ∅∅ A A A U A2.A∩B={x|2≤x≤3}=[2,3];3.A∪B=[-1,1];4.(1)B⊆A成立,A⊆B不成立;(2)A∩B=B={2,4,6,8},A∪B=A={1,2,3,4,5,6,7,8};5.(1)线段AB的中垂线;(2)以O为圆心,1为半径的圆;6.第一次进货用A表示,A={圆珠笔,钢笔,铅笔,笔记本,方便面,火腿肠},第二次进货用B表示,B={铅笔,方便面,汽水,火腿肠},两次进货构成的集合为A∪B={圆珠笔,钢笔,铅笔,笔记本,方便面,火腿肠,汽水};7.(1)B∩A,(2)A∩B∩C;8.(1)因为A∪B={1,2,3,4,5},所以(A∪B)={6};因为A={1,4,6},B={2,3,5,6},所以(A)∩(B)={6},所以(A∪B)=(A)∩(B).(2)如图所示(A∪B) B(3)通过(1)、(2),我们知道(A∪B)=A∩B(德·摩根定律).9.(1)S-A={x|x为高一(1)班男同学},A={x|x为高一(1)班男同学};(2)如图:(3)A∩B= .。

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学课时跟踪检测(全一册)苏教版必修课时跟踪检测一棱柱棱锥和棱台课时跟踪检测二圆柱圆锥圆台和球课时跟踪检测三直观图画法课时跟踪检测四平面的基本性质课时跟踪检测五空间两条直线的位置关系课时跟踪检测六直线与平面平行课时跟踪检测七直线与平面垂直课时跟踪检测八两平面平行课时跟踪检测九两平面垂直课时跟踪检测十空间几何体的表面积课时跟踪检测十一空间几何体的体积课时跟踪检测十二直线的斜率课时跟踪检测十三直线的点斜式方程课时跟踪检测十四直线的两点式方程课时跟踪检测十五直线的一般式方程课时跟踪检测十六两条直线的平行课时跟踪检测十七两条直线的垂直课时跟踪检测十八两条直线的交点课时跟踪检测十九平面上两点之间的距离课时跟踪检测二十点到直线的距离课时跟踪检测二十一圆的标准方程课时跟踪检测二十二圆的一般方程课时跟踪检测二十三直线与圆的位置关系课时跟踪检测二十四圆与圆的位置关系课时跟踪检测二十五空间直角坐标系课时跟踪检测二十六空间两点间的距离课时跟踪检测(一)棱柱、棱锥和棱台层级一学业水平达标1.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.2.下面结论是棱台具备的性质的是( )①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.A.①③B.①②④C.②④D.②③④解析:选B 用棱台的定义可知选B.3.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:选 C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.4.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.5.一个棱锥的各条棱都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D 若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.6.一个棱柱至少有________个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.答案:5 4 37.两个完全相同的长方体,长、宽、高分别为5 cm,4 cm,3 cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,表面积最大的长方体的表面积为________ cm2.解析:将两个长方体侧面积最小的两个面重合在一起,得到的长方体的表面积最大,此时,所得的新长方体的长、宽、高分别为10 cm,4 cm,3 cm,表面积的最大值为2×(10×4+3×4+3×10)=164.答案:1648.如图,三棱台ABC­A′B′C′,沿A′BC截去三棱锥A′­ABC,则剩余部分是________.解析:在图中截去三棱锥A′­ABC后,剩余的是以BCC′B′为底面,A′为顶点的四棱锥.答案:四棱锥A′­BCC′B′9.如图,观察并分别判断①中的三棱镜,②中的螺杆头部模型有多少对互相平行的平面,其中能作为棱柱底面的分别有几对.解:图①中有1对互相平行的平面,只有这1对可以作为棱柱的底面.图②中有4对互相平行的平面,只有1对可以作为棱柱的底面.10.在一个长方体的容器中,里面装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解:(1)不对;水面的形状是矩形,不可能是其他非矩形的平行四边形.(2)不对;此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.层级二 应试能力达标1.下列命题正确的是( )A .有两个面互相平行,其余各面都是四边形的几何体叫做棱柱B .棱柱中互相平行的两个面叫做棱柱的底面C .棱柱的侧面是平行四边形,底面不是平行四边形D .棱柱的侧棱都相等,侧面都是平行四边形解析:选D 根据棱柱的定义可知D 正确.2.下列说法正确的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C .各侧面都是正方形的四棱柱一定是正方体D .九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A 错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B 错误;选项C 错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.3.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm,则棱台的高是( )A .12 cmB .9 cmC .6 cmD .3 cm解析:选D 设原棱锥的高为h cm,依题意可得⎝ ⎛⎭⎪⎫3h 2=14,解得h =6,所以棱台的高为6-3=3(cm).4.五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A .20条B .15条C .12条D .10条解析:选D 由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.在正方体上任意选择4个顶点,则可以组成的平面图形或几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,另一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:如图,在正方体ABCD­A1B1C1D1上,若取A,B,C,D四个顶点,可得矩形;若取D,A,C,D1四个顶点,可得③中所述几何体;若取A,C,D1,B1四个顶点,可得④中所述几何体;若取D,D1,A,B四个顶点,可得⑤中所述几何体.故填①③④⑤.答案:①③④⑤6.如图,M是棱长为2 cm的正方体ABCD­A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.根据下列关于空间几何体的描述,说出几何体的名称.(1)由6个平行四边形围成的几何体.(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2. 课时跟踪检测(二) 圆柱、圆锥、圆台和球层级一 学业水平达标1.有下列四个说法,其中正确的是( )A .圆柱的母线与轴垂直B .圆锥的母线长等于底面圆直径C .圆台的母线与轴平行D .球的直径必过球心解析:选D A :圆柱的母线与轴平行;B :圆锥的母线长与底面圆的直径不具有任何关系;C :圆台的母线延长线与轴相交.故D 正确.2.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A .0B .1C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的( )解析:选A 由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析:∵截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶3,故小圆锥与大圆锥的母线长之比为1∶3,故小圆锥与所得圆台的母线长比为1∶(3-1).答案:1∶(3-1)8.将边长为4 cm和8 cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4 cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=8π.∴S轴截面=4×8π=32π(cm)2.当以8 cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=4π.∴S轴截面=8×4π=32π(cm)2.综上,圆锥的轴截面面积为32πcm 2. 答案:32π9.将长为4宽为3的矩形ABCD 沿对角线AC 折起,折起后A ,B ,C ,D 在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC 是直角三角形ABC 和直角三角形ADC 的公共斜边,所以AC 的中点O 到四个点的距离相等,即O 为该球的球心.所以AC 为球的一条直径,由勾股定理得AC =42+32=5.10.如图所示,直角梯形ABCD 中,AB ⊥BC ,绕着CD 所在直线l 旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A ,B 分别作AO 1⊥CD ,BO 2⊥CD ,垂足分别为O 1,O 2,则Rt △CBO 2绕l 旋转一周所形成的曲面围成几何体是圆锥,直角梯形O 1ABO 2绕l 旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO 1绕l 旋转一周所形成的曲面围成的几何体是圆锥.① ② 综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是( )A.①②B.②④C.①②③D.②③④解析:选C 当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为( )A.1 B.2C.1或7 D.2或6解析:选C 由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3,故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.5.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r,母线为l,则2πr=πl,∴l=2r.故两条母线的夹角为60°.答案:60°6.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则这个内接正方体的棱长为________ cm.解析:圆锥的轴截面SEF、正方体对角面ACC 1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm,OE =1 cm.∵△EAA 1∽△ESO ,∴AA 1SO =EA 1EO ,即x 2=1-22x1.∴x =22,即该内接正方体的棱长为22 cm. 答案:227.一个圆锥的底面半径为2,高为6,在其中有一个高为x 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?解:(1)如图,设内接圆柱的底面圆半径为r , 由已知得6-x 6=r2,∴r =6-x3,∴S =2×6-x3×x =-23x 2+4x (0<x <6).(2)当x =-42×⎝ ⎛⎭⎪⎫-23=3时,S 最大.8.如图所示,已知圆柱的高为80 cm,底面半径为10 cm,轴截面上有P ,Q 两点,且PA =40 cm,B 1Q =30 cm,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解:将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A1B 1=10π(cm).∴PQ=PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.课时跟踪检测(三)直观图画法层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( ) A.90°,90°B.45°,90°C.135°,90° D.45°或135°,90°解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500 的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( ) A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形. 6.利用斜二测画法得到 ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④矩形的直观图是矩形.以上结论,正确的是________(填序号).解析:斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.答案:①②7.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2.答案:36 28.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:由题意知平面图形为直角梯形ABCD ,其中,AD =AD ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =(1+1+2)2×2=2+ 2.答案:2+ 29.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm,CD =2 cm,∠DAB =30°,AD =3 cm,试画出它的直观图.解:(1)如图(a)所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图(b)所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图(a)中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm,A ′E ′=AE =3×32≈2.598 (cm);过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连结A ′D ′,B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(c)所示,则四边形A ′B ′C ′D ′就是所求作的直观图.10.已知底面是正六边形,侧面都是全等的等腰三角形的六棱锥.请画出它的直观图. 解:作法:(1)画六棱锥P ­ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴交于点O .画相应的x ′轴和y ′轴、z ′轴,三轴交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.②以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以N ′为中点画B ′C ′,使B ′C ′∥O ′x ′,B ′C ′=BC ;再以M ′为中点画E ′F ′,使E ′F ′∥O ′x ′,E ′F ′=EF .③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥的顶点.在O ′z ′上截取点P ,使PO ′=PO .(3)成图,连结PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,并擦去辅助线,改被遮挡部分为虚线,即得六棱锥P ­ABCDEF 的直观图六棱锥P ­A ′B ′C ′D ′E ′F ′.层级二 应试能力达标1.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形解析:选A 根据斜二测画法的原则,得BC =B ′C ′=2,OA =2A ′O ′=2×32=3,AO ⊥BC ,∴AB =AC =BC =2,∴△ABC 是等边三角形. 2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.57.在水平位置的平面M内有一边长为1的正方形A′B′C′D′.如图,其中对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示.∵A′C′为水平位置,∴四边形ABCD中,DA⊥AC.∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.8.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连结O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.课时跟踪检测(四)平面的基本性质层级一学业水平达标1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.2.下列命题中正确命题的个数是( )①三角形是平面图形;②梯形是平面图形;③四边相等的四边形是平面图形;④圆是平面图形.A.1个B.2个C.3个D.4个解析:选C 根据公理1可知①②④正确,③错误.故选C.3.已知直线m⊂平面α,P∉m,Q∈m,则( )A.P∉α,Q∈αB.P∈α,Q∉αC.P∉α,Q∉αD.Q∈α解析:选D 因为Q∈m,m⊂α,所以Q∈α.因为P∉m,所以有可能P∈α,也可能有P∉α.4.如果两个平面有一个公共点,那么这两个平面( )A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D 根据公理2可知,两个平面若有一个公共点,则这两个平面有且只有一个经过该点的公共直线.故选D.5.若直线l上有两个点在平面α外,则( )A.直线l上至少有一个点在平面α内B.直线l上有无穷多个点在平面α内C.直线l上所有点都在平面α外D.直线l上至多有一个点在平面α内解析:选D 由已知得直线l⊄α,故直线l上至多有一个点在平面α内.6.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定平面的个数是________.解析:设四条直线为a,b,c,d,则这四条直线中每两条都确定一个平面,因此,a与b,a 与c,a与d,b与c,b与d,c与d都分别确定一个平面,共6个平面.答案:67.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.解析:用平面四边形和三棱锥的四个顶点判断,经过其中三个点的平面有1或4个.答案:1或49.如图,在正方体ABCD­A1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).证明:∵在梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.层级二应试能力达标1.能确定一个平面的条件是( )A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D 不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:选C 当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.3.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )A.直线MP B.直线NPC.直线PR D.直线MR解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P ∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理2可知点P一定在直线AC上.5.三条直线两两相交,它们可以确定________个平面.解析:若三条直线两两相交,且不共点,则只能确定一个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.答案:1或36.三个平面两两相交,则将空间分成________个部分.解析:三个平面两两相交(1)若交于同一条直线,则将空间分成6个部分;(2)若交于三条交线①三条交线交于一点,则将空间分成8个部分;②若三条交线互相平行,则将空间分成7个部分;所以,三个这样的平面将空间分成6或7或8个部分.答案:6或7或87. 如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解:延长AC,BD交于T, 连结ST,∵T∈AC,AC⊂平面SAC,。

2019-2020学年高中数学(苏教版必修一)教师用书:第1章 1.1 第2课时 集合的表示 Word版含解析

2019-2020学年高中数学(苏教版必修一)教师用书:第1章 1.1 第2课时 集合的表示 Word版含解析

第2课时集合的表示1.掌握集合的两种常用表示方法(列举法和描述法).(重点、难点)2.通过实例选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.了解集合相等的概念,并能用于解决问题.(重点)4.了解集合的不同的分类方法.[基础·初探]教材整理1列举法阅读教材P6第1~2自然段,完成下列问题.将集合的元素一一列举出来,并置于花括号“{ }”内.用这种方法表示集合,元素之间要用逗号分隔,但列举时与元素的次序无关.用列举法表示由1,2,3,4组成的集合为________.【解析】易知集合中含有的元素为1,2,3,4,故用列举法可以表示为{1,2,3,4}.【答案】{1,2,3,4}教材整理2集合相等阅读教材P6第3自然段,完成下列问题.如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.(1)集合{1,2,3}与{3,2,1}________相等集合.(填“是”或“不是”)(2)若集合{1,a}与集合{2,b}相等,则a+b=________.【解析】(1)集合{1,2,3}与{3,2,1}元素完全相同,故两集合是相等集合.(2)由于{1,a}={2,b},故a=2,b=1,∴a+b=3.【答案】(1)是(2)3教材整理3描述法阅读教材P6第4自然段,完成下列问题.将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.(1)不等式x-7<3的解集用描述法可表示为________.(2)集合{(x,y)|y=x+1}表示的意义是________.【解析】(1)∵x-7<3,∴x<10,故解集可表示为{x|x<10}.(2)集合的代表元素是点(x,y),共同特征是y=x+1,故它表示直线y=x+1上的所有点组成的集合.【答案】(1){x|x<10} (2)直线y=x+1上的所有点组成的集合教材整理4集合的三种表示方法阅读教材P6第5自然段至例1,完成下列问题.1.Venn图法表示集合用一条封闭曲线的内部来表示集合的方法叫做Venn图法.2.三种表示方法的关系一个集合可以采用不同的表示方法表示,即集合的表示方法不唯一.用三种形式表示由2,4,6,8四个元素组成的集合.【解】列法举:{2,4,6,8}.描述法:{x|2≤x≤8,且x=2k,k∈Z}.Venn图法:教材整理5集合的分类阅读教材P6最后两自然段,完成下列问题.若方程x2-4=0的解组成的集合记作A;不等式x>3的解组成的集合记作B;方程x2=-1的实数解组成的集合记作C.则集合A,B,C中,________是有限集,________是空集,________是无限集.【解析】∵x2-4=0,∴x=±2,即A中只有2个元素,A为有限集;大于3的实数有无数个,则B 为无限集;x 2=-1无实根,则C 为空集. 【答案】 A C B[小组合作型]用适当的方法表示下列集合:(1)B ={(x ,y )|x +y =4,x ∈N *,y ∈N *}; (2)不等式3x -8≥7-2x 的解集;(3)坐标平面内抛物线y =x 2-2上的点的集合;(4)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪99-x ∈N ,x ∈N . 【精彩点拨】 (1)(4)中的元素个数很少,用列举法表示;(2)(3)中的元素无法一一列举,用描述法表示.【自主解答】 (1)∵x +y =4,x ∈N *,y ∈N *, ∴⎩⎨⎧ x =1,y =3,或⎩⎨⎧ x =2,y =2,或⎩⎨⎧x =3,y =1. ∴B ={(1,3),(2,2),(3,1)}. (2)由3x -8≥7-2x ,可得x ≥3,所以不等式3x -8≥7-2x 的解集为{x |x ≥3}. (3){(x ,y )|y =x 2-2}. (4)∵99-x∈N ,x ∈N , ∴当x =0,6,8这三个自然数时,99-x=1,3,9也是自然数,∴A ={0,6,8}.1.集合表示法的选择对于有限集或元素间存在明显规律的无限集,可采用列举法;对于无明显规律的无限集,可采用描述法.2.用列举法时要注意元素的不重不漏,不计次序,且元素与元素之间用“,”隔开. 3.用描述法表示集合时,常用的模式是{x |p (x )},其中x 代表集合中的元素,p (x )为集合中元素所具备的共同特征.要注意竖线不能省略,同时表达要力求简练、明确.[再练一题]1.试分别用列举法和描述法表示下列集合: (1)方程x 2-x -2=0的解集;(2)大于-1且小于7的所有整数组成的集合.【解】 (1)方程x 2-x -2=0的根可以用x 表示,它满足的条件是x 2-x -2=0,因此,用描述法表示为{x ∈R |x 2-x -2=0};方程x 2-x -2=0的根是-1,2,因此,用列举法表示为{-1,2}.(2)大于-1且小于7的整数可以用x 表示,它满足的条件是x ∈Z 且-1<x <7,因此,用描述法表示为{x ∈Z |-1<x <7};大于-1且小于7的整数有0,1,2,3,4,5,6,因此,用列举法表示为{0,1,2,3,4,5,6}.(1)集合A ={x |x 3-x =0,x∈N }与B ={0,1}________相等集合.(填“是”或“不是”)(2)若集合A ={1,a +b ,a },集合B =⎩⎨⎧⎭⎬⎫0,ba ,b 且A =B ,则a =________,b =________.【精彩点拨】 (1)解出集合A ,并判断与B 是否相等;(2)找到相等的对应情况,解方程组即可.【自主解答】 (1)x 3-x =x (x 2-1)=0,∴x =±1或x =0. 又x ∈N ,∴A ={0,1}=B .(2)由分析,a ≠0,故a +b =0,∴b =-a . ∴ba =-1,∴a =-1,b =1. 【答案】 (1)是 (2)-1 1已知集合相等求参数,关键是根据集合相等的定义,建立关于参数的方程(组),求解时还要注意集合中元素的互异性.[再练一题]2.已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值. 【解】 若⎩⎨⎧a +b =ax ,a +2b =ax2,则a +ax 2-2ax =0,∴a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均为a ,故舍去. 若⎩⎨⎧a +b =ax2,a +2b =ax ,则2ax 2-ax -a =0. 又∵a ≠0, ∴2x 2-x -1=0, 即(x -1)(2x +1)=0. 又∵x ≠1, ∴x =-12.经检验,当x =-12时,A =B 成立. 综上所述,x =-12.[探究共研型]探究1 集合{x |x 2【提示】 表示方程x 2-1=0的根组成的集合,即{±1}. 探究2集合A ={x |ax 2+bx +c =0(a ≠0)}可能含有几个元素,每一种情况对a ,b ,c 的要求是什么?【提示】 因a ≠0,故ax 2+bx +c =0一定是二次方程,其根的情况与Δ的正负有关.若A 中无元素,则Δ=b 2-4ac <0,若A 中只有一个元素,则Δ=b 2-4ac =0,若A 中有两个元素,则Δ=b 2-4ac >0.集合A={x|kx2-8x+16=0},若集合A中只有一个元素,试求实数k的值,并用列举法表示集合A.【精彩点拨】A中只有一个元素说明方程kx2-8x+16=0可能是一次方程,也可能是二次方程,但Δ=0.【自主解答】(1)当k=0时,原方程为16-8x=0.∴x=2,此时A={2}.(2)当k≠0时,由集合A中只有一个元素,∴方程kx2-8x+16=0有两个相等实根,则Δ=64-64k=0,即k=1,从而x1=x2=4,∴集合A={4}.综上所述,实数k的值为0或1.当k=0时,A={2};当k=1时,A={4}.1.用列举法表示集合的步骤(1)求出集合中的元素;(2)把这些元素写在花括号内.2.用列举法表示集合的优点是元素一目了然;缺点是不易看出元素所具有的属性.[再练一题]3.已知函数f (x)=x2-ax+b(a,b∈R).集合A={x|f (x)-x=0},B={x|f (x)+ax=0},若A={1,-3},试用列举法表示集合B.【解】A={1,-3},∴错误!⇒错误!⇒错误!∴f (x)+ax=x2+3x-3+(-3x)=0=x2-3,∴x=±3,∴B={±3}.1.集合{x∈N*|x-3<2}用列举法可表示为________.【解析】∵x-3<2,∴x<5.又x∈N*,∴x=1,2,3,4.【答案】 {1,2,3,4}2.若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为________.【解析】 当x ,y 从A ,B 中取值时,z 可以为-1,1,3,共3个. 【答案】 33.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可表示为________.①错误!;②错误!;③{1,2};④{(1,2)}.【解析】 方程组的解应是有序数对,③是数集,不能作为方程组的解. 【答案】 ③4.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则a +b =________. 【解析】 ∵M =N ,则有⎩⎨⎧ a =2a ,b =b2或⎩⎨⎧ a =b2,b =2a ,解得⎩⎨⎧a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,∴a +b =1或34.【答案】 1或345.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.【解】 三个集合不相等,这三个集合都是描述法给出的,但各自的意义不一样. 集合A 表示y =x 2+3中x 的范围,x ∈R ,∴A =R ,集合B 表示y =x 2+3中y 的范围,B ={y |y ≥3},集合C 表示y =x 2+3上的点组成的集合.。

苏教版高中数学必修1教案5篇

苏教版高中数学必修1教案5篇

苏教版高中数学必修1教案5篇苏教版高中数学必修1教案5篇语文教案数学教案英语教案物理教案化学教案生物教案政治教案历史教案推文网 > 教学资源 > 教案模板 > 数学教案 >苏教版高中数学必修1教案2023-10-13 10:03:45|思敏推荐文章苏教版小升初数学教案热度:苏教版二年级数学下册教案热度:2023年苏教版小学五年级数学教案范文热度:苏教版小学五年级数学教案范文2023热度:苏教版一年级下册数学教案热度:苏教版高中数学必修1教案5篇教案是以系统方法为指导。

教案把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。

下面小编给大家带来关于苏教版高中数学必修1教案,方便大家学习苏教版高中数学必修1教案1教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的 ;属于 ;和 ;不属于 ;关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

高中数学综合测评苏教版选择性必修第一册

高中数学综合测评苏教版选择性必修第一册

综合测评(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-√3y-3=0的倾斜角为()A.π6B.π3C.2π3D.5π62.函数f(x)=1+1x 的图象在点(12, x(12))处的切线的斜率为 ()A.2B.-2C.4D.-43.已知F1,F2为定点,F1F2=4,在同一平面内的动点M满足MF1+MF2=t(t为常数),且t≥4,则动点M的轨迹是()A.椭圆B.线段C.圆D.线段或椭圆4.在等比数列{a n}中,a2+a3=1,a4+a5=2,则a6+a7= ()A.2B.2√2C.4D.4√25.已知两圆的方程分别是C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则这两圆的位置关系是()A.内含B.内切C.相交D.外切6.我国古代数学名著《增删算法统宗》中有如下问题:“一个公公有九个儿,若问生年总不知,知长排来争三岁,其年二百七岁期,借问长儿多少岁,各儿岁数要详推.”其大致意思是:一个公公有九个儿子,若问他们的生年是不知道的,但从老大的生年开始排列,后面每个儿子都比前面一个儿子小3岁,九个儿子共207岁,则老大的岁数是 ()A.38B.35C.32D.297.已知在平面直角坐标系xOy中,双曲线C:x2x2-x2x2=1(a>0,b>0)的左焦点为F,点M,N在双曲线C上,若四边形OFMN为菱形,则双曲线C的离心率为 ()A.√3-1B.√5-1C.√3+1D.√5+18.已知函数f(x)=ln x+ax2+(2+a)x(a<0),g(x)=xe x-2,对任意的x0∈(0,2],关于x的方程f(x)=g(x0)在(0,e]上都有实数根,则实数a的取值范围为()(其中e=2.718 28…为自然对数的底数)A.[-1e ,0) B.(-∞,-1e]C.[-e,0)D.(-∞,-e]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知方程mx2+ny2=1(m,n∈R),则()A.当mn>0时,方程表示椭圆B.当mn<0时,方程表示双曲线C.当m=0时,方程表示两条直线D.此方程表示的曲线不可能为抛物线10.设等差数列{a n}的首项为a1,公差为d,其前n项和为S n,已知S16>0,S17<0,则下列结论正确的是()A.a1>0,d<0B.a8+a9>0C.S8与S9均为S n的最大值D.a9<011.已知抛物线C:y2=2px(p>0)的焦点F到其准线的距离为2,过点F的直线与抛物线交于P,Q 两点,M为线段PQ的中点,O为坐标原点,则()A.抛物线C的准线方程为y=-1B.线段PQ的长度的最小值为4C.S△OPQ≥2D.xx⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-312.已知f(x)=e x·x3,则下列结论正确的是()A. f(x)在R上单调递增B. f(log52)<f(e-12)<f(ln π)C.方程f(x)=-1有实数根D.存在实数k,使得方程f(x)=kx有4个实数根三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.在平面直角坐标系xOy中,已知直线l1:x+ay=0和直线l2:2x-(a-3)y-4=0,a∈R,若l1与l2平行,则l1与l2之间的距离为.14.已知数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n∈N*),则a6=.15.已知函数f(x)=x3+ax2+x+1在区间(-23,-13)内是减函数,则实数a的取值范围是.16.已知椭圆x2x2+x2x2=1(a>b>0)的短轴长为2,上顶点为A,左顶点为B,左、右焦点分别是F1、F2,且△F1AB的面积为2-√32,则椭圆的标准方程为;若点P为椭圆上的任意一点,则1xx1+1xx2的取值范围是.(第一个空2分,第二个空3分)四、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在①S4-a3=a6;②S3是a1与a9的等差中项;③a1+a3+a5+a7+a9=5S3这三个条件中任选一个,补充在下面的问题中,并解答.记S n为等差数列{a n}的前n项和,已知a3=5,且.(1)求{a n}的通项公式;(2)在(1)的条件下,记b n=1x x·x x+1,求数列{b n}的前n项和T n.注:选择多个条件分别解答时,按第一个解答计分.18.(本小题满分12分)已知某曲线C:x2+y2+2x-4y+a=0.(1)若此曲线是圆,求a的取值范围,并求出其圆心和半径;(2)若a=1,且此曲线与直线l:x-y+1=0相交于M,N两点,求弦长MN.19.(本小题满分12分)设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1(n∈N*).数列{b n}是首项为a1,公差不为零的等差数列,且b1,b2,b7成等比数列.(1)求数列{a n}和{b n}的通项公式;(2)若c n=x xx x,数列{c n}的前n项和为T n,且T n<m恒成立,求m的取值范围.20.(本小题满分12分)新冠肺炎疫情发生后,某地政府为了支持企业复工复产,决定向当地企业发放补助款,其中对纳税额x(万元)在[4,8]之间的小微企业做统一方案,方案要求同时具备下列两个条件:①补助款f(x)(万元)随企业原纳税额x(万元)的增加而增加;②补助款不低于原纳税额的50%.经测算,政府决定采用f(x)=x4-xx+4(其中m为参数)作为补助款发放的函数模型.(1)当参数m=13时是否满足条件,并说明理由;(2)求同时满足条件①②的参数m的取值范围.21.(本小题满分12分)已知抛物线C:x2=2py(p>0)的准线方程为y=-1,直线l过点P(0,-1),且与抛物线C交于A,B两点.点A关于y轴的对称点为A',连接A'B.(1)求抛物线C的标准方程;(2)问直线A'B是否过定点?若是,求出定点坐标;若不是,请说明理由.22.(本小题满分12分)已知函数f(x)=e x-1-x-ax2,g(x)=bx-b ln x,其中e为自然对数的底数.(1)若当x≥0时,不等式f(x)≥0恒成立,求实数a的取值范围;(2)若x>0,证明:(e x-1)ln(x+1)>x2.答案全解全析一、单项选择题1.A 直线x -√3y -3=0可化为y =√33x -√3,斜率k =tan α=√33,又α∈[0,π),∴α=π6.故选A .2.D 因为f (x )=1+1x ,所以f'(x )=-1x 2, 所以 f'(12)=-4.故选D .3.D 当t =4时,点M 的轨迹是线段F 1F 2;当t >4时,点M 的轨迹是椭圆.故选D .4.C 设等比数列{a n }的公比为q ,则x 4+x 5x 2+x 3=x 2x 2+x 3x 2x 2+x 3=q 2=2,∴a 6+a 7=a 4q 2+a 5q 2=(a 4+a 5)q 2=2×2=4.故选C .5.B 根据两圆的方程得到两圆的圆心间的距离d =√(7-3)2+(1+2)2=5,又圆C 1的半径r 1=1,圆C 2的半径r 2=6,且d ,r 1,r 2满足r 2-r 1=d ,所以两圆内切.6.B 由题意可知,九个儿子的年龄可以看成以老大的年龄为首项,公差为-3的等差数列,记此等差数列为{a n },则9a 1+9×82×(-3)=207,解得a 1=35,故选B .7.C 由题意可知OF =c ,由四边形OFMN 为菱形,可得MN =OF =c ,设点M 在F 的上方,可知M 、N 关于y 轴对称,可设M (-x 2,√3x2),代入双曲线方程可得 (-x 2)2x 2-(√3x2)2x 2=1,结合a 2+b 2=c 2,可得c 4+4a 4-8a 2c 2=0,两边同除以a 4,可得e 4+4-8e 2=0,解得e 2=4+2√3或e 2=4-2√3,因为e >1,所以e =√4+2√3=√(1+√3)2=√3+1,故选C .8.C 由题意,g (x )=xe x -2,x ∈(0,2],g'(x )=e x -x e x (e x )2=1-x e x ,令g'(x )=0,得x =1,当0<x <1时,g'(x )>0;当1<x ≤2时,g'(x )<0,故当x =1时,g (x )取得极大值,也是最大值,为1e -2,且g (0)=-2,g (2)=2e 2-2>-2,设g (x )=x ex -2,x ∈(0,2]的值域为A ,则A =(-2,1e-2].设f (x )=ln x +ax 2+(2+a )x ,x ∈(0,e]的值域为B ,因为对任意的x 0∈(0,2],关于x 的方程f (x )=g (x 0)在(0,e]上都有实数根, 所以A ⊆B.因为当x →0+,f (x )→-∞,所以只需f (x )max ≥1e -2. 易得f'(x )=1x +2ax +2+a =(2x +1)(xx +1)x ,令f'(x )=0,得x =-1x 或x =-12(舍去),当-1x ≥e,即-1e ≤a <0时,f (x )在(0,e]上是增函数, 则f (x )max =f (e)=1+a e 2+2e+a e ≥1e -2, 解得a ≥-(2e +e -1e 3+e 2),∴-1e ≤a <0.当-1x <e,即a <-1e 时,f (x )在(0,-1x )上单调递增,在(-1x ,e ]上单调递减,则f (x )max =f (-1x )=ln (-1x )+1x -2x -1≥1e -2,即ln (-1x )-1x ≥1e -1,令h (x )=ln x +x ,易知h (x )在(0,+∞)上单调递增, 而h (1e )=1e -1, 于是-1x ≥1e ,解得-e ≤a <-1e . 综上,实数a 的取值范围为-e ≤a <0. 二、多项选择题9.BD 当mn >0时,将原方程整理,得x 21x +x 21x=1,若m ,n 同负或1x =1x,则方程不表示椭圆,A 错误;当mn <0时,1x 与1x 异号,方程表示双曲线,B 正确;当m =0时,方程为ny 2=1,当n ≤0时,方程无解,故C 错误;无论m 、n 为何值,此方程都不可能表示抛物线,D 正确.故选BD . 10.ABD ∵S 16=16(x 1+x 16)2>0,∴a 8+a 9=a 1+a 16>0,∴B 正确. 又S 17=17(x 1+x 17)2=17a 9<0,∴a 9<0,∴a 8>0,∴d =a 9-a 8<0,∴a 1>0,∴A、D 正确.易知S 8是S n 的最大值,S 9不是S n 的最大值,∴C 错误.故选ABD .11.BCD 因为抛物线的焦点F 到其准线的距离为2,所以p =2,所以抛物线C 的焦点为F (1,0),准线方程为x =-1,故选项A 错误;当直线PQ 垂直于x 轴时,线段PQ 的长度最小,此时不妨设P (1,2),Q (1,-2),所以PQ min =4,故选项B 正确;设P (x 1,y 1),Q (x 2,y 2),直线PQ 的方程为x =my +1,联立{x =xx +1,x 2=2xx ,消去x ,将p =2代入可得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,S△OPQ=12×OF ×|y 1-y 2|=12×1×√(x 1+x 2)2-4x 1x 2=12×√16x 2+16≥2,当且仅当m =0时“=”成立,故选项C 正确;x 1x 2=(my 1+1)(my 2+1)=m (y 1+y 2)+m 2y 1y 2+1=1,y 1y 2=-4,所以xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=-3,故选项D 正确.故选BCD .12.BCD ∵f (x )=e x ·x 3, ∴f'(x )=e x(x 3+3x 2). 令f'(x )=0,得x =0或x =-3. 当x <-3时,f'(x )<0,f (x )单调递减, 当x >-3时,f'(x )≥0,f (x )单调递增,A 错误. 又0<log 52<12<e -12<1<lnπ,∴f (log 52)<f (e -12)<f (lnπ),B 正确. ∵f (0)=0,f (-3)=e -3·(-3)3=-(3e )3<-1,∴f (x )=-1有实数根,C 正确. 显然x =0是方程f (x )=kx 的根, 当x ≠0时,k =x (x )x=e x ·x 2,设g (x )=e x ·x 2(x ≠0),则g'(x )=x (x +2)e x ,令g'(x )=0,得x =0或x =-2.当x 发生变化时,g'(x ),g (x )的变化情况如下表:x (-∞,-2)-2 (-2,0) 0 (0,+∞) g'(x ) + 0 - 0 + g (x )↗4x 2↘↗画出函数g (x )的大致图象,如图所示,∴当0<k <4e 2时,g (x )=k 有3个实数根,∴D 正确.故选BCD . 三、填空题 13.答案 √2解析 由于直线l 1与l 2平行,则2a =-(a -3)且0≠-4a ,解得a =1,所以直线l 1的方程为x +y =0,直线l 2的方程为x +y -2=0,因此,直线l 1与l 2之间的距离为√22=√2.14.答案 768解析 由a n +1=3S n ,得S n +1-S n =3S n ,即S n +1=4S n ,又S 1=a 1=1,所以数列{S n }是首项为1,公比为4的等比数列,所以S n =4n -1,所以a 6=S 6-S 5=45-44=3×44=768. 15.答案 [2,+∞)解析 ∵f (x )=x 3+ax 2+x +1,∴f'(x )=3x 2+2ax +1,∵函数f (x )在区间-23,-13内是减函数,∴f'(x )≤0在区间(-23,-13)内恒成立,即a ≥-3x 2-12x 在区间(-23,-13)内恒成立,令g (x )=-3x 2-12x (-23<x <-13),则g'(x )=-32+12x 2=-3x 2+12x 2,∴当x ∈(-23,-√33)时,g'(x )<0,g (x )单调递减;当x ∈(-√33,-13)时,g'(x )>0,g (x )单调递增, 又g (-23)=74,g (-13)=2,∴g (x )<2,∴a ≥2.16.答案x 24+y 2=1;[1,4]解析 由题意可知2b =2,则b =1,x △x 1xx =12(a -c )b =x -x 2=2-√32,故有{x -x =2-√3,x 2=x 2-x 2=1,x >0,x >0,解得{x =2,x =√3,所以椭圆的标准方程为x 24+y 2=1.由题意可得2-√3≤PF 1≤2+√3,PF 1+PF 2=2a =4,所以1xx 1+1xx 2=xx 1+xx 2xx 1·xx 2=4xx 1·(4-xx 1),因为PF 1·(4-PF 1)=-(xx 1-2)2+4∈[1,4],所以1xx 1+1xx 2=4xx1·(4-xx 1)∈[1,4].四、解答题17.解析 (1)选择条件①: 设等差数列{a n }的公差为d ,则{x 1+2x =5,4x 1+4×32x -x 1-2x =x 1+5x ,(2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分) 选择条件②:设等差数列{a n }的公差为d ,则{x 1+2x =5,2(3x 1+3×22x )=x 1+x 1+8x , (2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分)选择条件③:设等差数列{a n }的公差为d ,则{x 1+2x =5,5x 5=5(x 1+4x )=5(3x 1+3×22x ),(2分) 解得{x 1=1,x =2,(4分)∴a n =2n -1. (5分) (2)由(1)可得b n =1x x ·x x +1=1(2x -1)(2x +1)=12(12x -1-12x +1),(7分)∴T n =b 1+b 2+…+b n=12(11-13+13-15+…+12x -1-12x +1) =12(1-12x +1)=x2x +1.(10分)18.解析 (1)方程x 2+y 2+2x -4y +a =0可化为(x +1)2+(y -2)2=5-a. (2分) 若其曲线是圆,则5-a >0,得a <5.(4分)其圆心坐标为C (-1,2),半径r =√5-x . (6分) (2)当a =1时,曲线的方程为(x +1)2+(y -2)2=4, (7分) 它表示的是圆,圆心为C (-1,2),半径r =2. (8分)圆心到直线l 的距离d =√2=√2. (10分)∴弦长MN =2√x 2-x 2=2√4-2=2√2. (12分) 19.解析 (1)∵a n +1=2S n +1(n ∈N *),① ∴当n ≥2时,a n =2S n -1+1,② ①-②,化简可得a n +1=3a n , (1分) 即数列{a n }是以3为公比的等比数列, (2分)又∵S 2=4, ∴a 1+3a 1=4,解得a 1=1,即a n =3n -1. (3分) 设数列{b n }的公差为d (d ≠0),b 1=a 1=1, ∵b 1,b 2,b 7成等比数列, ∴1×(1+6d )=(1+d )2, (4分) 解得d =4或d =0(舍去),即b n =4n -3,∴数列{a n }和{b n }的通项公式分别为a n =3n -1,b n =4n -3. (6分) (2)由(1)得c n =x x x x =4x -33x -1, (7分)∴T n =(13)0+5×(13)1+9×(13)2+…+(4n -3)(13)x -1,③13T n =(13)1+5×(13)2+9×(13)3+…+(4n -7)×(13)x -1+(4n -3)(13)x,④ ③-④,得23T n =1+4×(13)1+4×(13)2+…+4×(13)x -1-(4n -3)(13)x=3-(4n +3)(13)x. (10分) ∴T n =92-3(4x +3)2(13)x,即有T n <92恒成立,由T n <m 恒成立, 可得m ≥92,即m 的取值范围是[92,+∞). (12分)易错警示 (1)利用a n =S n -S n -1(n ≥2)求a n 时,要注意n ≥2这一限制条件;(2)当数列{a n }、{b n }分别为等差数列、等比数列时,数列{a n ·b n }或{xx x x}的前n 项和一般用错位相减法求解,但在求和时要特别注意两式相减后抵消了哪些项、各项的符号有没有发生变化等. 20.解析 (1)当m =13时,函数f (x )=x 4-13x +4(x ∈[4,8]),可得f'(x )=14+13x 2>0, 所以f (x )在区间[4,8]上为增函数,满足条件①; (2分) 又因为f (4)=74<2=12×4,所以当m =13时不满足条件②. (3分)综上可得,当参数m =13时不满足条件. (5分) (2)由函数f (x )=x 4-xx+4,可得f'(x )=14+x x 2=x 2+4x 4x 2,x ∈[4,8], (6分)所以当m ≥0时,f'(x )≥0,满足条件①; (8分) 当m <0时,令f'(x )=0,可得x =2√-x (负值舍去), 当x ∈[2√-x ,+∞)时,f'(x )≥0,f (x )单调递增, 所以此时若要满足条件①,应有2√-x ≤4,解得-4≤m <0. 综上可得,m ≥-4. (10分)由条件②可知,f (x )≥x2,即不等式x 4+xx ≤4在[4,8]上恒成立,等价于m ≤-14x 2+4x =-14(x -8)2+16在[4,8]上恒成立. 当x =4时,y =-14(x -8)2+16取得最小值,最小值为12, 所以m ≤12. (11分)综上,参数m 的取值范围是[-4,12]. (12分)21.解析 (1)因为抛物线C :x 2=2py (p >0)的准线方程为y =-1, 所以x2=1,即p =2, (3分)所以抛物线C 的标准方程为x 2=4y. (4分)(2)由题意知直线l 的斜率存在,故可设直线l 的方程为y =kx -1,A (x 1,y 1),B (x 2,y 2),则A'(-x 1,y 1),联立{x 2=4x ,x =xx -1,得x 2-4kx +4=0.则Δ=16k 2-16>0,x 1x 2=4,x 1+x 2=4k , (6分) 所以k A'B =x 2-x 1x 2+x 1=x 224-x 124x 1+x 2=x 2-x 14. (7分)于是直线A'B 的方程为y -x 224=x 2-x 14(x -x 2),所以y =x 2-x 14x +x 224-(x 2-x 1)x 24,即y =x 2-x 14x +1, (10分)当x =0时,y =1.即直线A'B 过定点(0,1). (12分)22.解析 (1)由已知得f'(x )=e x-1-2ax , (1分) 令h (x )=e x-1-2ax ,则h'(x )=e x-2a , 当x ≥0时,e x ≥1.故当2a ≤1时,h'(x )=e x-2a ≥0恒成立, ∴h (x )在[0,+∞)上单调递增,∴h (x )≥h (0)=0,即f'(x )≥0,∴f (x )在[0,+∞)上为增函数, ∴f (x )≥f (0)=0恒成立,∴a ≤12时满足条件. (3分)当2a >1时,令h'(x )=0,解得x =ln2a ,在[0,ln2a )上,h'(x )<0,h (x )在[0,ln2a )上单调递减, ∴当x ∈[0,ln2a )时,有h (x )≤h (0)=0,即f'(x )≤0,当且仅当x =0时,f'(x )=0,故f (x )在[0,ln2a )上为减函数,∴f (x )<f (0)=0,不符合题意. (5分)综上,实数a 的取值范围为(-∞,12]. (6分) (2)证明:由(1)得,当a =12,x >0时,e x>1+x +x 22成立,即e x-1>x +x 22=x 2+2x 2成立, (7分)∵x >0, ∴ln(x +1)>0,要证不等式(e x-1)ln(x +1)>x 2, 只需证e x-1>x 2ln(x +1), (8分) 只需证x 2+2x 2>x 2ln(x +1),只需证ln(x +1)>2x2+x 成立, (9分) 设F (x )=ln(x +1)-2xx +2(x >0), (10分) 则F'(x )=1x +1-4(x +2)2=x 2(x +1)(x +2)2,∴当x >0时,F'(x )>0恒成立,故F (x )在(0,+∞)上单调递增, 又F (0)=0, ∴F (x )>0恒成立, ∴原不等式成立. (12分)。

2020-2021学年数学新教材苏教版必修第一册章末综合测评1 集合 Word版含解析

2020-2021学年数学新教材苏教版必修第一册章末综合测评1 集合 Word版含解析

章末综合测评(一)集合(满分:150分时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B AD[因为A={1,2,3},B={2,3},所以2,3∈A且2,3∈B,1∈A但1B,所以B A.]2.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.()A.1 B.2C.3 D.4B[对①,集合与集合之间不能用∈符号,故①不正确;对②,由于两个集合相等,任何集合都是本身的子集,故②正确;对③,空集是任何集合的子集,故③正确;对④,空集是不含任何元素的集合,而{0}是含有1个元素的集合,故④不正确;对⑤,集合{0,1}是数集,含有2个元素,集合{(0,1)}是点集,只含1个元素,故⑤不正确;对⑥,元素与集合只能用∈或符号,故⑥不正确.故选B.]3.集合A={0,6,8}的非空子集的个数为()A.3 B.6C.7 D.8C[集合A={0,6,8}含有3个元素,含有3个元素的集合的非空子集个数为23-1=7.故选C .]4.若M ={x ∈Z |-6≤x ≤6},N ={x |x 2-5x -6=0},则M ∩N =( )A .{2,3}B .{1,6}C .{-1,6}D .{-2,3}C [M ={x ∈Z |-6≤x ≤6}={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}, N ={x |x 2-5x -6=0}={-1,6},则M ∩N ={-1,6}.故选C .]5.若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 2+14,k ∈Z ,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 4+12,k ∈Z ,则( ) A .M =NB .N ⊆MC .MN D .以上均不对 C [M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 2+14,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =2k +14,k ∈Z . N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k 4+12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k +24,k ∈Z . 又2k +1,k ∈Z 为奇数,k +2,k ∈Z 为整数,所以MN .] 6.已知全集U =R ,则正确表示集合M = {-1,0,1} 和N ={x |x 2+x =0}关系的Venn 图是( )A .B .C .D .B [由N ={x |x 2+x =0},得N ={-1,0}.因为M ={-1,0,1},所以NM ,故选B .]7.若x ∈A ,则1x ∈A ,就称A 是“伙伴关系”集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有“伙伴关系”的集合个数是( )A .1B .2C .3D .4C [M 中具有伙伴关系的元素组是-1,12,2,故具有伙伴关系的集合有{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.共3个.] 8.向50名学生调查对A ,B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对A ,B 都赞成的学生数的三分之一多1人.那么,对A ,B 都赞成的学生数是( )A .20B .21C .30D .33B [赞成A 的人数为50×35=30,赞成B 的人数为30+3=33.如图所示,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合M ;赞成事件B 的学生全体为集合N .设对事件A ,B 都赞成的学生人数为x ,则对A ,B 都不赞成的学生人数为x 3+1.赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x .依题意(30-x )+(33-x )+x +⎝ ⎛⎭⎪⎫x 3+1=50,解得x =21.]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知集合A ={x |x =2k -1,k ∈Z },B ={x |x =2k ,k ∈Z },C ={x |x =4k -1,k ∈Z },D ={x |x =4k -2,k ∈Z },若a ,b ∈A ,c ∈B ,则( )A .a +b ∈DB .a +b ∈BC .a +c ∈CD .a +c ∈ABD [因为a ,b ∈A ,c ∈B ,设a =2k 1-1,b =2k 2-1,c =2k 3,k 1,k 2,k 3∈Z .由a +b =2(k 1+k 2-1)∈B ,a +c =2(k 1+k 3)-1∈A ,故选BD .]10.已知集合P={x|-2<x≤5},Q={x|k-1≤x≤k+1},当k∈M时,P∩∁R Q =P恒成立,则集合M可以为()A.(-∞,-3] B.[6,+∞)C.{8,-8} D.(-∞,-3]∪(6,+∞)ACD[要使得P∩∁R Q=P,必有P⊆∁R Q,即Q⊆∁R P={x|x≤-2或x>5},即k+1≤-2或k-1>5,所以k≤-3或k>6时,P∩∁R Q=P恒成立,故选ACD.]11.集合A={2,0,1,7},B={x|x2-2∈A,x-2A},则集合B可以为() A.{2} B.{-3}C.{2} D.{-3}BCD[由x2-2∈A,可得x2=4,2,3,9,即x=±2,±2,±3,±3.又x-2A,所以x≠2,x≠3,故x=-2,±2,±3,-3.因此,集合B={-2,-2,2,-3,3,-3}.所以,BCD都正确,故选BCD.]12.已知集合A={x|x>1},B={x|x<m},且A⊆∁R B,那么m的值可以是() A.1 B.2 C.3 D.0AD[根据补集的概念,∁R B={x|x≥m}.又∵A⊆∁R B,∴m≤1,故m的值可以是1,0,故选AD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.设全集I是实数集R,M=(-1,0]∪(2,+∞)与N=(-2,2)都是I的子集,则图中阴影部分所表示的集合为.(-2,-1]∪(0,2)[阴影部分可以表示为{x|x∈N且x M}={x|x∈N且x∈∁R M}=N∩∁R M={x|-2<x≤-1或0<x<2}=(-2,-1]∪(0,2).]14.已知{1,3}⊆A ⊆{1,3,5,7,9,11},则符合条件的集合A 有 个. 16 [因为{1,3}⊆A ,所以集合A 中一定有1,3这两个元素.又因为A ⊆{1,3,5,7,9,11},所以满足条件集合A 的个数等价于满足∅⊆B ⊆{5,7,9,11}的集合B 的个数.而B 有24=16个.故符合条件的集合A 有16个.]15.设A ={4,a },B ={2,ab },若A =B ,则a = ,b = .(本题第一空2分,第二空3分)2 2 [因为A ={4,a },B ={2,ab },A =B ,所以⎩⎪⎨⎪⎧ 4=ab ,a =2,解得a =2,b =2.]16.已知集合A ={x |x 2-5x -6=0},B ={x |mx +1=0},若B ⊆A ,则实数m 组成的集合为 .⎩⎨⎧⎭⎬⎫-16,0,1 [因为A ={x |x 2-5x -6=0}={6,-1},且B ⊆A ,所以B ={-1}或B ={6}或B =∅,当B ={-1}时,-m +1=0⇒m =1;当B ={6}时,6m +1=0⇒m =-16;当B =∅时,m =0.所以综上可得,实数m 组成的集合为⎩⎨⎧⎭⎬⎫-16,0,1.] 四、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |x 2-7x +6<0},B ={x |4-t <x <t },R 为实数集.(1)当t =4时,求A ∪B 及A ∩∁R B ;(2)若A ∩B =A ,求实数t 的取值范围.[解] (1)由x 2-7x +6<0得1<x <6,则A =(1,6),当t =4时,B =(0,4),∁R B =(-∞,0]∪[4,+∞),所以A ∪B =(0,6),A ∩∁R B =[4,6).(2)由A ∩B =A 得A ⊆B ,所以⎩⎪⎨⎪⎧ 4-t ≤1,t ≥6,所以t ≥6,实数t 的取值范围为[6,+∞).18.(本小题满分12分)已知A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.[解] 因为A ∩B ={x |1<x <3},所以b =3,所以-1≤a ≤1,又因为A ∪B ={x |x >-2},所以-2<a ≤-1,所以a =-1.19.(本小题满分12分)设全集U =R ,M ={m |方程mx 2-x -1=0有实数根},N ={n |方程x 2-x +n =0有实数根},求(∁U M )∩N .[解] 当m =0时,x =-1,即0∈M ;当m ≠0时,Δ=1+4m ≥0,即m ≥-14,所以∁U M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ m <-14. 而对于N ,Δ=1-4n ≥0,即n ≤14,所以N =⎩⎨⎧ n ⎪⎪⎪⎭⎬⎫n ≤14,所以(∁U M )∩N =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x <-14. 20.(本小题满分12分)已知集合A ={3,4,m 2-3m -1},B ={2m ,-3},若A ∩B ={-3},求实数m 的值并求A ∪B .[解] 因为A ∩B ={-3},所以-3∈A .又A ={3,4,m 2-3m -1},所以m 2-3m -1=-3,解得m =1或m =2.当m =1时,B ={2,-3},A ={3,4,-3},满足A ∩B ={-3}, 所以A ∪B ={-3,2,3,4}.当m =2时,B ={4,-3},A ={3,4,-3},不满足A ∩B ={-3},舍去. 综上知m =1,A ∪B ={-3,2,3,4}.21.(本小题满分12分)设全集U =R ,集合A ={x |-5<x <4},集合B ={x |x <-6或x >1},集合C ={x |x -m <0},若C ⊇(A ∩B )且C ⊇((∁U A )∩(∁U B )),求实数m 的取值范围.[解] 因为A ={x |-5<x <4},B ={x |x <-6或x >1},所以A ∩B ={x |1<x <4}.又∁U A ={x |x ≤-5或x ≥4},∁U B ={x |-6≤x ≤1},所以(∁U A )∩(∁U B )={x |-6≤x ≤-5}.而C ={x |x <m },当C ⊇(A ∩B )时,m ≥4,当C ⊇((∁U A )∩(∁U B ))时,m >-5.所以实数m 的取值范围为m ≥4.22.(本小题满分12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.[解] (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知,⎩⎪⎨⎪⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A∩B=∅,得①若2m≥1-m,即m≥13时,B=∅,符合题意.②若2m<1-m,即m<13时,需⎩⎨⎧m<13,1-m≤1或⎩⎨⎧m<13,2m≥3,得0≤m<13或∅,即0≤m<13,综上知m≥0,即实数m的取值范围为[0,+∞).。

【三维设计】高中生物 教师用书 第四章 第一节 课时跟踪训练 苏教版必修1

【三维设计】高中生物 教师用书 第四章 第一节 课时跟踪训练 苏教版必修1

(满分50分时间25分钟)一、选择题(每小题3分,共30分)1.ATP的结构简式可表示为A-P~P~P,下列图示正确表示ATP的是 ( )解析:ATP是由1分子腺嘌呤、1分子核糖和3分子磷酸组成,其图示如A项所示。

答案:A2.用小刀将数只萤火虫的发光器割下,干燥后研磨成粉末状。

取两支试管,标上甲、乙,各加入2 mL水和等量的萤火虫发光器研磨粉末,结果发现两支试管均有短时间黄色荧光出现。

一段时间后出现的现象和再进行分别处理出现的结果如下:甲一段时间后,试管中黄色荧光消失加入2 mLATP溶液,试管中又出现黄色荧光乙一段时间后,试管中黄色荧光消失加入2 mL葡萄糖溶液,试管中不出现黄色荧光由此分析得出的正确结论是 ( ) A.葡萄糖不是能源物质B.萤火虫发光不需要消耗能量C.ATP是直接能源物质D.葡萄糖氧化分解可产生ATP解析:加入ATP溶液,试管中出现黄色荧光,说明ATP是生命活动的直接能源物质;加入葡萄糖溶液,试管未出现黄色荧光,说明葡萄糖未能氧化分解产生ATP。

答案:C3.在下列四种化合物的化学组成中,“○”中所对应的含义最接近的是 ( )A.①和② B.②和③C .③和④D .①和④解析:①ATP 中“A—P”代表腺嘌呤核糖核苷酸;②核苷酸中“A”是腺嘌呤;③DNA 片段中“A”代表腺嘌呤脱氧核苷酸;④RNA 片段中“A ”代表腺嘌呤核糖核苷酸。

所以只有D 项含义最接近。

答案:D4.关于ATP 12−−→←−−酶酶ADP +Pi +能量的反应叙述,不.正确的是 ( ) A .上述过程中存在着能量的释放和贮存B .所有生物体内ADP 转变成ATP 所需能量都来自细胞呼吸C .这一反应无休止地在活细胞中进行D .这一过程保证了生命活动的顺利进行解析:ATP 水解时释放能量,ATP 合成时贮存能量;ATP 合成所需能量对于动物来说来自细胞呼吸,对于绿色植物来说来自光合作用和细胞呼吸;ATP 与ADP 无休止地相互转化,保证生命活动的顺利进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(时间:120分钟 满分:160分)一、填空题(本大题共14个小题,每小题5分,共70分.把答案填在题中的横线上) 1.若幂函数y =f (x )的图象经过点(9,13),则f (25)的值是________.解析:设f (x )=x α,将(9,13)代入得9α=13,即32α=3-1,∴2α=-1,∴α=-12,∴f (x )=x -12.∴f (25)=25-12=15.答案:152.(2011·新课标高考改编)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是________.①y =x 3②y =|x |+1 ③y =-x 2+1 ④y =2-|x |解析:y =x 3为奇函数,y =-x 2+1在(0,+∞)上为减函数,y =2-|x |在(0,+∞)上为减函数.故只有②符合条件答案:②3.若集合A ={x |log 12x ≤12},则∁R A =________.解析:由log 12x ≤12得x ≥(12)12=22.∴A =[22,+∞).∴∁R A =(-∞,22). 答案:(-∞,22) 4.试比较1.70.2、log 2.1 0.9与0.82.1的大小关系,并按照从小到大的顺序排列为________. 解析:log 2.10.9<0,1.70.2>0,0.82.1>0. ∵1.70.2>1.70=1,0.82.1<0.80=1, ∴log 2.10.9<0.82.1<1.70.2. 答案:log 2.10.9<0.82.1<1.70.25.设集合M ={x |x -m ≤0},N ={y |y ≥-1},若M ∩N =∅,则实数m 的取值范围是________.解析:M =(-∞,m ],N =[-1,+∞),∵M ∩N =∅, ∴m <-1. 答案:m <-16.(2012·山东高考改编)函数f (x )=1ln (x +1)+ 4-x 2的定义域为________.解析:x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.答案:(-1,0)∪(0,2]7.若函数f (x )=ax -b 有一个零点是3,那么函数g (x )=bx 2+3ax 的零点是________. 解析:由条件可得3a -b =0,即b =3a , ∴g (x )=bx 2+3ax =3ax 2+3ax ,令g (x )=0 得x =-1,0. 答案:-1,08.函数f (x )=log 13(-3x +2)的单调递增区间为________.解析:∵函数的定义域为-3x +2>0,∴x <23.令u =-3x +2,∵f (u )=log 13u 是减函数,要求f (x )的单调增区间,只需求u =-3x +2的递减区间,即(-∞,23).答案:(-∞,23)9.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a 的值为________.解析:因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x+a e x )=x (e x +a e -x),化简得x (e -x+e x)(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.答案:-110.已知函数y =f (x )是R 上的奇函数,且x >0时,f (x )=2x,函数y =f (x )的解析式为________.解析:∵y =f (x )是R 上的奇函数,∴f (0)=0. 又∵当x >0时,f (x )=2x,∴当x <0时,-x >0,f (-x )=2-x=-f (x ), ∴f (x )=-2-x=-(12)x .∴f (x )=⎩⎪⎨⎪⎧2x,x >0,0,x =0,-(12)x,x <0.答案:f (x )=⎩⎪⎨⎪⎧2x,x >00,x =0-(12)x,x <011.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x ,x ≤0,则不等式f (x )≥1的解集是________.解析:x >0时,由log 3x ≥1得x ≥3,∴x ≥3. 当x ≤0时,由2x≥1得x ≥0,∴x =0. 由上可知解集为{x |x =0或x ≥3}. 答案:{x |x =0或x ≥3}12.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如下左图,则函数g (x )=a x+b 的图象是________.解析:由f (x )的图象可知a ∈(0,1),b ∈(-∞,-1).∵0<a <1,∴y =a x单调递减,b <-1,∴x =0时,y =b +1<0,故g (x )=a x+b 的图象是①.答案:①13.函数y =log 2x +log 2(1-x )的最大值是________.解析:要使函数有意义,只要⎩⎪⎨⎪⎧x >01-x >0,解得0<x <1,又y =log 2[x (1-x )]=log 2[-(x -12)2+14],当x ∈(0,1)时,0<-(x -12)2+14≤14,∴y ≤log 214=-2,∴y max =-2. 答案:-214.设定义在R 上的关于x 的函数f (x )=ax +a +1,当-1<x <1时,函数有一个零点,则实数a 的取值范围是________.解析:根据零点存在性定理知,f (-1)f (1)<0, ∵f (-1)=1>0,∴f (1)=2a +1<0,解得a <-12.答案:a <-12二、解答题(本大题共6个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)计算:(1)[(549)0.5+(0.008)-23÷(0.2)-1]÷0.06250.25;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解:(1)原式=[(73)2×0.5+(0.2)3×(-23)÷(0.2)-1]÷(0.5)4×14=(73+52÷5)÷0.5=223÷12=443. (2)[(1-log 63)2+log 62·log 618]÷log 64=[(log 66-log 63)2+log 62·(log 63+log 66)]÷log 64 =[log 62(log 62+log 63+1)]÷2log 62=1.16.(本小题满分14分)已知集合M ={x |-ax 2+2x +1=0}只有一个元素,A ={x |y =-x +1},B ={y |y =-x 2+2x -1}.(1)求A ∩B ;(2)设N 是由a 可取的所有值组成的集合,试判断N 与A ∩B 的关系. 解:(1)由x +1≥0得x ≥-1, 则A ={x |x ≥-1};由y =-x 2+2x -1=-(x -1)2,得y ≤0, 则B ={y |y ≤0},所以A ∩B ={x |-1≤x ≤0}.(2)因为集合M 只有一个元素,所以当a =0时, 方程2x +1=0只有一个实数解,符合题意; 当a ≠0时,Δ=4-4(-a )=0,解得a =-1. 所以N ={-1,0},则N ⊆A ∩B .17.(本小题满分16分)已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.(1)求实数a ,b 的值;(2)判断函数f (x )在(-∞,-1]上的单调性,并加以证明. 解:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ).∴ax 2+2-3x +b =-ax 2+23x +b =ax 2+2-3x -b. 因此b =-b ,即b =0.又f (2)=53,∴4a +26=53,∴a =2.(2)由(1)知f (x )=2x 2+23x =2x 3+23x,f (x )在(-∞,-1]上为单调增函数.证明:设x 1<x 2≤-1,则x 2-x 1>0,f (x 2)-f (x 1)=23(x 2-x 1)(1-1x 1x 2)=23(x 2-x 1)·x 1x 2-1x 1x 2. ∵x 1<x 2≤-1,∴x 2-x 1>0,x 1x 2>1,f (x 2)>f (x 1).∴f (x )在(-∞,-1]上为单调增函数.18.(本小题满分14分)A 、B 两城相距100 km ,在两地之间距A 城x km 处的D 地建一核电站给A 、B 两城供电,为保证城市安全,核电站距城市的距离不得小于10 km ,已知供电费用刚好和供电距离的平方与供电量之积成正比,比例系数k =0.2,若A 城供电量为20亿度/月,B 城为10亿度/月.(1)写出x 的范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电费用最小. 解:(1)10≤x ≤90.(2)y =[20x 2+10(100-x )2]×0.2 =6x 2-400x +20 000(10≤x ≤90). (3)由(2)知,y =6x 2-400x +20 000 =6(x -1003)2+40 0003.∴当x =1003时,y min =40 0003.即核电站建在距A 城1003km 处时,才能使供电费用最小.19.(本小题满分16分)设二次函数f (x )=ax 2+bx +c 在区间[-2,2]上的最大值、最小值分别是M 、m ,集合A ={x |f (x )=x }.(1)若A ={1,2},且f (0)=2,求M 和m 的值;(2)若A ={1},且a ≥1,记g (a )=M +m ,求g (a )的最小值.解:(1)由条件得f (1)=1,f (2)=2,f (0)=2得a =1,b =-2,c =2,f (x )=x 2-2x +2=(x -1)2+1,∴M =f (-2)=4+4+2=10,m =f (1)=1.(2)由条件得ax 2+(b -1)x +c =0有两个相等实根1,从而a +b +c =1,(b -1)2=4ac ,得c =a ,b =1-2a .则f (x )=ax 2+(1-2a )x +a .∵a ≥1,∴对称轴x =2a -12a =1-12a ∈[12,1),∴M =f (-2)=9a -2,m =f (1-12a )=1-14a .∴g (a )=9a -14a -1,(a ≥1),又g (a )在[1,+∞)上单调递增, ∴g (a )最小值=g (1)=8-14=314.20.(本小题满分16分)已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数.(1)求证:函数f (x )在区间(-∞,0]上是单调减函数; (2)若f (1)<f (lg x ),求x 的取值范围. 解:(1)证明:设x 1<x 2≤0,则-x 1>-x 2≥0, 因为f (x )在区间[0,+∞)上是单调增函数, ∴f (-x 1)>f (-x 2), 又因为f (x )是偶函数,所以f (-x 1)=f (x 1),f (-x 2)=f (x 2),f (x 1)>f (x 2),∴函数f (x )在区间(-∞,0]上是单调减函数. (2)当0<x ≤1时,lg x ≤0,由f (1)<f (lg x )得f (-1)<f (lg x ),函数f (x )在区间(-∞,0]上是单调减函数, ∴-1>lg x ,0<x <110,当x ≥1时,lg x ≥0,由f (1)<f (lg x ),f (x )在区间[0,+∞)上是单调增函数, ∴lg x >1,x >10,综上所述,x 的取值范围是1010⎛⎫ ⎪⎝⎭,∪(10,+∞).。

相关文档
最新文档