完整word版,苏教版高一数学必修1综合复习试题
高中数学(苏教版必修一)模块综合测评 Word版含解析

模块综合测评(时间分钟,满分分)一、填空题(本大题共小题,每小题分,共分,请把答案填在题中横线上).已知集合=,=,则∩=.【解析】==,∩=.【答案】.如果集合={>-},那么下列结论成立的是.(填序号)()⊆;(){}∈;()∅∈;(){}⊆.【解析】元素与集合之间的关系是从属关系,用符号∈或∉表示,故()()()不对,又∈,所以{}⊆.【答案】().设集合={,,…,},={,,…,},定义集合⊕={(,)=++…+,=++…+},已知={},={},则⊕的子集为.【解析】因为根据新定义可知,++=++=,故⊕的子集为∅,{()}.【答案】∅,{()}.若函数()=的定义域为,()=(-()的定义域为,则∁(∪)=.【解析】由题意知,(\\(->,->))⇒<<.∴=().(\\(->,(-(≥))⇒≤.∴=(-∞,],∪=(-∞,]∪(),∴∁(∪)=(]∪[,+∞).【答案】(]∪[,+∞).若方程-+=在区间(,)(,∈,且-=)上有一根,则+的值为.【解析】设()=-+,则(-)=-<,(-)=>,所以=-,=-,则+=-.【答案】-.已知函数=()与=互为反函数,()=(-)+,则()的图象恒过定点.【解析】由题知()=,∴()=-+,由-=,得=,故函数()=-+(>,≠)的图象恒过定点.【答案】.已知函数()=(-)++为偶函数,则()在(-,-)上是.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数.【解析】∵()为偶函数,∴=,即()=-+在(-,-)上是增函数.【答案】①.已知函数()=+(>且≠)在[]上的最大值与最小值之和为+,则=.【解析】依题意,函数()=+(>且≠)在[]上具有单调性,因此++=+,解得=.【答案】.已知()=(\\(+,≤,,>,))若()=,则=.【解析】当≤时,令+=,解得=-或=(舍去);当>时,令=,解得=.综上,=-或=.【答案】-或.若=()是奇函数,当>时,()=+,则错误!=.【解析】∵()是奇函数,∴错误!=(-)=-( ).又>,且>时,()=+,∴错误!=-.【答案】-.定义在上的函数()满足()=(\\((-(,≤, (-(- (-(,>,))则()的值为.【解析】∵>,且>时,()=(-)-(-),∴()=()-(),又()=()-(),所以()=-(),又∵≤时,()=(-),∴()=-()=-(-)=-.【答案】-.函数=()的图象如图所示,则函数=()的图象大致是.(填序号)。
新改版苏教版高中数学必修一第一二章综合题含答案

新改版苏教版高中数学必修一第一二章综合题含答案一、单选题1.已知命题:,命题:,,则命题是命题为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.命题的否定为()A.B.C.D.3.已知集合,,,则()A .B.C.D.4.集合的子集中,含有元素0的子集共有()A.8个B.4个C.3个D.2个5.已知命题p:对任意x∈R,2x2+2x+<0,命题q:存在x∈R,sin x-cos x=,则下列判断正确的是( )A.p是真命题B.q是假命题C.p的否定是假命题D.q的否定是假命题6.已知集合,,那么等于()A.B.C.D.7.给出下列命题:其中正确命题的序号是()①已知,若,则="1,"=4①不存在实数,使①是函数的一个对称轴中心①已知函数.A.①①B.①①C.①①D.①8.若集合,则()A .B.C.D.9.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.下列关系中正确的是()A .B.C.D.11.已知集合,,则(). A.B.C.D.12.已知实数,,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、多选题13.下列命题正确的是()A.“x<1,x2<1”的否定是“x≥1,x2≥1” B.“a>”是“<2”的充分不必要条件C.“a=0”是“ab=0”的充分不必要条件D.“x≥1且y≥1”是“x2+y2≥2”的必要不充分条件14.给出下列四个结论,其中结论错误的有()A.是空集B.若,则C.“,2x为偶数”是假命题D.集合是有限集15.下列表示正确的是()A .B.C.D.16.已知,则下列选项中是的充分不必要条件的是()A.B.C.D.17.下列说法中正确的是()A.“”是真命题是“”为真命题的必要不充分条件。
苏教版数学高一 必修1章末综合测评3

章末综合测评(三) 指数函数、对数函数和幂函数(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.设函数f (x )=⎩⎨⎧2x (x ≤0),log 2 x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12的值是________.【解析】 f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫log 2 12=f (-1)=2-1=12.【答案】 122.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是________.(填序号)①y =1x ;②y =e -x ;③y =-x 2+1;④y =lg|x |.【解析】 ①项,y =1x 是奇函数,故不正确;②项,y =e -x 为非奇非偶函数,故不正确;③④两项中的两个函数都是偶函数,且y =-x 2+1在(0,+∞)上是减函数,y =lg |x |在(0,+∞)上是增函数,故选③.【答案】 ③3.f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,f (x )=2 016x +log 2 016 x ,则函数f (x )的零点的个数是________.【解析】 作出函数y 1=2 016x ,y 2=-log 2 016x 的图象,可知函数f (x )=2 016x +log 2 016 x 在x ∈(0,+∞)内存在一个零点,又因为f (x )是定义在R 上的奇函数,所以f (x )在x ∈(-∞,0)上也有一个零点,又f (0)=0,所以函数f (x )的零点的个数是3个.【答案】 34.把函数y =a x 向________平移________个单位得到函数y =⎝ ⎛⎭⎪⎫1a -x +2的图象,函数y =a 3x -2(a >0且a ≠1)的图象过定点________.【解析】 y =⎝ ⎛⎭⎪⎫1a -x +2=a x -2可由y =a x 右平移2个单位得到.令3x -2=0,即x =23,则y =1,∴y =a 3x -2的图象过定点⎝ ⎛⎭⎪⎫23,1.【答案】 右 2 ⎝ ⎛⎭⎪⎫23,15.设12 015<⎝ ⎛⎭⎪⎫12 015b <⎝ ⎛⎭⎪⎫12 015a <1,那么a b ,a a ,b a 的大小关系为________.【解析】 根据指数函数的性质,可知0<a <b <1,根据指数函数的单调性,可知a b <a a ,根据幂函数的单调性,可知a a <b a ,从而有a b <a a <b a .【答案】 a b <a a <b a 6.已知集合A ={y |y =log 2 x ,x >1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =⎝ ⎛⎭⎪⎫12x,x >1,则A ∩B =________.【解析】 ∵x >1,∴y =log 2 x >log 2 1=0, ∴A =(0,+∞), 又∵x >1,∴y =⎝ ⎛⎭⎪⎫12x <12,∴B =⎝ ⎛⎭⎪⎫0,12.∴A ∩B =⎝ ⎛⎭⎪⎫0,12.【答案】 ⎝ ⎛⎭⎪⎫0,127.已知y =f (2x )的定义域为-3,3],则f (x 3)的定义域为________. 【导学号:37590091】【解析】 由题知,x ∈-3,3]时,2x ∈⎣⎢⎡⎦⎥⎤18,8,∴x 3∈⎣⎢⎡⎦⎥⎤18,8,∴x ∈⎣⎢⎡⎦⎥⎤12,2.即f (x 3)的定义域为⎣⎢⎡⎦⎥⎤12,2.【答案】 ⎣⎢⎡⎦⎥⎤12,28.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,下一个有根区间是________.【解析】 设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).【答案】 (2,3)9.若f (x )为奇函数,且x 0是y =f (x )-e x 的一个零点,则-x 0一定是下列哪个函数的零点________.(填序号)(1)y =f (-x )e x +1;(2)y =f (x )e x +1; (3)y =f (-x )e -x -1;(4)y =f (x )e x -1.【解析】 f (x )为奇函数,∴f (-x )=-f (x ),x 0是y =f (x )-e x 的一个零点,∴f (x 0)=e x 0,将-x 0代入各函数式,代入(2)时,可得y =f (-x 0)e -x 0+1=-f (x 0)e -x 0+1=-e x 0e -x 0+1=0,因此-x 0是函数y =f (x )e x +1的零点.【答案】 (2)10.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为________.(参考数据:lg 2=0.301 0,lg 3=0.477 1)【解析】 操作次数为n 时的浓度为⎝ ⎛⎭⎪⎫910n +1,由⎝ ⎛⎭⎪⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,所以n ≥21. 【答案】 2111.下列说法中,正确的是________.(填序号) ①任取x >0,均有3x >2x ; ②当a >0,且a ≠1时,有a 3>a 2; ③y =(3)-x 是增函数;④y =2|x |的最小值为1;⑤在同一坐标系中,y =2x 与y =2-x 的图象关于y 轴对称; ⑥图象与y =3x 的图象关于y =x 对称的函数为y =log 3 x . 【解析】 对于①,可知任取x >0,3x >2x 一定成立. 对于②,当0<a <1时,a 3<a 2,故②不一定正确.对于③,y =(3)-x =⎝ ⎛⎭⎪⎫33x ,因为0<33<1,故y =(3)-x 是减函数,故③不正确.对于④,因为|x |≥0,∴y =2|x |的最小值为1,故正确. 对于⑤,y =2x 与y =2-x 的图象关于y 轴对称是正确的. 对于⑥,根据反函数的定义和性质知,⑥正确. 【答案】 ①④⑤⑥12.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围为________.【解析】 f (x )=a x -x -a (a >0)有两个零点,即a x -x -a =0有两个根, ∴a x =x +a 有两个根.∴y =a x 与y =x +a 有两个交点. 由图形知,a >1.【答案】 (1,+∞)13.若存在x ∈2,3],使不等式1+axx ·2x ≥1成立,则实数a 的最小值为________.【解析】 因为x ∈2,3],所以不等式可化为a ≥2x -1x ,设y =2x -1x ,因为y =2x 和y =-1x 在区间2,3]上为增函数,所以函数y =2x -1x 在区间2,3]上为增函数,则其值域为⎣⎢⎡⎦⎥⎤72,233,由题意得a ≥72,所以实数a 的最小值为72.【答案】 7214.已知函数f (x )=log 3 x +2,x ∈1,9],则函数y =f 2(x )+2f (x 2)的最大值为________.【解析】 由题知⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3,故y =f 2(x )+2f (x 2)的定义域为1,3],y =(log 3 x +2)2+2(log 3 x 2+2)=(log 3 x )2+8log 3 x +8=(log 3 x +4)2-8, 当x ∈1,3] 时,log 3 x ∈0,1],∴y ∈8,17]. 【答案】 17二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)计算下列各式的值: (1)3(3-π)3+4(2-π)4; (2)2log 5 10+log 5 0.25;-10(5-2)-1+(2-3)0;(4)log2.5 6.25+lg1100+ln e+21+log23.【解】(1)原式=(3-π)+(π-2)=1.(2)原式=2log5 (2×5)+log5 0.52=2(log5 2+log5 5)+2log512=2(log5 2+1-log5 2)=2.16.(本小题满分14分)已知幂函数y=f (x)=其中m∈{x|-2<x<2,x∈Z},满足:(1)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f (-x)+f (x)=0.求同时满足(1),(2)的幂函数f (x)的解析式,并求x∈0,3]时f (x)的值域.【解】因为m∈{x|-2<x<2,x∈Z},所以m=-1,0,1.因为对任意x∈R,都有f (-x)+f (x)=0,即f (-x)=-f (x),所以f (x)是奇函数.当m=-1时,f (x)=x2只满足条件(1)而不满足条件(2);当m=1时,f (x)=x0条件(1)、(2)都不满足;当m =0时,f (x )=x 3条件(1)、(2)都满足,且在区间0,3]上是增函数. 所以x ∈0,3]时,函数f (x )的值域为0,27].17.(本小题满分14分)(1)已知-1≤x ≤2,求函数f (x )=3+2·3x +1-9x 的值域;(2)已知-3≤log 12x ≤-32,求函数f (x )=log 2 x 2·log 2 x 4的值域.【解】 (1)f (x )=3+2·3x +1-9x =-(3x )2+6·3x +3,令3x =t ,则y =-t 2+6t +3=-(t -3)2+12,∵-1≤x ≤2,∴13≤t ≤9,∴当t =3,即x =1时,y 取得最大值12;当t =9,即x =2时,y 取得最小值-24,即f (x )的最大值为12,最小值为-24,所以函数f (x )的值域为-24,12].∴-3≤log 2x log 212≤-32, 即-3≤log 2x -1≤-32, ∴32≤log 2x ≤3. ∵f (x )=log 2x 2·log 2x4=(log 2x -log 2 2)·(log 2x -log 24) =(log 2x -1)·(log 2x -2). 令t =log 2x ,则32≤t ≤3, f (x )=g (t )=(t -1)(t -2) =⎝ ⎛⎭⎪⎫t -322-14. ∵32≤t ≤3,∴f (x )max =g (3)=2,f (x )min =g ⎝ ⎛⎭⎪⎫32=-14.∴函数f (x )=log 2x 2·log 2x 4的值域为⎣⎢⎡⎦⎥⎤-14,2.18.(本小题满分16分)已知函数f (x )=log 131+x1+ax(a ≠1)是奇函数, (1)求a 的值; (2)若g (x )=f (x )+21+2x,x ∈(-1,1),求g ⎝ ⎛⎭⎪⎫12+g ⎝ ⎛⎭⎪⎫-12的值; (3)若g (m )>g (n )(m ,n ∈(-1,1)),比较m ,n 的大小. 【导学号:37590092】 【解】 (1)因为f (x )为奇函数,所以对定义域内任意x ,都有f (-x )+f (x )=0,即log 131-x 1-ax+log 13 1+x1+ax =log 13 1-x 21-a 2x 2=0,所以a =±1,由条件知a ≠1,所以a =-1.(2)因为f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫-12+f ⎝ ⎛⎭⎪⎫12=0,令h (x )=21+2x , 则h ⎝ ⎛⎭⎪⎫12+h ⎝ ⎛⎭⎪⎫-12=21+2+11+12=2,所以g⎝ ⎛⎭⎪⎫-12+g ⎝ ⎛⎭⎪⎫12=2. (3)f (x )=log 13 1+x 1-x =log 13⎝ ⎛⎭⎪⎫-1+21-x 随x 增大,1-x 减小,∴21-x 增大,∴1+x 1-x增大,∴f (x )单调递减, 又h (x )=21+2x也随x 增大而减小,∴g (x )单调递减, ∵g (m )>g (n ),∴m <n .19.(本小题满分16分)经市场调查,某种商品在过去50天的销售价格(单位:元)均为销售时间t (天)的函数,且销售量(单位:件)近似地满足 f (t )=-2t +200(1≤t ≤50,t ∈N ),前30天价格(单位:元)为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格(单位:元)为g (t )=45(31≤t ≤50,t ∈N ).(1)写出该种商品的日销售额S (元)与时间t (天)的函数关系式; (2)求日销售额S 的最大值. 【解】 (1)根据题意,得S =⎩⎨⎧(-2t +200)⎝ ⎛⎭⎪⎫12t +30,1≤t ≤30,t ∈N ,45(-2t +200),31≤t ≤50,t ∈N ,=⎩⎪⎨⎪⎧-t 2+40t +6 000,1≤t ≤30,t ∈N ,-90t +9 000,31≤t ≤50,t ∈N .(2)当1≤t ≤30,t ∈N 时, S =-(t -20)2+6 400,当t =20时,S 的最大值为6 400; 当31≤t ≤50,t ∈N 时, S =-90t +9 000为减函数, 当t =31时,S 的最大值是6 210.∵6 210<6 400,∴当销售时间为20天时,日销售额S 取最大值6 400元. 20.(本小题满分16分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2 000元.图1(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫? 【解】 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,① 由销量图易得Q =⎩⎨⎧-2P +50(14≤P ≤20),-32P +40(20<P ≤26),代入①式得L =⎩⎨⎧(-2P +50)(P -14)×100-5 600(14≤P ≤20),⎝ ⎛⎭⎪⎫-32P +40(P -14)×100-5 600(20<P ≤26),(1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元. (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20. 即最早可望在20年后脱贫.。
数学·必修1(苏教版)模块综合检测卷 Word版含解析

模块综合检测卷
(时间:分钟满分:分)
一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只
有一项是符合题意的).已知全集={,,,},={,},={,},则∁(∪)=( )
.{}
.{}
.{,,}
.{,}
解析:因为={,},={,},
所以∪={,,}.
所以∁(∪)={}.
答案:.当>时,在同一平面直角坐标系中,函数=-与=的图象是(
)
答案:
.已知集合={=},={=+},则∩=( )
.[-,]
.∅
.[,+∞)
.[-,+∞)
解析:={=}={≥-},={=+}={≥}.
所以∩=[,+∞).
答案:.设()是上的偶函数,且在(,+∞)上是减函数,若<,+>,
则( )
.(-)>(-)
.(-)=(-)
.(-)<(-)
.(-)与(-)大小不确定
解析:由<,+>得>->,
又()是上的偶函数,且在(,+∞)上是减函数,
所以(-)=()<(-).
答案:.已知函数()的单调递增区间是(-,),则=(+)的单调递增区
间是( )
.(-,-)
.(,)
.(-,)
.(,)
解析:因为()的单调递增区间是(-,),则(+)的单调递增区间满
足-<+<,即-<<-.
答案:
.若∈[,],则函数=-的值域是( )
.[,]
.[-,-]
.[,-]
.[-,]
解析:该函数为增函数,自变量最小时,函数值最小;自变量最
大时,函数值最大.故=-,=.
答案:
.下列不等式正确的是( )。
(完整word版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1。
已知全集{}{}{}()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 A. {}2 B. {}3 C. {}432,, D. {}43210,,,。
2。
下列各组两个集合A 和B,表示同一集合的是A. A={}π,B={}14159.3 B. A={}3,2,B={})32(, C. A={}π,3,1,B={}3,1,-π D 。
A={}N x x x ∈≤<-,11,B={}1 3。
函数2x y -=的单调递增区间为A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 4。
下列函数是偶函数的是A. x y =B. 322-=x y C 。
21-=xy D. ]1,0[,2∈=x x y5.已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =A 。
3B ,2C 。
1 D.0 6.当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是 .A B C D 7.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是A 。
(-2,6)B 。
[—2,6]C 。
{}6,2- D.()()∞+-∞-.62, 8. 若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )ABC 、14D 、129.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是A b c a <<. B. c b a << C. c a b << D.a c b << 10。
苏教版数学必修1复习试题.doc

2,, 8.设函数/(%) = < 1 扬大附中东部分校高一数学期中考试试卷班级 姓名一、填空题:本大题共14小题,每小题5分,共70分。
1. 设集合 S = {yly=3,,xeA}0 = {yly = x2—l,xeA},则SW 是2. 若。
<0,贝U 函数y = (!-<-!的图象必过点23. 已知函数y =『,则其值域为3x 2 4. 函数/(x) = -^= + lg(2x + l)的定义域是 ___________________A /1 — Xz 1、/一3工+25. 函数y= | 的增区间是6. 已知函数人X )是定义在R 上奇函数,当x>0时,f(x) = 2x +x,那么/'⑴的解析 式是 ________________7. 将函数y = (|)x+1的图象向右平移2个单位且向上平移1个单位得函数y = g(x)的图象, 则 g(x)= -------------------XG (-OO,1]则满足fM = -的X 值为__________________________ X G (1, +00) 49.已知a = log 2 0.3 , b = 203 , c = O.302,则Q,b,c 三者从大到小的关系是 10.若f(x)为偶函数,在(-8,0]上是减函数,又f(-2) = 0,则xf(x)< 0的解集是. 11. 若函数f(x) = aLxe [-1,1]的最大值是最小值的的3倍,则。
=12. 设奇函数/'(X )的定义域为[—5,5],若当xe [0,5]时,/(%)的图象如右图,则不等式/'(x) W0的解是13 .定义集合 A 、 B 的一种运算:= (x|x = x, + X 2,M 中若 A = {1,2,3}, B = {1,2),则 A*B 中的所有元素数字之和为 14. 已知函数f(x) = x 2-4x + 5在区间[a,+ 8)上单调递增,则实数a 的取值范围是。
高一数学苏教版必修1总复习卷

高一数学苏教版必修1总复习卷一.选择题:(每题5 分共60分)1.下列四个关系式中,正确的是 ( )A. {}a ∅∈B.{}a a ∉C.{}{,}a a b ∈D.{,}a a b ∈2. 若集合{2},{x M y y N y y -====则M N ⋂等于 ( )A. {1}y y >B. {1}y y ≥C. {0}y y >D.{0}y y ≥ 3. 定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( )A .9 B. 14 C.18 D.214. 已知753()2f x ax bx cx =-++且(5)17,f -=则(5)f 的值为 ( )A.19B.13C. 13-D.19-5. 函数()y f x =的值域是[2,2]-,则函数(1)y f x =+的值域为 ( )A.[1,3]-B.[3,1]-C.[2,2]-D.[1,1]-6. 函数f(x) = log 2a (a>0,a ≠1),若f(x 1)-f(x 2) =1,则)()(2221x f x f -等于 ( )A.2B.1C.1/2D.log 2a7. 若函数f(x)为偶函数,且在(0,)∞内是增函数,又f(-2005)=0,则不等式x ()0f x ⋅<的解集是 ( ) A.{200502005}x x x <-<<或 B.{200502005}x x x -<<>或C.{20052005}x x x <->或D.{20050x x -<<或0<x<2005}8. 定义在区间(,)-∞+∞上的奇函数()f x 为增函数;偶函数()g x 在区间[0,)+∞上的图象与()f x 的图象重合,则在0a b >>时,给出下列不等式:A.()()()()f b f a g a g b -<--B.()()()()f b f a g a g b --<--C.()()()()f a f b g b g a -->--D.()()()()f a f b g b g a --<--其中成立的是 ( ) A.①与④ B. ②与③ C. ①与③ D.②与④ 9. 如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=.其中正确的是 ( ) A. ①② B.①②③④ C.②③④⑤ D. ①②⑤10. 函数2()log ()a f x ax x =-在区间[2,4]上是增函数,则实数a 的取值范围是 ( ) A.1112a a <<>或 B. 1a > C.114a << D.108a << 11. 已知()32f x x =-,2()2g x x x =-,构造函数()F x ,定义如下:当()()f x g x ≥时,()()F x g x =;当()()f x g x <时,()()F x f x =,那么F(x ) ( ) A.有最大值3,最小值1- B.有最大值7-无最小值 C.有最大值3,无最小值 D.无最大值,也无最小值12. 已知a N +∈,且关于x 的方程2lg(42)lg()1x a x -=-+有实根,则a 等于 ( ) A. 0 B . 1 C. 2 D.3二.填空题: (每题4分共24分)13. 当0a >且1a ≠时,指数函数2()3x f x a -=-必过定点 .14. 若函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则实数a 的取值范围是 . 15. 对于函数()f x ,定义域为D,若存在0x D ∈使00()f x x =,则称00(,)x x 为不动点,若3()x af x x b+=+(()f x 不为常数)的图象上有两个不动点关于原点对称,则,a b应满足的条件t/月是 .16. 函数()(01)x f x a a a =>≠且在[1,2]上最大值比最小值大2a,则a 的值为 . 17. 若函数12(log )x y a =为减函数,则a 的取值范围为 .18. 关于函数22log (23)y x x =-+有以下4个结论:① 定义域为(,3](1,);-∞-⋃+∞ ② 递增区间为[1,);+∞③ 最小值为1;④ 图象恒在x 轴的上方.其中正确的是________________________ .三.解答题:( 19-20题每题12分,21-23题14分共66分)19. 设集合A={1,1},-B=2{20}x x ax b -+=,若B ≠∅且B A ⊆,求,a b 的值.20. 定义在区间(1,1)-上的函数()f x 是单调减函数,且满足()()0,f x f x +-=如果有 2(1)(1)0,f a f a -+-<求a 的取值范围.21. 已知函数()f x ,当,x y R ∈时,恒有()()()f x y f x f y +=+. (1). 求证: ()()0;f x f x +-= (2). 若(3),f a -=试用a 表示(24);f (3). 如果x R ∈时,()0,f x <且1(1)2f =-,试求()f x 在区间[2,6]-上的最大值和最小值.22. 设函数2()21x f x a =-+, (1) 求证:不论a 为何实数()f x 总为增函数; (2) 确定a 的值,使()f x 为奇函数; (3) 当()f x 为奇函数时,求()f x 的值域.23. 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y .(1) 写出y 关于x 的函数关系式;(2) 通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)=24. 已知函数22log (2)y x =-的定义域是[,]a b ,值域是2[1,log 14],求实数,a b 的值.参考答案:1.D 考查元素与集合,集与集合之间关系.2.C M {}{}{{}200xy y y y N y y y y -===>===≥则{}0M N y y => , 故选C.3.B {2A B *=,3,4,5}, 所有元素之和为:2+3+4+5=14, 故选B.4.C 由753()2,(5)17f x ax bx cx f =-++-=且得25355515,a b c ⋅-⋅+⋅=- 则753(5)555215213f a b c =⋅-⋅+⋅+=-+=-, 故选C.5.C 由y=f(x)到y=f(x+1)只是图象向左平移一个单位,所以值域不变, 故选C.6.A )()(2221x f x f -=12122(log log )2[()()]2,a a x x f x f x -=-=故选A.7.A 由题意结合图象分析知()0x f x ⋅<的解集为{}200502005x x x <-<<或,故选A. 8.C 由题意结合图象分析知:(1)()()()()f b f a g a g b -<--正确. (2) ()()()()f b f a g a g b --<--错. (3) ()()()()f a f b g b g a -->--正确. (4) ()()()()f a f b g b g a --<--错. 综上所述(1)与(3)正确 , 故选C.9.D 由题意得2(1)ty =则正确; (2)523230y ==>正确;(3)121222212242,212,log 122og 3,log 3 1.5ttt t l t t =====+-=<则错; (4)错; (5)3121223222,1,23,log 3,26,log 6tttt t t ====== 则有t 1+t 2=t 3正确.综上所述(1)(2)(5)正确, 故选D.10.B 设2()log ,a f x u u ax x ==-(1) 当0<a<1时,[]()log 2,4a f x =u 在上是减函数,与题意不符舍去.(2) 当a>1时,()log a f x u =在[2,4]上是增函数,而2)u ax x =-1过点(0,0),(0,a在[2,4]上是增函数,即在1(,)()f x a+∞上为增函数,综合得a.>1. 故选B.11.B 如图F(x)在点P 处取最大值由: 23222x x x x +=-=求得,代入32327()x x F x -=+=-无最小值.综合得F(x)最大值为7-无最小值. 故选12.B 由222lg(42)lg()1421010,5520x a x x a x x x a -=-+-=--+-=得即,关于x 的的方程有实根,则254(52)03320.a a ∆=--≥≥∈ 即又N +,1a ∴= ,故选B.13.(2,2)- 由图象平移规律得知: 函数2()3x f x a -=-,过点 (2,2)-.14.3a ≥- 2()2(1)2f x x a x =+-+的对称轴2(1)12a x a -==- 要使()[4,)f x +∞在上是增函数,则14a -≤,即 3.a ≥-15.b=0,a>0且9a ≠若点(x 0,y 0)是不动点,则有00003(),x af x x x b+==+整理得200(3)0,x b x a +--=根据题意可知上面方程有两个根,且两个根互为相反数.由韦达定理得3090,b a a -=⎧≠⎨-<⎩a-9故b=3,a>0,而f(x)=3+所以x+3,故a,b 应满足b=3,a>0且9a ≠. 16.3122或 (1)当2101,.22a a a a a <<-==时由,求得 (2) 当a>1时,由23..22a a a a -==求得17.1(,1)212(l o g )x y a = 为减函数,1210log 1,(,1).2a a ∴<<∴∈ 18.②③④ 设222log ,23(1)2 2.y u u x x x ==-+=-+≥则2log 1,y u =≥且在[1,)+∞上为增函数,最小值为1,图象恒在x 轴的上方. 综上所述,知②③④正确.17.解析:B B A φ≠⊆且{}{}{}1,1,1,1B ∴=--若{}1,22, 1.1,1B a b a b =-=-=∴=-=则; 若{}1,22,11B a b a b ===∴==则; 若B={}1,1,1,0b a -=-=则.18.解析: ()()0,()f x f x f x +-=∴ 为奇函数. 又22(1)(1)0.(1)(1)f a f a f a f a -+-<-<-得又()(1,1)f x -在上的的单调减函数,2202111111002111a a a a a a a a <<⎧-<-<⎧⎪⎪∴-<-<⇒<<<⎨⎨⎪⎪-<<->-⎩⎩或 01a ∴<<.19.解析: (1)令0x y ==得(0)0f =,再令y x =-得()(),f x f x -=-()()0.f x f x ∴-+=(2)由(3)f a -=得(3),f a =-(24)(333)8(3)8f f f a ∴=++⋅⋅⋅+==-. (3)设12x x <,则2121()[()]f x f x x x =+-=121()()f x f x x +-21210,()0x x f x x ->∴-< 又,1211()()()f x f x x f x ∴+-<,21()()f x f x ∴<()f x ∴在R 上是减函数,max ()(2)(2)(1)1f x f f f ∴=-=-=-=,min 1()(6)6(1)6()32f x f f ===⨯-=-.20. 解析: (1) ()f x 的定义域为R, 12x x ∴<,则121222()()2121x x f x f x a a -=--+++=12122(22)(12)(12)x x x x ⋅-++, 12x x < , 1212220,(12)(12)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <,所以不论a 为何实数()f x 总为增函数.(2) ()f x 为奇函数, ()()f x f x ∴-=-,即222121x xa a --=-+++, 解得: 1.a = 2()1.21x f x ∴=-+ (3) 由(2)知2()121x f x =-+, 211x+> ,20221x ∴<<+, 220,1()121xf x ∴-<-<∴-<<+ 所以()f x 的值域为(1,1).-21. 解析: (1) (110%)().xy a x N *=-∈ (2) 111,(110%),0.9,333x x y a a a ≤∴-≤∴≤ 0.91lg3log 10.4,11.32lg31x x -≥=≈∴=-22.解析: 由220x ->得x <x >而函数的定义域为[,]a b ,∴必有[,]{a b x x ⊆<x >},当b <,22()log (2)y f x x ==-在[,]a b 上单调递减,()f x ∴的值域是[(),()],f b f a2()1()log 14f b f a =⎧∴⎨=⎩ 解得42a b =-⎧⎨=-⎩ ;当a >, 22()log (2)y f x x ==-在[,]a b 上单调递增,()f x ∴的值域为[(),()],f a f b2()1()log 14f a f b =⎧∴⎨=⎩ 解得214a b =⎧⎨=⎩ 综上所述,知42a b =-⎧⎨=-⎩或24a b =⎧⎨=⎩.。
最新苏教版高一数学必修1综合复习试题优秀名师资料

高一数学必修1综合复习试题一、填空题1.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )= .2.已知函数20()10x x f x x x ⎧=⎨->⎩,≤,,,若1()2f a =,则实数a = . 3.方程)2(log )12(log 255-=+x x 的解集为 .4.函数23)(-=x x f 的定义域为 .5.已知函数()f x 是R 上的奇函数,且当0x >时,32()2f x x x =-,则0x <时,函数()f x 的表达式为()f x = .6.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 .7.已知定义在R 上的奇函数)(x f 满足),()2(x f x f -=+则)6(f =_________.8.若2()2(1)2f x ax a x =+-+在(3,3)-为单调函数,则a 的取值范围是 .9.函数y =的单调递减区间为 .10.函数)86lg()(2++-=a ax ax x f 的定义域为R ,则实数a 的取值范围是 .11.若关于x 的方程aa x -+=523)43(有负实数解,则实数a 的取值范围为 .12.如果函数()223f x x x =-+在[]0,m 上有最大值3,最小值2,则m 的范围是 .13.已知定义域为()(),00,-∞+∞的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()0x f x ⋅>的解集为 .14.不等式012≥+-ax x 对所有]2,1[∈x 都成立,则实数a 的取值范围 .二、解答题15.设集合{}2|lg(2)A x y x x ==--,集合{}|3||B y y x ==-.⑴ 求B A ⋂和A B ; ⑵ 若{}|40C x x p =+<,C A ⊆,求实数p 的取值范围.16.计算下列各式的值:(1)3212833)21()32(⎪⎭⎫ ⎝⎛--+-- ; (2) 2lg 2lg3111lg 0.36lg823+++.17.设不等式211222(log )9(log )90x x ++≤的解集为M ,求当x M ∈时,函数()22(log )(log )28xx f x =的最大值和最小值.18.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:()()215052R x x x x =-≤≤,其中x 是产品生产的数量(单位:百台)(1)将利润表示为产量的函数; (2)年产量是多少时,企业所得利润最大?19.函数21)(x b ax x f ++=是定义在)1,1(-上的奇函数,且52)21(=f . (1)确定函数的解析式; (2)证明函数)(x f 在)1,1(-上是增函数; (3)解不等式0)()1(<+-t f t f .20.已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =.(1)求()f x 的解析式; (2) 当[1,1]x ∈-时,不等式()2f x x m >+恒成立,求m 的范围;(3)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大.高一数学必修1 综合复习(一) 参考答案3.}3{4. (0,∞+)6. 148. 11,24⎡⎤-⎢⎥⎣⎦9. 1(,]2-∞11. )5,43( 13. ()()1,01,-+∞16.(1)原式=21--lg12lg12lg12(2)11lg0.6lg 2lg10lg0.6lg 2lg12====++++ 17. []1,0-18.解:(1)当05x ≤≤时,产品能全部售出,成本为0.250.5x +,收入为2152x x - 利润()221150.250.5 4.750.522f x x x x x x =---=-+- 当5x >时,只能销售5百台,成本为0.250.5x +,销售收入为212555522⨯-⨯=利润()250.250.50.25122f x x x =--=-+ 综上, 利润函数()20.5 4.750.5050.25125x x x f x x x ⎧-+-≤≤=⎨-+>⎩(2)当05x ≤≤时,()()21 4.7510.781252f x x =--+ 当 4.75x =时,()max 10.78125f x =万元当5x >时,函数()f x 是减函数,则()120.25510.75f x <-⨯=万元 综上,当年产量是475台时,利润最大20.已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =.(1)求()f x 的解析式;(2) 当[1,1]x ∈-时,不等式:()2f x x m >+恒成立,求实数m 的范围值;(3)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大.(1)解:令2()(0)f x ax bx c a =++≠代入:得:22(1)(1)()2,22a x b x c ax bx c x ax a b x ++++-++=++=∴111a b c =⎧⎪=-⎨⎪=⎩ ∴2()1f x x x =-+(2)当[1,1]x ∈-时,()2f x x m >+恒成立即:231x x m -+>恒成立; 令2235()31()24g x x x x =-+=--,[1,1]x ∈-则对称轴:3[1,1]2x =∈-,min ()(1)1g x g ==-∴1m ≤-(3) []22()(2)4(42)1,1,1g t f t a t a t a a t =+=+-+-+∈- 对称轴为:124at -=① 当1204a-≥时,即:12a ≤;如图1:22max ()(1)4(42)157g t g a a a a a =-=--+-+=-+ ②当1204a-<时,即:12a >;如图2:22max ()(1)4(42)133g t g a a a a a ==+-+-+=++ 综上所述:2max 21572()1332a a a g t a a a ≤⎧-+=⎨++⎩>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1综合复习试题
一、填空题
1.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )= .
2.已知函数20()10x x f x x x ⎧=⎨->⎩,≤,,,若1()2f a =,则实数a = . 3.方程)2(log )12(log 255-=+x x 的解集为 .
4.函数23
)(-=x x f 的定义域为 .
5.已知函数()f x 是R 上的奇函数,且当0x >时,32()2f x x x =-,则0x <时,函数()f x 的表
达式为()f x = .
6.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,
{1,2}B =,则A B *中的所有元素数字之和为 .
7.已知定义在R 上的奇函数)(x f 满足),()2(x f x f -=+则)6(f =_________.
8.若2()2(1)2f x ax a x =+-+在(3,3)-为单调函数,则a 的取值范围是 .
9
.函数y 的单调递减区间为 .
10.函数)86lg()(2++-=a ax ax x f 的定义域为R ,则实数a 的取值范围是 .
11.若关于x 的方程a
a x -+=
523)43(有负实数解,则实数a 的取值范围为 .
12.如果函数()223f x x x =-+在[]0,m 上有最大值3,最小值2,则m 的范围是 .
13.已知定义域为()(),00,-∞+∞的偶函数()f x 在(0)+∞,
上为增函数,且(1)0f =,则 不等式()0x f x ⋅>的解集为 .
14.不等式012
≥+-ax x 对所有]2,1[∈x 都成立,则实数a 的取值范围 .
二、解答题
15.设集合{}2|lg(2)A x y x x ==--,集合{}|3||B y y x ==-.
⑴ 求B A ⋂和A B ; ⑵ 若{}|40C x x p =+<,C A ⊆,求实数p 的取值范围.
16.计算下列各式的值:
(1)3212833)21()
32(⎪⎭⎫ ⎝⎛--+-- ; (2) 2lg 2lg3111lg 0.36lg823
+++.
17.设不等式21122
2(log )9(log )90x x ++≤的解集为M ,
求当x M ∈时,函数()22(log )(log )28
x x f x =的最大值和最小值.
18.某企业生产一种机器的固定成本为0.5万元,但每生产1百台时,又需可变成本(即另增加
投入)0.25万元.市场对此商品的年需求量为5百台,销售的收入(单位:万元)函数为:
()()2
15052
R x x x x =-≤≤,其中x 是产品生产的数量(单位:百台) (1)将利润表示为产量的函数; (2)年产量是多少时,企业所得利润最大?
19.函数21)(x
b ax x f ++=是定义在)1,1(-上的奇函数,且52)21(=f . (1)确定函数的解析式; (2)证明函数)(x f 在)1,1(-上是增函数; (3)解不等式0)()1(<+-t f t f .
20.已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =.
(1)求()f x 的解析式; (2) 当[1,1]x ∈-时,不等式()2f x x m >+恒成立,求m 的范围;
(3)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大.
高一数学必修1 综合复习(一) 参考答案
3.}3{
4. (0,∞+)
6. 14
8. 11,24⎡⎤-⎢⎥⎣⎦
9. 1(,]2
-∞ 11. )5,4
3( 13. ()()1,01,-+∞
16.(1)原式=21--
lg12lg12lg12(2)11lg 0.6lg 2lg10lg 0.6lg 2lg12====++++ 17. []1,0-
18.解:(1)当05x ≤≤时,产品能全部售出,成本为0.250.5x +,收入为2152
x x - 利润()221150.250.5 4.750.522
f x x x x x x =---=-+- 当5x >时,只能销售5百台,成本为0.250.5x +,销售收入为212555522⨯-
⨯= 利润()250.250.50.25122
f x x x =--=-+ 综上, 利润函数()20.5 4.750.5050.2512
5x x x f x x x ⎧-+-≤≤=⎨-+>⎩ (2)当05x ≤≤时,()()21 4.7510.781252
f x x =--+ 当 4.75x =时,()max 10.78125f x =万元
当5x >时,函数()f x 是减函数,则()120.25510.75f x <-⨯=万元
综上,当年产量是475台时,利润最大
20.已知二次函数()f x 满足(1)()2f x f x x +-=且(0)1f =.
(1)求()f x 的解析式;
(2) 当[1,1]x ∈-时,不等式:()2f x x m >+恒成立,求实数m 的范围值;
(3)设[]()(2),1,1g t f t a t =+∈-,求()g t 的最大.
(1)解:令2()(0)f x ax bx c a =++≠代入:
得:22(1)(1)()2,22a x b x c ax bx c x ax a b x ++++-++=++=
∴1
11
a b c =⎧⎪=-⎨⎪=⎩ ∴2()1f x x x =-+
(2)当[1,1]x ∈-时,()2f x x m >+恒成立即:231x x m -+>恒成立;
令2235
()31()24g x x x x =-+=--,[1,1]x ∈-则对称轴:
3
[1,1]2x =∈-,min ()(1)1g x g ==-∴1m ≤-
(3) []22()(2)4(42)1,1,1g t f t a t a t a a t =+=+-+-+∈-
对称轴为:124a
t -=
① 当1204a
-≥时,即:1
2a ≤;如图1:
2
2max ()(1)4(42)157g t g a a a a a =-=--+-+=-+
②当1204a
-<时,即:1
2a >;如图2:
22max ()(1)4(42)133g t g a a a a a ==+-+-+=++
综上所述:2max 21
572
()1332
a a a g t a a a ≤⎧-+=⎨++⎩>。