35.第三十五讲 数论(3) 数论综合

合集下载

2019上海六年级 秋季自招班~第1讲 数论综合 讲义设计+习题(无答案)

2019上海六年级 秋季自招班~第1讲 数论综合   讲义设计+习题(无答案)

模块一、整除对于整数a 和b (b 不为0),如果存在整数q ,使a b q =⨯,则称a 能被b 整除,否则就称a 不能被b 整除,例如:7289=⨯,于是72被8(或9)整除. 整除特征:1.末尾系能否被2和5整除看末一位; 能否被4和25整除看末两位; 能否被8和125整除是看末三位.2.差系一位一段求数段差:111110001001010019911abcd a b c d a b c d c b a =+++=+++-+-倍数∣若11d c b a -+-,则11abcd三位一段求数段差:7、11、13 10000001000abcdefg a bcd efg =++ 9999991001a bcd efg bcd a =++-+∣若1001efg bcd a -+,则1001abcdefg3.和系一位一段求数码和:3和9910010999abc a b c a b a b c =++=++++的倍数∣9a b c ++则9abc 两位一段求数段和:99第1讲 数论综合9910000100999999abcde a bc de a bc de bc a =++=++++倍数∣若99de bc a ++,则99abcde4.拆分系1234,7289,100171113......=⨯=⨯=⨯⨯注:要拆分成互质的数5.试除法 模块二、素合因倍1.算术基本定理:任何大于1的合数都可以表示成素数的乘积.1212n r r r n N p p p =⋅⋅⋅(其中素数123n p p p p <<⋅⋅⋅<,12n r r r ⋅⋅⋅,,, 是正整数,它们分别是123n p p p p ⋅⋅⋅,,,的指数)则上式称为N 的标准分解式. 2.合数的因数个数若正整数N 分解素因数的结果是1212n r r r n N p p p =⋅⋅⋅.其中123n p p p p ⋅⋅⋅,,,为互不相同的质数,12n r r r ⋅⋅⋅,,,为正整数,则N 的正因数的个数为()()()12111n r r r ++⋅⋅⋅+ .3.最大公因数和最小公倍数设a ,b 为两个正整数,则(),a b 和[],a b 有如下关系: ()[],,ab a b a b =⨯模块三、余数当一个正整数b 去除另一个正整数a ,若商为c ,余数为r ,则有a bc r =+()0r b <<. 一、余数的性质 1. 余数小于除数2. 带余除法:被除数=除数×商+余数3. ()b a r -4. 一个正整数a 被另一个正整数n ()1n >除时,余数只可能是0,1,2,…,()1n -中的一个,这样我们可以把整数按余数来分类.5. 余数的运算:(1) 和的余数等于余数的和 (2) 积的余数等于余数的积 二、同余定义:如果a 、b 除以m (1)m ≥所得的余数相同,那么称a 、b 模m 同余,记作(mod )a b m ≡.1.同余有关性质:性质1:如果(mod )a b m ≡,那么a ,b 的差一定能被m 整除.用式子表示为,若(mod )a b m ≡,那么a b mk -=,k 是整数,即m a b -.性质2:如果(mod )a b m ≡,(mod )c d m ≡,那么(mod )a c b d m ±≡±,(mod )ac bd m ≡.性质3:如果(mod )a b m ≡,n 为正整数,那么(mod )nna b m ≡. 2.中国剩余定理对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法: 《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何? 题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数.先由5735⨯=,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数35270⨯=是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求.最后再构造除以7余1,同时又是3,5公倍数的数字,15符合要求,那么所求的自然数可以这样计算:270321215[3,5,7]233[3,5,7]k k ⨯+⨯+⨯±=-,其中k 是自然数.也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数.例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算2703212152[3,5,7]23⨯+⨯+⨯-⨯=得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上[3,5,7]即可,即23+105=128.在解决同余问题时,常把同余问题转化为整除问题来处理.恰当运用相关性质,灵活进行恒等变形,适当兼顾分类讨论.模块四、奇数与偶数如果一个数可以被2整除,那么我们就说这个数是偶数.如果一个整数不是偶数,那么这个数一定是奇数.一个数是偶数还是奇数,是这个整数自身的一种性质,这种性质,叫做奇偶性.在解题时我们可以利用整数的奇偶性来分析和解决问题.例题精讲【例1】(1)一个五位数同时能被9和11整除,若划去该数两端的数码得到的三位数为673,则这个五位数是(2)在235后面补上三个数字,组成一个六位数,使它能同时被3、4、5整除,并且要求这个数值尽可能小,这个六位数是多少?(3)如果某正整数不论从左边或右边读起都相同(例如36563,2002等)那么称该数为“回文数”,能被101整除的最大五位回文数是什么?【例2】(1)一个两位质数,如果将它的十位数字和个位数字交换后,仍是一个两位质数,这样的质数可称为“特殊质数”,这样的“特殊质数”有_______个.(2)已知a ,b ,c 都是正整数,且2371176a b c ⨯⨯=,则237a b c ++的值是 _________.(3)311被一个两位数除,余数为41,这个两位数最小是________.【例3】(1)“六一”儿童节,老师买来360块饼干、480粒糖,400只水果,制作小礼包,分别分给小朋友作为节日礼物,那么至多可以做________个小礼包.(2)一块砖底面长22厘米,宽10厘米,要铺成一个正方形地面(不要折断,只能铺整砖)至少要多少块砖?(3)两个正整数的最小公倍数是180,最大公约数是12,并且小数不能整除大数,求这两个数.(4)甲数是36,甲、乙两数的最大公因数为4,最小公倍数是288,则乙数是_______.【例4】已知1059,1417,2312分别被自然数x除时,所得的余数都是y,求x y-的值.【例5】(1)如果两个数被3除余2,那么它们的积被3除,余数是_______.(2)今天是星期六,再过33+天之后是星期几?33335555【例6】(1)有一个正整数在300400之间,加上1后能被15、18和24整除,这个数是________.(2)一个正整数除以3余2,除以5余4,除以7余6,求满足条件的最小正整数.(3)一个正整数,除以5余4,除以7余2,除以8余1,则满足条件的最小的正整数为______,而满足条件的所有正整数可用代数式表示为_________.(4)一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数.【例7】现有分别能装2千克、3千克、4千克苹果的纸箱A 、B 、C 各若干个,如果将一筐苹果用A 箱装满,那么还余1千克;如果将它用B 箱或C 箱装满,那么也都余1千克,这筐苹果最小有____________千克.【例8】(1)有100个自然数,它们的总和是2000,在这些数中奇数的个数比偶数的个数少,那么这些数中至多有多少个奇数?(2)已知a ,b ,c 三个数中,有一个是2017,有一个是2018,有一个是2019.试判断()()()123a b c -⨯-⨯-的奇偶性,并说明理由.(3)在黑板上写3个整数,然后擦去一个换成其他两数之和或者差,这样操作下去,然后得到74,86,309.问:原来写的3个整数是否为1,3,5?迎难而上已知a 除以5余1,b 除以5余4,且30a b ->,求3a b -除以5的余数熟能生巧【练习1】要使六位数156ABC能被36整除,而且所得的商最小,不同的三个数字A、B、C分别是_________.【练习2】(1)把330分解素因数是__________________________________.(2)正整数1260有______个因数.(3)已知两个数的最大公约数为6,最小公倍数为144,这两个数的和为_______.【练习3】(1)筐内有196个苹果,如果不一次拿出,也不一个一个地拿,要求每次拿出的苹果个数同样多,而且正好拿完,那么拿法共有()A.4种B.6种C.7种D.9种(2)从运动场的一端到另一端全长100米,从一端到另一端止每隔4米插一面小红旗,现在要改成每隔5米插一面小红旗,有多少面小红旗不用移动.【练习4】(1)一个正整数被7除余2,被6除余5,则这个正整数的最小值是________.(2)一个不等于1的整数,它除967、1000、2001得到相同的余数,那么这个整数是_______.(3)某中学的六年级有一百多名学生.若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人.该年级的人数是.(4)被3除余2,被5除余3,被7除余4的最小正整数是_________.【练习5】今天是星期日,那么,今天以后的第32019天是()A.星期三B.星期四C.星期五D.星期六【练习6】(1)判断11121314 (8990)++++++的结果是奇数还是偶数.(2)有20个自然数,其中奇数比偶数多,它们的总和是100,那么这20个数中至多有多少个偶数?(3)若,p q为质数,且5391+=,则p=________,q=_________.p q。

小升初讲座数论综合

小升初讲座数论综合

小升初讲座数论综合 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】【风雨数学小升初讲座12】数论综合数论是专门研究整数的数学分支。

小学里面讲的数论主要包括以下方面的内容:数的整除性、奇数与偶数、质数与合数、分解质因数、约数与倍数、带余数的除法、数的十进制和完全平方数等。

【题目1】一个六位数2003□□能被99整除,它的最后两位数是多少【解答】因为99=9×11,根据9的倍数的特征,□里面的两个数的和可能是9-2-3=4或18-2-3=13,根据11的倍数的特征奇数位数字之和与偶数位数字之和相差1,所有□之和是13,且为7、6,则最后两位数是76。

拓展解法:100÷99=1……1,则2003÷99的余数是20+3=23,23□□是99的倍数,且23+□□也是99的倍数,即□□是76。

简易记忆:□□+03+20是99的倍数,即76。

【题目2】一个数的20倍减去1能被153整除,这样的自然数中最小的是多少【解答】这个数的20倍减去1的个位数字是9,除以153所得商的个位数字必定是3,则要求的这个数是(153×3+1)÷20=23【题目3】在算式A×(B+C)=110+C中,A、B、C是三个互不相等的质数,那么三个数分别是多少【解答】如果A是偶数,左边是偶数,右边110是偶数,那么C也是偶数,偶质数只有2,这样A和C相同了,不符合条件。

如果C是偶数,右边是偶数,那么A或B中必有一个是偶数,不符合条件。

说明A和C都是奇质数,那么右边是奇数,左边只有当B=2时,才满足是奇数。

根据A×(2+C)=110+CA×(2+C)=108+(2+C)A×(2+C)-(2+C)=108(A-1)×(C+2)=108=4×27=12×9 即可得出A=13,C=7。

小六数学第21讲:数论综合

小六数学第21讲:数论综合

第二十一讲数论综合数论是历年小升初的考试难点,各学校都把数论当压轴题处理。

由于行程题的类型较多,题型多样,变化众多,所以对学生来说处理起来很头疼。

数论内容包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。

作为一个理论性比较强的专题,数论在各种杯赛中都会占不小的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。

基本公式1.已知b|c,a|c,则[a,b]|c,特别地,若(a,b)=1,则有ab|c。

2.已知c|ab,(b,c)=1,则c|a。

3.唯一分解定理:任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1× p2×...×p k(#)其中p1<p2<...<p k为质数,a1,a2,....a k为自然数,并且这种表示是唯一的。

该式称为n的质因子分解式。

4.约数个数定理:设自然数n的质因子分解式如(#)那么n的约数个数为d(n)=(a1+1)(a2+1)....(a k+1)所有约数和:(1+P1+P1+…p1)(1+P2+P2+…p2)…(1+P k+P k+…p k)5.用[a,b]表示a和b的最小公倍数,(a,b)表示a和b的最大公约数,那么有ab=[a,b]×(a,b)。

6.自然数是否能被3,4,25,8,125,5,7,9,11,13等数整除的判别方法。

7.平方数的总结:①平方差:A-B=(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。

②约数:约数个数为奇数个的是完全平方数。

约数个数为3的是质数的平方。

③质因数分答案:把数字分答案,使他满足积是平方数。

④立方和:A3+B3=(A+B)(A2-AB+B2)。

8.十进制自然数表示法,十进制和二进制,八进制,五进制等的相互转化。

9.周期性数字:abab=ab×1011.全面掌握数论的几大知识点,能否在考试中取得高分,解出数论的压轴大题是关键。

小学奥数王峰数论(3)约数_倍数_完全平方数

小学奥数王峰数论(3)约数_倍数_完全平方数

教 案教师:__ 王鑫___ 学生:_ 王峰 上课时间: 学生签字:__________【专题知识点概述】本讲中的知识点并不难理解,对于约数、最大公约数;倍数、最小公倍数的定义我们在学校的课本上都已经学习过,而完全平方数的定义也很容易,故我们讲解的重点放在这些数的性质上,以及如何正确的运用这些性质解决数论问题。

一、最大公约数与最小公倍数的常用性质(1)两个自然数分别除以它们的最大公约数,所得的商互质。

即若11(,),(,),a a a b b b a b =⨯=⨯则11(,)1a b =(2)两个数的最大公约和最小公倍的乘积等于这两个数的乘积。

即(,)[,]a b a b a b ⨯=⨯注:(,)a b 表示两个数的最大公约数,[,]a b 表示两个数的最小公倍数(3)对于任意3个连续的自然数,如果三个连续数的奇偶性为a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如:567210⨯⨯=,210就是567的最小公倍数b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍例如:678336⨯⨯=,而6,7,8的最小公倍数为3362168÷=二、约数个数与所有约数的和(1)求任一合数约数的个数:一个合数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。

如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(31)(21)(11)43224+⨯+⨯+=⨯⨯=个。

(包括1和1400本身)(2)求任一合数的所有约数的和:一个合数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。

如:33210002357=⨯⨯⨯,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880++++++++=三、求几个分数的最小公倍数和最大公约数(1)求几个分数的最小公倍数求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;例如:求121624,,202430的最小公倍数首先将3个分数化为最简分数,123162244,, 205243305 ===由[3,2,4]12,(5,3,5)1==,所以12162412[,,]122024301==,即它们的最小公倍数是12.(2)求几个分数的最大公约数求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.例如:求121624,,202430的最大公约数首先将3个分数化为最简分数,123162244,, 205243305 ===由(3,2,4)1,[5,3,5]15==,所以1216241(,,)20243015=,即它们的最大公约数是115.四、完全平方数的性质1.常用主要性质:● 完全平方数的约数个数是奇数,约数的个数为奇数的自然数是完全平方数。

35构造与论证

35构造与论证

【内容概述】各种探讨给定要求能否实现,设计最佳安排和选择方案的组合问题•这里的最佳通常指某个量达到最大或最小•解题时,既要构造出取得最值的具体实例,又要对此方案的最优性进行论证•论证中的常用手段包括抽屉原则、整除性分析和不等式估计.【典型问题】觀⑥级数:車車車1.5卷本百科全书按从第1卷到第5卷的递增序号排列,今要将它们变为反序排列,即从第5卷到第1卷•如果每次只能调换相邻的两卷,那么最少要调换多少次?【分析与解】因为必须是调换相邻的两卷,将第5卷调至原来第1卷的位置最少需4次,得到的顺序为51234;现在将第4卷调至此时第I卷的位置最少需3次,得到的顺序为54123;现在将第3卷调至此时第I卷的位置最少需2次,得到的顺序为54312;最后将第I卷和第2卷对调即可.所以,共需调换4+3+2+仁10次.觀範级数「車車車車—1989年第十五届全俄数学奥林匹克丸年级第1题2.有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆•开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子•问能否做到:(1)某2堆石子全部取光?(2)3 堆中的所有石子都被取走?【分析与解】⑴ 可以,如(1989 , 989, 89) > (1900, 900, 0) > (950 , 900, 950) >(50 , 0, 50) > (25 , 25, 50) > (O, 0, 25).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有1989+989+89=3067,不是3的倍数,所以不能将3堆中所有石子都取走.级数:車車車-.J-J 1-_L-J— -U -------- 4 - .*■B寥六届“华罗庚金杯”少年数学邀请赛■总决赛口试第2塑3.在1997X 1997的正方形棋盘上的每格都装有一盏灯和一个按钮.按钮每按一次,与它同一行和同一列方格中的灯泡都改变一次状态,即由亮变为不亮,或由不亮变为亮.如果原来每盏灯都是不亮的,请说明最少需要按多少次按钮才可以使灯全部变亮?【分析与解】最少要1997次,将第一列中的每一格都按一次,则除第一列外,每格的灯都只改变一次状态,由不亮变成亮•而第一列每格的灯都改变1997次状态,由不亮变亮.如果少于1997次,则至少有一列和至少有一行没有被按过,位于这一列和这一行相交处的灯保持原状,即不亮的状态.懸六届“华罗庚金杯”少年数学邀请赛•复赛第10题4.在某市举行的一次乒乓球邀请赛上,有3名专业选手与3名业余选手参加.比赛采用单循环方式进行,就是说每两名选手都要比赛一场•为公平起见,用以下方法记分:开赛前每位选手各有10分作为底分,每赛一场,胜者加分,负者扣分,每胜专业选手一场加2分,每胜业余选手一场加1分;专业选手每负一场扣2分,业余选手每负一场扣1分•问:一位业余选手最少要胜几场,才能确保他的得分比某位专业选手高?【分析与解】当一位业余选手胜2场时,如果只胜了另两位业余选手,那么他得10+2-3=9(分).此时,如果专业选手间的比赛均为一胜一负,而专业选手与业余选手比赛全胜,那么每位专业选手的得分都是10+2-2+3=13(分)•所以,一位业余选手胜2场,不能确保他的得分比某位专业选手高.当一位业余选手胜3场时,得分最少时是胜两位业余选手,胜一位专业选手,得10+2+2-2=12(分)•此时,三位专业选手最多共得30+0+4=34(分),其中专业选手之间的三场比赛共得0分,专业选手与业余选手的比赛最多共得4分.由三个人得34分,34十3=11丄,推知,必有人得分不超过11分•3也就是说,一位业余选手胜3场,能确保他的得分比某位专业选手高•级数:車*車車5.n支足球队进行比赛,比赛采用单循环制,即每对均与其他各队比赛一场•现规定胜一场得2分,平一场得1分,负一场得0分.如果每一队至少胜一场,并且所有各队的积分都不相同,问:(1) n=4是否可能? (2) n=5是否可能?2【分析与解】(1)我们知道4个队共进行了 C 4场比赛,而每场比赛有 2分产生,所以4个队的得2分总和为C 4 X 2=12.因为每一队至少胜一场,所以得分最低的队至少得 2分,又要求每个队的得分都不相同,所以 4个队得分最少2+3+4+5=14〉12,不满足.即n=4不可能.2 2(2)我们知道5个队共进行C 5场比赛,而每场比赛有2分产生,所以4个队的得分总和为 C 5 X 2=20. 因为每一队至少胜一场,所以得分最低的队至少得2分,又要求每个队的得分都不相同,所以 5个队得分最少为2+3+4+5+6=20,满足.即n=5有可能•但是我们必须验证是否存在实例如下所示,A 得2分,C 得3分,D 得4分,B 得5分,E 得6分.其中“ A _. B'表示A 、B 比赛时,A 胜B ; “ B--C ”表示B C 比赛时,B 平C ,余下类推6.如图35-1,将1 , 2, 3, 4, 5, 6, 7, 8, 9, 10这10个数分别填入图中的10个圆圈内,使任意连续相 邻的5个圆圈内的各数之和均不大于某个整数M.求M 的最小值并完成你的填图.【分析与解】 要使M 最小,就要尽量平均的填写, 因为如果有的连续 5个圆圈内的数 特别小,有的特别大,那么 M 就只能大于等于特别大的数,不能达到尽量小的目的.因为每个圆圈内的数都用了 5次,所以10次的和为5X (1+2+3+…+10) =275.4 Hs每次和都小于等于朋,所以IOM大于等于275,整数M大于28.下面来验证M=28时是否成立,注意到圆圈内全部数的总和是55,所以肯定是一边五个的和是28, —边是27 •因为数字都不一样,所以和28肯定是相间排列,和27也是相问排列,也就是说数组每隔4个差值为I,这样从1填起,容易排出适当的填图•矽國级数:車車車卓車7.(1)将1, 2, 3, 4, 5, 6, 7, 8, 9这9个数字排列在圆周上,使得任意相邻两数的差(大减小)不小于3且不大于5.(2)对于1至11这11个数字,(3)对于1至12这12个数字,⑷对于I至14这14个数字,满足上述要求的排列方法是否存在?【分析与解】(1)对于I至9这九个数,注意到可与1相邻的数是4、5、6,可与9相邻的数也是4、5、6,而1、9又不可相邻,从而4、5、6这三个数只可能分别在1、9之间及1和9的另一侧.以此为突破口,构造一种合题意的填法即可•例如:可以在圆周上依次填入1、6、2、7、3、8、4、9、5.(2)对于1至11这^一个数,1、2,3、9、10、11这六个数中任意两数不能相邻,余下4、5、6、7、8这五个数要填在前六个数的六个空隙中,显然是不可能的.(3)对于1至12这十二个数,1、2、3、10、11、12这六个数中任意两数不能相邻,余下4、5、6、7、8、9这六个数要填在前六个数的六个空隙中,恰好一个空隙填一个数.又注意到9不与1、2、3、10、11 相邻,所以9只能一侧与12相邻,可另一侧必与11、10、3、2、1中的某一个相邻,这是不符合要求的•(4)对于1至14这十四个数,1,2、3、12、13、14这六个数中任意两个数不能相邻,余下4,5、6、7、8、9、10、11这八个数要填在前六个数的六个空隙中,必有两个空隙均填了两个数或有一个空隙中填了三个数.再具体构造一种填法即可,例如在圆周上依次放置1、5、2、6、3、7、12、9、13、10、14、11、8、4即符合要求.㉚鮫级数;拿車車車8. 1998名运动员的号码依次为1至1998的自然数.现在要从中选出若干名运动员参加仪仗队,使得剩下的运动员中没有一个人的号码等于另外两人的号码的乘积.那么,选为仪仗队的运动员最少有多少人【分析与解】我们很自然的想到把用得比较多的乘数去掉,因为它们参与的乘式比较多,把它们去掉有助于使剩下的构不成乘式,比较小的数肯定是用得最多的,因为它们的倍数最多,所以考虑先把它们去掉,但关键是除到何处?考虑到44的平方为1936,所以去到44就够了,因为如果剩下的构成了乘式,那么乘式中最小的数一定小于等于44,所以可以保证剩下的构不成乘式. 因为对结果没有影响,所以可以将1保留,于是去掉2, 3, 4,…,44这43个数.但是,是不是去掉43个数为最小的方法呢?构造2X 97, 3X 96, 4 X 95,…,44X 45,发现这43组数全不相同而且结果都比1998 小,所以要去掉这些乘式就至少要去掉43个数,所以43位最小值,即为所求•珈爲)级数:車車車車9.组互不相同的自然数,其中最小的数是I,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和•问:这组数之和的最小值是多少?当取到最小值时,这组数是怎样构成的?【分析与解】首先把这组数从小到大排列起来,那么最小的肯定为1,1后面只能是1的2倍即2,2后面可以是3或4, 3的后面可以是4, 5, 6; 4的后面可以是5, 6, 8 .最大的为25.下面将所有的可能情况列出:I , 2, 3, 4,…,25所有的和是35;I , 2, 3, 5,…,25所有的和是36;1 , 2, 3, 6,…,25所有的和是37;1 , 2, 4, 5,…,25所有的和是37;1, 2, 4, 6,…,25所有的和是38;1, 2 , 4 , 8,…,25所有的和是40.25是奇数,只能是一个偶数加上一个奇数. 在中间省略的数中不能只有1个数,所以至少还要添加两个数,而且这两个数的和不能小于25 ,否则就无法得到25这个数.要求求出最小值,先看这两个数的和是25的情况,因为省略的两个数不同于前面的数,所以从20+5开始.25=20+5=19+6=18+7=17+8=16+9=15+10=14+11=13+12.这些数中20 , 19 , 18 , 17太大,无法产生,所以看:16+9=15+10=14+11=13+12.看这些谁能出现和最小的I , 2 , 3 , 4,…,25中,检验发现没有可以满足的: 再看I , 2 , 3 , 5 ,…,25 ,11 •在8X8的国际象棋盘上最多能够放置多少枚棋子,使得棋盘上每行、每列及每条斜线上都有偶数枚 棋子?【分析与解】 因为8X8的国际象棋盘上的每行、每列都正好有偶数格,若某行 (某列)有空格,必 空偶数格•而斜线上的格子数有奇也有偶,不妨从左上角的斜线看起:第一条斜线只有 1格,必空;第三条有3格,必至少空1格;第五、七条分别有 5、7格,每条线上至少空 1格•由对称性易知共有 16条斜 线上有奇数格,且这 16条斜线没有共用的格子,故至少必空出 16格•其实,空出两条主对角线上的16个格子就合题意.此时,最多可放置 48枚棋子,放在除这两条主对角线外的其余格子中,如右图所示.发现 1, 2, 3, 5, 10, 15, 25 满足,所以:1+2+3+5+10+15+25=36+25=61矽醐级数,車車車車車10.在10X 19方格表的每个方格内,写上0或1,然后算出每行及每列的各数之和•问最多能得到多少个不同的和数?【分析与解】 首先每列的和最少为 0,最多是10,每行的和最少是 0,最多是19,所以不同的和最 多也就是0, 1 , 2, 3, 4,…,18, 19这20个.下面我们说明如果 0出现,那么必然有另外一个数字不能出现.如果0出现在行的和中,说明有 1行全是0,意味着列的和中至多出现 0到9,加上行的和至多出现 10个数字,所以少了一种可能.如果0出现在列的和中,说明在行的和中 所以至多是19,下面给出一种排出方法.19不可能出现,所以0出现就意味着另一个数字不能出现,| i 1 J 1 1 | 1 I I ! I ] 1 0 1 1 1 J J 1 1 1 1 1 j 1 1 00 I ] 1 L I J I L J 1oootiiiiijii 0 0 0 0 1 1 L ] 1 i1 10000011(11)1 00000011121] 0 0 0 0 0 0 0 1 1 1 1 1 000000001 1 1 1 000000000 L 1 1L 1 1 1 11 11 I I1 1 J 1 I I 1 LJill1 I 111 i 1 ] 1 11111i t i 1 t级数:12 .在1000X 1000的方格表中任意选取n个方格染为红色,都存在3个红色方格,它们的中心构成一个直角三角形的顶点.求n的最小值.【分析与解】首先确定1998不行.反例如下:其次1999可能是可以的,因为首先从行看,1999个红点分布在1000行中,肯定有一些行含有2个或者以上的红点,因为含有0或1个红点的行最多999个,.所以其他行含有红点肯定大于等于1999-999=1000,如果是大于1000,那么根据抽-屉原理,肯定有两个这样红点在一列,那么就会出现红色三角形;如果是等于1000而没有这样的2个红点在一列,说明有999行只含有1个红点,而剩下的一行全是红点,那也肯定已经出现直角三角形了,所以n的最小值为1999.趙家审第七届槪迎春杯杯救学竞赛再决赛第二题第m题13.若干箱货物总重19.5吨,每箱重量不超过353千克.那么最少需要多少辆载重量为 1.5吨的汽车,才能保证把这些箱货物一次全部运走?【分析与解】至少需要16辆车.15辆车不一定能一次运完.例如这批货物共有65只箱子,64只箱子都是301千克,1只箱的重量是236千克,那么总重量为301 X64+236=19500千克),恰好符合19.5吨的要求•由于301 X 5=1505(千克).超过1.5吨.因此,每辆汽车最多只能装4只重量为301千克的箱子,15辆汽车最多只能装4X 15=60(只)重量为301千克的箱子•这样,必然有4只重量为301千克的箱子无法再装运了.16辆汽车一定能一次运完全部箱子:首先让12辆汽车装到刚刚超过1.5吨,即若取下最后装的一只箱子就不超过 1.5吨•再从这12辆汽车上把每辆车最后装的那只箱子卸下来,并把这12只箱子分别装上另外3辆空车,每车4箱,由于每车4箱总重量不超过4X 353=1412(千克)因此也不超过 1.5吨.这时,12+3=15辆车就装完原来前12辆车上的全部货物,总重量超过1.5X 12=18(吨).而且每辆车载重不超过 1.5吨•于是,剩下未装车箱子总重量不足19.5-18=1.5(吨)可以把它们全部装在第16辆车上运走.4X4的方阵•用线段连接其中4点,就可以画出各种不4点都不能连成正方形,那么最少要去掉多少个点?图35-2至少要除去6个点,如下所示为几种方法:觀⑥级数:电車車弟四届“华罗庚金杯”少年数学邀请赛*决赛二试第6題15.在正方体的8个顶点处分别标上1 , 2, 3, 4, 5, 6, 7, 8,然后再把每条棱两端所标的两个数之和写在这条棱的中点.问:(1)各条棱中点处所写的数是否可能恰有5种不同的数值?⑵ 各条棱中点处所写的数是否可能恰有4种不同的数值?【分析与解】如下图所示.各棱中点处所写的数恰有五种不同数值是可能的,如在则中点处恰有五个不同数值6、& 9、10、12.不可能少于五种不同数值,这是因为:觀磁级数:車卓車*車"*■ " * u■"* r■ ®«!- ■ ■« dUli i !■! -j 114 .在图35-2中有16个黑点,它们排成了一个同的正方形•现在要去掉某些点,使得其中任意【分析与解】4、B、…、H依次填1、5、3、7、8、4、6、2,6, 8, 9, 10, 12.以1所在顶点为端点的棱有三条,不妨设这三条棱的另一端点所填写的数是则这三条棱的中点处的数为 1+a , 1+b , 1+c ,满足1+a<1+b<l+c .以8所在顶点为端点的棱也有三条,不妨设这三条棱的另一端点所填写的数为则这三条棱的中点处的数为 8+x , 8+y , 8+z ,满足8+x<8+y<8+z .又 c <8, 1+cw9; x > 1, 8+y>9,所以a 、b 、c ,满足 a<b<c . x 、y 、z 满足 x<y<z , 1+a<1+b<1+c<8+x<8+y<8+z .从而这六条棱中点的六个数不可能少于五种不同的值,因此在各条棱中点处所写的数能恰有 5种不同 的数值,不能使各条棱中点处所写的数恰有 4种不同的如: 对应5种不同的取值为 8。

数论综合

数论综合

数论提高班综合题目第一节. 基础知识例1.1.设(,)1,a m =则存在整数,1,k k m ≤<使得1(mod )k a m ≡例1.2,求不定方程223m n x +=的全部正整数解。

例1.3.求出方程22567130x xy y -+=的全部整数解。

解答:判别式=22(6)457465005y y y --⨯⨯+⨯≥⇒≤,将0,1,2,3,4,5y =±±±±±逐例11a +例记S =例5(y 例例(2例(2(3)设p 是异于2和5的任何一个质数。

证明:(1)99...9p k p -个,这里k 是任意正整数。

例1.10..设31000!k ,但是13|1000!k +/。

求k 。

例 1.11.设11(mod ),m a m -≡对于1m -的任一约数n ,当01n m <<-时都有1(m o d )n a m≡/。

证明:m 是质数。

例1.12.证明:2124nk k n =⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦∑。

例1.13.证明:当n 通过一切自然数时,形如41n -的数中一定有无穷多个质数。

例14.设二元一次不定方程ax by c +=(,,a b c 都是正在整数而(,)1a b =)有一组解00(,)x y ,那么它的任何一组解可以表为,x x bt t Z y =-⎧∈⎨=⎩ 例例49x -例1a a -1b b -例例例1.20.设整数,,x y z 满足()()()x y y z z x x y z ---=++。

证明:27x y z ++例1.21.设 1.n >证明:11...1n不是完全平方数。

例 1.22.设有两个数列{}n x 为1,3,5,11,。

满足112,2n n n x x x n +-=+≥;{}n y 为7,17,55,161,。

满足1123n n n y y y +-=+。

证明:这两个数列没有相同的项。

数学竞赛中的数论问题

数学竞赛中的数论问题 罗增儒引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数.这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=.就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越. ●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:(1)奇数与偶数(奇偶分析法、01法);(2)约数与倍数、素数与合数;(3)平方数;(4)整除;(5)同余;(6)不定方程;ϕ欧拉函数;(7)数论函数、[]x高斯函数、()n(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足 a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a =.一个功能:可以把对整数的研究转化为对非负整数的研究. 定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k ma b =.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.证明1 先证存在性.作序列,3.2,,0,,2,3,b b b b b b ---则a 必在上述序列的某两项之间,从而存在一个整数q ,使()1qb a q b ≤<+,即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,但12q q -为整数,故120q q -=,得12q q =,从而12r r =.注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ⎡⎤≤-<⎢⎥⎣⎦, 有 0a a b b b⎡⎤≤-<⎢⎥⎣⎦,记a r a b b⎡⎤=-⎢⎥⎣⎦,故存在,,0a a q r a b r b b b ⎡⎤⎡⎤==-≤<⎢⎥⎢⎥⎣⎦⎣⎦使()0a qb r r b =+≤<.证明3 只证存在性,作集合{}|,0M a bx x Z a bx =-∈-≥这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.再证r b <,若不然,r b ≥,记1r b r =+,有()()111a qb r qb b r b q r =+=++=++()11r a b q M =-+∈即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =.证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.任取||||d a d c a bqd A d B A B d b d b=-⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨⎩⎩, 任取||||d b d bd B d A B A d c d a bq c ⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨=+⎩⎩,得 A B =.有A 中元素的最大值B =中元素的最大值,即()(),,a b b c =.注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ⋅=.证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,有[],a b a q b=且[],a b b为整数,故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有[]()[],,,ab q a b a b a b =<. ①设()(),,ab b k a a b a b ==,可见k 是a 的倍数,同样()(),,ab ak b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k ma b =,有()[][],,,abm a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ⋅=.注 也可以由[]()(),1,,ab a b k q m ab a b a b q≤===,得(),q a b ≥,与(),q a b <矛盾.两步[](),,,ab q a b ab a b k ==可以交换吗?定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +.(2)由(1)有00ax by +|10a b a +=, 00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但a 不能被p 整除,(),a p p ≠,得(),1a p =.推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=.(8)若(),1a b =,则(),1m n a b =,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(),1ma b =.同样,由(),1ma b =可得(),1m n a b =.定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而21q a q a ≤=,开方得q ≤定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个.2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =,即 c a .(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.(7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=,因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾. 注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,()12a c m q q -=+,得(mod )a c m ≡.(2)若(mod )a b m ≡且(mod )c d m ≡,则(mod )a c b d m +≡+且(mod )ac bd m ≡. 证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡.(3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有,,a b mk k k均为整数,且a b mq k k k=+, 得mod a b m k k k ⎛⎫≡ ⎪⎝⎭. 定理10 设,a b 为整数,n 为正整数, (1)若a b ≠,则()()nna b a b--.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性)证明1 先证明,正整数n 可分解为素数的乘积12m n p p p =. ①如果大于1的正整数n 为素数,命题已成立.当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有11n p a =,11a n <<.如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有11122n p a p p a ==,211a a n <<<.这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积12m n p p p =.下面证明分解式是唯一的.假设n 还有另一个分解式 12t n q q q =, ② 则有 1212m t p p p q q q =. ③因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有11p q =.把等式③两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=. ④但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.证明2 用第二数学归纳法证明12m n p p p =,12m p p p ≤≤≤.(1)当2n =,因为2为素数,命题成立.(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积//////1212//////1212, ,, ,s s s s t s s ta p p p p p pb p pp pp p ++++=≤≤≤=≤≤≤得 //////1212s s s t n p p p q q q ++=,适当调整/i p 的顺序,可得命题对于正整数n 成立.由数学归纳法,命题对一切大于1的正整数n 成立.下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式12m n p p p =,12m p p p ≤≤≤, 12t n q q q =,12t q q q ≤≤≤,得 1212m t p p p q q q =.有 112|t p q q q 且112|m q p p p ,这就存在,i j q p ,使1|i p q 且1|j q p ,但11,,,i j p q q p 均为为素数,所以11,i j p q q p ==,又 111i j p q q p p =≥=≥, 所以 11p q =.把等式两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=.但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积 ()()()12010101111222k kk k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()110101111kk k S n p p p pp p αα=++++++121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和. 画线示意50!中2的指数.35678912450!23571113171923293137414347ααααααααα=定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --.证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,222a pq r =+,20r p ≤<……()111p p p a pq r ---=+,10p r p -≤<由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r -均不为0,只能取1,2,,1p -.下面证明121,,,p r r r -各不相等.若不然,存在,,11t s t s p ≤<≤-,使,,,s s t t s t sa pq r ta pq r r r =+=+=相减 ()()s t s t a p q q -=-.应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由11t s p ≤<≤-可得02s t p p <-≤-<, 要素数p 整除()s t -是不可能的,得121,,,p r r r -各不相等.有()()1211211!p rr r p p -=-=-.再把上述1p -个等式相乘,有 ()11211!p p p a Mp rr r ---=+,即 ()()11!1!p p a Mp p --=+-, 其中M 是一个整数.亦即 ()()11!1p p a Mp ---=.由于p 是素数,不能整除()1!p -,所以素数p 整除11p a --,得证()11p p a--证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡. 只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1i p p C i p =-,故有()11111ppp p p p k k C kC k --+=++++()11mod pk k p ≡+≡+.(用了归纳假设) 这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a--.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.证明 用容斥原理.设{}1,2,,S n =,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k =),用i A 表示i A 中元素的个数,有 i inA p =,1212,,i j k i jkn n A A A A A p p p p p ==.易知,{}1,2,,S n =中与n 互素的正整数个数为12k A A A ,由容斥原理得()12111211k i i ji ki j kkijm k i j m kA A A S A A A A A A A A A ≤≤≤<≤≤<<≤=-+-++-∑∑∑()()1111211112121111*********.ki ki j k i j m k i i j i j mk ki ki j k i j m k i i j i j mk k n n nn n p p p p p p p p p n p p p p p p p p p n p p p ≤≤≤<≤≤<<≤≤≤≤<≤≤<<≤=-+-++-⎡⎤=-+-++-⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ 注 示意3n =的容斥原理.推论 对素数p 有()()11,p p p p p αααϕϕ-=-=-.定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c .证明 记(),d a b =.(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,,x x y y =⎧⎨=⎩,则00ax by c +=,由|,|d a d b , 有00|d ax by +,得证(),|a b c .(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足00ax by +(),a b =.两边乘以e ,得()()00a ex b ey c +=这表明方程有解00,.x ex y ey =⎧⎨=⎩定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ①证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有00ax by c +=,又方程的任意一个解(),x y 满足ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有00,x x y y t t Z b a--==∈- 得方程的任意一个整数解可以表示为 00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈.定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.第二讲 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k -=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”. 类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n .证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有2222122311121(1)(1)1k kn n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .证明 先证n 为偶数,若不然,由121n n a a a a n -=知,121,,,,n n a a a a -全为奇数,其和必为奇数,与其和为0(偶数),故n 必为偶数.(121,,,,n n a a a a -中至少有1个偶数)再证n 为4的倍数,若不然,由n 为偶数知,121,,,,n n a a a a -恰有一个为偶数,其余1n -个数全为奇数,奇数个奇数之和必为奇数,加上一个偶数,总和为奇数,与121,,,,n n a a a a -之和为0矛盾,所以,n 为4的倍数,4|n .(121,,,,n n a a a a -中至少有2个偶数)评析 要证4|n ,只须证121,,,,n n a a a a -中至少有2个偶数,分两步,第一步证至少有1个偶数,第二步证至少有2个偶数.例6 在数轴上给定两点1,在区间内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时. 与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法)1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-…另一方面 12233412()()()()n n a a a a a a a a ++…21231212()1n n n a a a a a a a -++===-…,得()11k-=-,故k 为奇数. 评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108. 解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得 ()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=.方法2 辗转相除法.883811015381207831261232823223229或23214221313823226110158381232232783812029232261q q q q r r r r ========或 ()()()()()8381,1015261,1015261,23229,23229,029=====. []()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由2144 180 108272 90 54336 30 27312 10 9 4 5 3得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 .解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =.例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?解 相当于求不定方程15276x y +=的整数解. 由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=, 从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得()132d q p =-, ④ 的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明()()131432214n n =+-+, 可见 ()214,1431n n ++=. 由此获得2个解法.证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++()71,143n n =++ ④ ()71,1n =+ ⑤1=.解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式()1110m m m m f n a n a n a n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数. 三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.。

数学竞赛中的数论问题

数学竞赛中的数论问题 罗增儒引言数论的认识:数论是关于数的学问,主要研究整数,重点对象是正整数,对中学生可以说,数论是研究正整数的一个数学分支.什么是正整数呢?人们借助于“集合”和“后继”关系给正整数(当时也即自然数)作过本质的描述,正整数1,2,3,…是这样一个集合N +:(1)有一个最小的数1.(2)每一个数a 的后面都有且只有一个后继数/a ;除1之外,每一个数的都是且只是一个数的后继数.这个结构很像数学归纳法,事实上,有这样的归纳公理:(3)对N +的子集M ,若1M ∈,且当a M ∈时,有后继数/a M ∈,则M N +=.就是这么一个简单的数集,里面却有无穷无尽的奥秘,有的奥秘甚至使得人们怀疑:人类的智慧还没有成熟到解决它的程度.比如,哥德巴赫猜想:1742年6月7日,普鲁士派往俄国的一位公使哥德巴赫写信给欧拉,提出“任何偶数,由4开始,都可以表示为两个素数和的形式,任何奇数,由7开始,都可以表示为三个素数的和.后者是前者的推论,也可独立证明(已解决).“表示为两个素数和的形式”就是著名的哥德巴赫猜想,简称1+1.欧拉认为这是对的,但证不出来.1900年希尔伯特将其归入23个问题中的第8个问题. 1966年陈景润证得:一个素数+素数⨯素数(1+2),至今仍无人超越. ●陈景润的数学教师沈元很重视利用名人、名言、名事去激励学生,他曾多次在开讲时,说过这样的话:“自然科学的皇后是数学,数学的皇冠是数论,哥德巴赫猜想则是皇冠上的明珠.……”陈景润就是由此而受到了启示和激励,展开了艰苦卓绝的终生奋斗和灿烂辉煌的奋斗终生,离摘取“皇冠上的明珠”仅一步之遥.●数论题涉及的知识不是很多,但用不多的知识来解决问题往往就需要较强的能力和精明多的技巧,有人说:用以发现数学人才,在初等数学中再也没有比数论教材更好的课程了.任何学生如能把当今一本数论教材中的练习做出,就应当受到鼓励,劝他(她)将来去从事数学方面的工作(U .Dudley 《数论基础》前言).下面,是一个有趣的故事.当代最高产的数学家厄尔多斯听说一个叫波萨(匈牙利,1948)的小男孩很聪明,就问了他一个问题加以考察(1959):如果你手头上有1n +个正整数,这些正整数小于或等于2n ,那么你一定有一对整数是互素的,你知道这是什么原因吗?不到12岁的波萨只用了1分半钟,就给出了问题的解答.他将1~2n 分成(1,2),(3,4),…,(21,2n n -)共n 个抽屉,手头的1n +个正整数一定有两个属于同一抽屉,这两个数是相邻的正整数,必定互素.通过这个问题,厄尔多斯认定波萨是个难得的英才,就精心加以培养,不到两年,14岁的波萨就发表了图论中“波萨定理”.●重视数学能力的数学竞赛,已经广泛采用数论题目,是数学竞赛四大支柱之一,四大支柱是:代数,几何,初等数论,组合初步(俗称代数题、几何题、算术题和智力题).高中竞赛加试四道题正好是四大模块各一题,分别是几何题、代数题、数论题、组合题,一试中也会有数论题.数论受到数学竞赛的青睐可能还有一个技术上的原因,就是它能方便地提供从小学到大学各个层面的、新鲜而有趣的题目.数论题的主要类型:在初中竞赛大纲中,数论的内容列有:十进制整数及表示方法;整除性,被2、3、4、5、8、9、11等数整除的判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;简单的一次不定方程.在高中竞赛大纲中,数论的内容列有:同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*.根据已出现的试题统计,中学数学竞赛中的数论问题的主要有8个重点类型:(1)奇数与偶数(奇偶分析法、01法);(2)约数与倍数、素数与合数;(3)平方数;(4)整除;(5)同余;(6)不定方程;ϕ欧拉函数;(7)数论函数、[]x高斯函数、()n(8)进位制(十进制、二进制).下面,我们首先介绍数论题的基本内容(10个定义、18条定理),然后,对数学竞赛中的数论问题作分类讲解.第一讲 数论题的基本内容中学数学竞赛中的数论问题涉及的数论内容主要有10个定义、18条定理. 首先约定,本文中的字母均表示整数.定义1 (带余除法)给定整数,,0,a b b ≠如果有整数(),0q r r b ≤<满足 a qb r =+,则q 和r 分别称为a 除以b 的商和余数.特别的,0r =时,则称a 被b 整除,记作b a ,或者说a 是b 的倍数,而b 是a 的约数.(,q r 的存在性由定理1证明)定义2 (最大公约数)设整数12,,,n a a a 中至少有一个不等于零,这n 个数的最大公约数是能整除其中每一个整数的最大正整数,记作()12,,,n a a a .()12,,,n a a a 中的i a 没有顺序,最大公约数也称最大公因数.简单性质:()()1212,,,,,,n n a a a a a a =.一个功能:可以把对整数的研究转化为对非负整数的研究. 定义3 (最小公倍数)非零整数12,,,n a a a 的最小公倍数是能被其中每一个()1i a i n ≤≤所整除的最小正整数,记作[]12,,,n a a a .简单性质:如果k 是正整数,a b 的公倍数,则存在正整数m 使[],k m a b =证明 若不然,有[],k m a b r =+([]0,r a b <<),由[],,k a b 都是,a b 的公倍数得r也是,a b 的公倍数,但[]0,r a b <<,与[],a b 的最小性矛盾.故[],k m a b =.定义4 如果整数,a b 满足(),1a b =,则称a 与b 是互素的(也称互质).定义5 大于1且除1及其自身外没有别的正整数因子的正整数,称为素数(也称质数).其余大于1的正整数称为合数;数1既不是素数也不是合数.定理1 若,a b 是两个整数,0b >,则存在两个实数,q r ,使()0a qb r r b =+≤<,并且,q r 是唯一性.证明1 先证存在性.作序列,3.2,,0,,2,3,b b b b b b ---则a 必在上述序列的某两项之间,从而存在一个整数q ,使()1qb a q b ≤<+,即 0a qb b ≤-<, 取 r a qb =-, 0r b ≤<, 得 a qb r =+,即存在两个实数,q r ,使()0a qb r r b =+≤<. 再证唯一性.假设不唯一,则同时存在11,q r 与12,q r ,使 ()1110a q b r r b =+≤<, ()2220a q b r r b =+≤<, 相减 ()1221q q b r r -=-, 1221q q b r r b -=-<, 1201q q ≤-<,但12q q -为整数,故120q q -=,得12q q =,从而12r r =.注:如果取消0r b ≤<,当0r <或r b >,不保证唯一.经典方法:紧扣定义,构造法证存在性,反证法证唯一性. 证明2 只证存在性,用高斯记号,由 01a a b b ⎡⎤≤-<⎢⎥⎣⎦, 有 0a a b b b⎡⎤≤-<⎢⎥⎣⎦,记a r a b b⎡⎤=-⎢⎥⎣⎦,故存在,,0a a q r a b r b b b ⎡⎤⎡⎤==-≤<⎢⎥⎢⎥⎣⎦⎣⎦使()0a qb r r b =+≤<.证明3 只证存在性,作集合{}|,0M a bx x Z a bx =-∈-≥这是一个有下界的非空整数集,其中必有最小的,设x q =时,有最小值r ()0r ≥ a qb r =+.再证r b <,若不然,r b ≥,记1r b r =+,有()()111a qb r qb b r b q r =+=++=++()11r a b q M =-+∈即M 有1r 比r 更小,这与r 为最小值矛盾. 故存在两个实数,q r ,使()0a qb r r b =+≤<.定理 2 设,,a b c 是三个不全为0的整数,满足a qb c =+,其中q 也为整数,则()(),,a b b c =.证明 设A ={,a b 的公约数}, B ={,b c 的公约数}.任取||||d a d c a bqd A d B A B d b d b=-⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨⎩⎩, 任取||||d b d bd B d A B A d c d a bq c ⎧⎧∈⇒⇒⇒∈⇒⊆⎨⎨=+⎩⎩,得 A B =.有A 中元素的最大值B =中元素的最大值,即()(),,a b b c =.注:这是辗转相除法求最大公约数的理论基础.经典方法:要证明A B =,只需证A B ⊆且B A ⊆. 定理3 对任意的正整数,a b ,有 ()[],,a b a b ab ⋅=.证明 因为ab 是,a b 的公倍数,所以,a b 的最小公倍数也是ab 的约数,存在q 使 [],ab q a b =,有[],a b a q b=且[],a b b为整数,故q 是a 的约数.同理q 是b 的约数,即q 是,a b 的公约数.下面证明,q 是,a b 的最大公约数.若不然,(),q a b <.有[]()[],,,ab q a b a b a b =<. ①设()(),,ab b k a a b a b ==,可见k 是a 的倍数,同样()(),,ab ak b a b a b ==,k 是b 的倍数,即k 是,a b 的公倍数,则存在正整数m 使[],k ma b =,有()[][],,,abm a b a b a b =≥, 得 []()[],,,ab q a b a b a b =≥与①矛盾,所以,(),q a b =,得证()[],,a b a b ab ⋅=.注 也可以由[]()(),1,,ab a b k q m ab a b a b q≤===,得(),q a b ≥,与(),q a b <矛盾.两步[](),,,ab q a b ab a b k ==可以交换吗?定理4 ,a b 是两个不同时为0的整数,若00ax by +是形如ax by +(,x y 是任意整数)的数中的最小正数,则(1)00ax by +|ax by +; (2)00ax by +(),a b =. 证明 (1)由带余除法有()00ax by ax by q r +=++,000r ax by ≤<+, 得 ()()0000r a x qx x b y qy ax by =-+-<+,知r 也是形如ax by +的非负数,但00ax by +是形如ax by +的数中的最小正数,故0r =,即00ax by +|ax by +.(2)由(1)有00ax by +|10a b a +=, 00ax by +|01a b b +=,得00ax by +是,a b 的公约数.另一方面,,a b 的每一个公约数都可以整除00ax by +,所以00ax by +是,a b 的最大公约数,00ax by +(),a b =.推论 若(),1a b =,则存在整数,s t ,使1as bt +=.(很有用) 定理5 互素的简单性质: (1)()1,1a =. (2)(),11n n +=. (3)()21,211n n -+=.(4)若p 是一个素数,a 是任意一个整数,且a 不能被p 整除,则(),1a p =. 证明 因为(),|a p p ,所以,素数p 的约数只有两种可能:()(),1,,a p a p p ==.但a 不能被p 整除,(),a p p ≠,得(),1a p =.推论 若p 是一个素数,a 是任意一个整数,则(),1a p =或(),a p p =. (5)若(),1a b =,则存在整数,s t ,使1as bt +=.(定理4推论) (6)若()(),1,,1a b a c ==,则(),1a bc =. 证明 由(),1a b =知存在整数,s t ,使1as bt +=. 有 ()a cs bct c +=, 得 ()(),,1a bc a c ==.(7)若(),1a b =,则(),1a b a ±=,(),1a b b ±=, (),1a b ab ±=. 证明 ()()(),,,1a b a b a b a ±=±==, ()(),,1a b b a b ±==, 由(6)(),1a b ab ±=.(8)若(),1a b =,则(),1m na b =,其中,m n 为正整数. 证明 据(6),由(),1a b =可得(),1ma b =.同样,由(),1m a b =可得(),1m na b =.定理6 设a 是大于1的整数,则a 的除1之外的最小的正约数q 必是素数,且当a 是合数时,q ≤证明 用反证法,假设q 不是素数,则存在正整数数1q ,11q q <<,使1|q q ,但|q a ,故有1|q a ,这与q 是a 的除1之外的最小正约数矛盾,故q 是素数.当a 是合数时,设1a a q =,则1a 也是a 的一个正约数,由q 的最小性得1q a ≤,从而21q a q a ≤=,开方得q ≤定理7 素数有无穷多个,2是唯一的偶素数. 证明 假设素数只有有限多个,记为12,,,n p p p ,作一个新数1211n p p p p =+>.若p 为素数,则与素数只有 n 个12,,,n p p p 矛盾.若p 为合数,则必有{}12,,,i n p p p p ∈,使|i p p ,从而|1i p ,又与1i p >矛盾.综上所述,素数不能只有有限多个,所以素数有无穷多个. 2是素数,而大于2的偶数都是合数,所以2是唯一的偶素数.注:这个证明中,包含着数学归纳法的早期因素:若假设有n 个素数,便有1n +个素数.(构造法、反证法)秒定理8(整除的性质)整数,,a b c 通常指非零整数 (1)1a ,1|a -;当0a ≠时,|a a ,|0a .(2)若b a ,0a ≠,则b a ≤;若b a ,b a >,则0a =;若0ab >,且,b a a b ,则a b =.证明 由b a ,0a ≠,有a bq =,得a b q b =≥. 逆反命题成立“若b a ,b a >,则0a =”; 由b a ≤且b a ≥得a b =,又0ab >,得a b =. (3)若a b c d +=+,且|,|,|e a e b e c ,则|e d . (4)若c b ,b a ,则c a . 证明 (定义法)由c b ,b a ,有 12,b q c a q b ==, 得 ()12a q q c =,即 c a .(5)若c a ,则bc ab .(6)若c a ,c b ,则对任意整数,m n ,有c ma nb +. 证明 (定义法)由c a ,c b ,有 12,a q c b q c ==, 得 ()12ma nb mq nq c +=+, 即 c ma nb +.(7)若(),1a b =,且a bc ,则a c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有()()a cs bc t c +=,因为a a ,a bc ,所以a 整除等式的左边,进而整除等式的右边,即a c .注意 不能由a bc 且|a b /得出a c .如649⨯,但6|4/且6|9/. (8)若(),1a b =,且,a c b c ,则ab c .证明 由(),1a b =知存在整数,s t ,使1as bt +=,有acs bct c +=,又由,a c b c 有12,c aq c bq ==代入得()()21ab q s ab q t c +=,所以ab c .注意 不能由a c 且b c 得出ab c .如不能由630且10|30得出60|30. (9)若a 为素数,且a bc ,则a b 或a c .证明 若不然,则|a b /且|a c /,由a 为素数得()(),1,,1a b a c ==,由互素的性质(6)得(),1a bc =,再由a 为素数得|a bc /,与a bc 矛盾.注意 没有a 为素数,不能由a bc 推出a b 或a c .如649⨯,但6|4/且6|9/.定义6 对于整数,,a b c ,且0c ≠,若()c a b -,则称,a b 关于模c 同余,记作(mod )a b c ≡;若()|c a b -/,则称,a b 关于模c 不同余,记作a(mod )b c .定理9(同余的性质)设,,,,a b c d m 为整数,0,m > (1)若(mod )a b m ≡且(mod )b c m ≡,则(mod )a c m ≡; 证明 由(mod )a b m ≡且(mod )b c m ≡,有 12,a b mq b c mq -=-=,()12a c m q q -=+,得(mod )a c m ≡.(2)若(mod )a b m ≡且(mod )c d m ≡,则(m o d )a c b d m +≡+且(mod )ac bd m ≡.证明 由(mod )a b m ≡且(mod )c d m ≡,有12,a b mq c d mq -=-=, ① 对①直接相加 ,有()()()12a c b d m q q +-+=+,得 (mod )a c b d m +≡+.对①分别乘以,c b 后相加,有()()()12ac bd ac bc bc bd m cq bq -=---=+,得 (mod )ac bd m ≡.(3)若(mod )a b m ≡,则对任意的正整数n 有(mod )nna b m =且(mod )an bn mn ≡. (4)若(mod )a b m ≡,且对非零整数k 有(,,)k a b m ,则mod a b m k k k ⎛⎫= ⎪⎝⎭. 证明 由(mod )a b m ≡、,有 a b mq =+, 又(,,)k a b m ,有,,a b mk k k均为整数,且a b mq k k k=+, 得mod a b m k k k ⎛⎫≡ ⎪⎝⎭. 定理10 设,a b 为整数,n 为正整数,(1)若a b ≠,则()()n na b a b --.()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.(2)若a b ≠-,则()()2121n n a b ab --++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.(3)若a b ≠-,则()()22nn a b ab +-.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.定义7 设n 为正整数,k 为大于2的正整数, 12,,,m a a a 是小于k 的非负整数,且10a >.若12121m m m m n a k a k a k a ---=++++,则称数12m a a a 为n 的k 进制表示.定理11 给定整数2k ≥,对任意的正整数n ,都有唯一的k 进制表示.如12121101010m m m m n a a a a ---=++++,109,0i a a ≤≤>(10进制) 12121222m m m m n a a a a ---=++++.101,0i a a ≤≤>(2进制)定理12 (算术基本定理)每个大于1的正整数都可分解为素数的乘积,而且不计因数的顺序时,这种表示是唯一的1212k k n p p p ααα=,其中12k p p p <<<为素数,12,,,k ααα为正整数. (分解唯一性)证明1 先证明,正整数n 可分解为素数的乘积12m n p p p =. ①如果大于1的正整数n 为素数,命题已成立.当正整数n 为合数时,n 的正约数中必有一个最小的,记为1p ,则1p 为素数,有11n p a =,11a n <<.如果1a 为素数,命题已成立.当1a 为合数时,1a 的最小正约数2p 为必为素数,有11122n p a p p a ==,211a a n <<<.这个过程继续进行下去,由于n 为有限数,而每进行一步i a 就要变小一次,于是,经过有限次后,比如m 次,n 就变为素数的乘积12m n p p p =.下面证明分解式是唯一的.假设n 还有另一个分解式 12t n q q q =, ② 则有 1212m t p p p q q q =. ③因为等式的右边能被1q 整除,所以左边也能被1q 整除,于是1q 整除12,,,m p p p 中的某一个i p ,但i p 为素数,所以i p 与1q 相等,不妨设i p 为1p ,有11p q =.把等式③两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=. ④但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明等式④不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.证明2 用第二数学归纳法证明12m n p p p =,12m p p p ≤≤≤.(1)当2n =,因为2为素数,命题成立.(2)假设命题对一切大于1而小于n 的正整数已成立. 这时,若n 为素数,命题成立;若n 不为素数,必存在,a b ,使 n ab =,1,1a n b n <<<<, 由归纳假设,小于n 的,a b 可分解为素数的乘积//////1212//////1212, ,, ,s s s s t s s ta p p p p p pb p pp pp p ++++=≤≤≤=≤≤≤得 //////1212s s s t n p p p q q q ++=,适当调整/i p 的顺序,可得命题对于正整数n 成立.由数学归纳法,命题对一切大于1的正整数n 成立.下面证明分解式是唯一的.假设n 的分解式不唯一,则至少有两个分解式12m n p p p =,12m p p p ≤≤≤, 12t n q q q =,12t q q q ≤≤≤,得 1212m t p p p q q q =.有 112|t p q q q 且112|m q p p p ,这就存在,i j q p ,使1|i p q 且1|j q p ,但11,,,i j p q q p 均为为素数,所以11,i j p q q p ==,又 111i j p q q p p =≥=≥, 所以 11p q =.把等式两边约去11p q =,得 2323m t p p p q q q =.再重复上述步骤,又可得22p q =,33p q =,…,直到等式某一边的因数被全部约完,这时,如果另一边的因数没有约完,比如右边没有被约完(m t <),则有121m m t q q q ++=.但12,,,m m t q q q ++均为素数,素数都大于1,有121m m t q q q ++>,这表明上述等式不可能成立,两个分解式的因数必然被同时约完,即分解式是唯一的. 将分解式按i p 的递增排列,并将相同的i p 合并成指数形式,即得1212k k n p p p ααα=.其中12k p p p <<<为素数,12,,,k ααα为正整数.定理13 若正整数n 的素数分解式为 1212k k n p p p ααα=则n 的正约数的个数为()()()()12111k d n a a a =+++,n 的一切正约数之和为()121111212111111k k k p p p S n p p p ααα+++---=⋅⋅⋅---. 证明 对于正整数1212k k n p p p ααα=,它的任意一个正约数可以表示为1212k k m p p p βββ=,0i i βα≤≤ , ①由于i β有0,1,2,,i α共1i α+种取值,据乘法原理得n 的约数的个数为()()()()12111k d n a a a =+++.考虑乘积()()()1201010*******k k k k p p p p p p pp p ααα+++++++++,展开式的每一项都是n 的某一个约数(参见①),反之,n 的每一个约数都是展开式的某一项,于是,n 的一切约数之和为()()()110101111k k k S n p p p pp p αα=++++++121111212111111k k k p p p p p p ααα+++---=⋅⋅⋅---. 注 构造法.定义8 (高斯函数)对任意实数x ,[]x 是不超过x 的最大整数.亦称[]x 为x 的整数部分,[][]1x x x ≤<+.定理14 在正整数!n 的素因子分解式中,素数p 作为因子出现的次数是23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.证明 由于p 为素数,故在!n 中p 的次方数是1,2,,n 各数中p 的次方数的总和(注意,若p 不为素数,这句话不成立).在1,2,,n 中,有n p ⎡⎤⎢⎥⎣⎦个p 的倍数;在n p ⎡⎤⎢⎥⎣⎦个p 的倍数的因式中,有2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数;在2n p ⎡⎤⎢⎥⎣⎦个2p 的倍数的因式中,有3n p ⎡⎤⎢⎥⎣⎦个3p 的倍数;…,如此下去,在正整数!n 的素因子分解式中,素数p 作为因子出现的次数就为23n n n p p p ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.注 省略号其实是有限项之和. 画线示意50!中2的指数.35678912450!23571113171923293137414347ααααααααα=定理15 (费玛小定理)如果素数p 不能整除整数a ,则()11p p a --.证明1 考察下面的1p -个等式: 11a pq r =+,10r p ≤<,222a pq r =+,20r p ≤<……()111p p p a pq r ---=+,10p r p -≤<由于素数p 不能整除整数a ,所以,p 不能整除每个等式的左边,得121,,,p r r r -均不为0,只能取1,2,,1p -.下面证明121,,,p r r r -各不相等.若不然,存在,,11t s t s p ≤<≤-,使,,,s s t t s t sa pq r ta pq r r r =+=+=相减 ()()s t s t a p q q -=-.应有素数p 整除()s t a -,但素数p 不能整除a ,所以素数p 整除()s t -,然而由11t s p ≤<≤-可得02s t p p <-≤-<, 要素数p 整除()s t -是不可能的,得121,,,p r r r -各不相等.有()()1211211!p rr r p p -=-=-.再把上述1p -个等式相乘,有 ()11211!p p p aMp rr r ---=+,即 ()()11!1!p p a Mp p --=+-,其中M 是一个整数.亦即 ()()11!1p p a Mp ---=.由于p 是素数,不能整除()1!p -,所以素数p 整除11p a --,得证()11p p a--证明2 改证等价命题:如果素数p 不能整除整数a ,则()mod pa a p ≡.只需对1,2,,1a p =-证明成立,用数学归纳法.(1)1a =,命题显然成立.(2)假设命题对()11a k k p =≤<-成立,则当1a k =+时,由于()|1,2,,1i p p C i p =-,故有()11111pp p p p p k k C k C k --+=++++()11mod pk k p ≡+≡+.(用了归纳假设)这表明,命题对1a k =+是成立. 由数学归纳法得()mod pa a p ≡.又素数p 不能整除整数a ,有(),1a p =,得()11p p a --.定义9 (欧拉函数)用()n ϕ表示不大于n 且与n 互素的正整数个数. 定理16 设正整数1212k k n p p p ααα=,则()12111111k n n p p p ϕ⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭.证明 用容斥原理.设{}1,2,,S n =,记i A 为S 中能被i p 整除的数所组成的集合(1,2,i k =),用i A 表示i A 中元素的个数,有 i inA p =,1212,,i j k i jkn n A A A A A p p p p p ==.易知,{}1,2,,S n =中与n 互素的正整数个数为12k A A A ,由容斥原理得()12111211k i i ji ki j kkijm k i j m kA A A S A A A A A A A A A ≤≤≤<≤≤<<≤=-+-++-∑∑∑()()1111211112121111*********.ki ki j k i j m k i i j i j mk ki ki j k i j m k i i j i j mk k n n nn n p p p p p p p p p n p p p p p p p p p n p p p ≤≤≤<≤≤<<≤≤≤≤<≤≤<<≤=-+-++-⎡⎤=-+-++-⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ 注 示意3n =的容斥原理.推论 对素数p 有()()11,p p p p p αααϕϕ-=-=-.定理17 整系数不定方程ax by c +=(0ab ≠)存在整数解的充分必要条件是(),a b c .证明 记(),d a b =.(1)必要性(方程有解必须满足的条件).若方程存在整数解,记为00,,x x y y =⎧⎨=⎩,则00ax by c +=,由|,|d a d b , 有00|d ax by +,得证(),|a b c .(2)充分性(条件能使方程有解).若|d c ,可设c de =由于形如ax by +的数中有最小正数00ax by +满足00ax by +(),a b =.两边乘以e ,得()()00a ex b ey c +=这表明方程有解00,.x ex y ey =⎧⎨=⎩定理18 若0ab ≠,(),1a b =,且00,,x x y y =⎧⎨=⎩是整系数不定方程ax by c +=的一个整数解,则方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈. ①证明 直接代入知①是方程的整数解,下面证明任意一个整数解都有①的形式. 由()00,x y 是方程的一个解,有00ax by c +=,又方程的任意一个解(),x y 满足ax by c +=, ② 相减 ()()000a x x b y y -+-=. ③ 但(),1a b =,故有 ()0|a y y -, 有00,x x y y t t Z b a--==∈- 得方程的任意一个整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩()t Z ∈.定义10 (平面整点)在平面直角坐标系上,纵横坐标都是整数的点称为整点(也称格点).类似地可以定义空间整点.第二讲 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod 2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k-=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.解法1 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,奇数个奇数的和还是奇数奇数=()()()1212n a a a n -+-++-()()12120n a a a n =+++-+++=,这与“奇数≠偶数”矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法说明()()()1212n a a a n ---不为偶数是不行的,但没有指出为偶数的真正原因.体现了整体处理的优点,但掩盖了“乘积”为偶数的实质.解法2 (反证法)假设()()()1212n a a a n ---为奇数,则i a i -均为奇数,i a 与i 的奇偶性相反,{}1,2,,n 中奇数与偶数一样多,n 为偶数.但已知条件n 为奇数,矛盾. 所以()()()1212n a a a n ---是偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“n 为奇数”.那么为什么“n 为奇数”时“乘积”就为偶数呢?解法3 121,2,,,,,,n n a a a 中有1n +个奇数,放到n 个括号,必有两个奇数在同一个括号,这两个奇数的差为偶数,得()()()1212n a a a n ---为偶数.评析 这个解法揭示了()()()1212n a a a n ---为偶数的原因是“当n 为奇数时,1,2,,n 中奇数与偶数个数不等,奇数多,某个括号必是两个奇数的差,为偶数”. 类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等) 例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?解 考虑14个差的和S ,一方面1214105S =+++=为奇数.另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+,因此,14个差的和S 的奇偶性与14个相应数之和的和/S 的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对/S 的贡献为2a 或4a ,从而/S 为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数.评析:用了计算两次的技巧.对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理.计算两次可以建立左右两边关系不太明显的恒等式.在反证法中,计算两次又可用来构成矛盾.例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?解 (1)4堆是不能保证的.如4堆的奇偶性为:(反例) (奇奇),(偶偶),(奇偶),(偶奇).(2)5堆是可以保证. 因为苹果和梨数的奇偶性有且只有上述4种可能,当把这些苹果和梨分成5堆时,必有2堆属于同一奇偶性,其和苹果数与梨数都是偶数.例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n . 证明 由{}1,1i x ∈-,有{}11,1i i x x +∈-,再由1223110n n n x x x x x x x x -+++++=,知n 个1i i x x +中有一半是1,有一半是1-,n 必为偶数,设2n k =.现把n 个1i i x x +相乘,有 2222122311121(1)(1)1k k n n n n n x x x x x x x x x x x x ---+===,可见,k 为偶数,设2k m =,有4n m =,得证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .证明 先证n 为偶数,若不然,由121n n a a a a n -=知,121,,,,n n a a a a -全为奇数,其和必为奇数,与其和为0(偶数),故n 必为偶数.(121,,,,n n a a a a -中至少有1个偶数)再证n 为4的倍数,若不然,由n 为偶数知,121,,,,n n a a a a -恰有一个为偶数,其余1n -个数全为奇数,奇数个奇数之和必为奇数,加上一个偶数,总和为奇数,与121,,,,n na a a a -之和为0矛盾,所以,n 为4的倍数,4|n .(121,,,,n n a a a a -中至少有2个偶数)评析 要证4|n ,只须证121,,,,n n a a a a -中至少有2个偶数,分两步,第一步证至少有1个偶数,第二步证至少有2个偶数.例6 在数轴上给定两点1内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.证明 将2n +个点按从小到大的顺序记为122,,,n A A A +…,并在每一点赋予数值i a ,使1, 1,i i i A a A ⎧=⎨-⎩当为有理数点时, 当为无理数点时. 与此同时,每条线段1i i A A +也可数字化为1i i a a +(乘法)1111,, 1,,i i i i i i A A a a A A +++-⎧=⎨⎩ 当一为有理数点,另一为无理数时, 当同为有理数点或无理数点时,记11i i a a +=-的线段有k 条,一方面112233412()()()()(1)(1)(1)k n k k n n a a a a a a a a -+++=-+=-…另一方面 12233412()()()()n n a a a a a a a a ++… 21231212()1n n n a a a a a a a -++===-…, 得()11k-=-,故k 为奇数. 评析 用了数字化、奇偶分析的技巧. 二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108. 解(1)方法1 分解质因数法.由283811729,10155729,=⨯=⨯⨯得 ()8381,101529=,[]28381,1015571729293335=⨯⨯⨯=.方法2 辗转相除法.883811015381207831261232823223229或 232142213138232261101583812322327838120029232261q q q q r r r r ========或 ()()()()()8381,1015261,1015261,23229,23229,029=====. []()83811015838110158381,10158381352933358381,101529⨯⨯===⨯=.(2)方法1 短除法.由2144 180 108272 90 54336 30 27312 10 9 4 5 3得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.方法2 分解质因数法.由42222314423,180235,10823,=⨯=⨯⨯=⨯,得 ()22144,180,1082336=⨯=,[]43144,180,1082352160=⨯⨯=.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 .解 依题意,对最小的n ,则1n +是2,3,4,5,6,7,8,9,10的公倍数3212357n +=⨯⨯⨯,得2519n =.例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?解 相当于求不定方程15276x y +=的整数解. 由()15,273=知,存在整数,u v ,使15273u v +=,可得一个解2,1u v ==-,从而方程 ()1542726⨯+⨯-=.即往小容器里倒2次油,每次倒满之后就向大容器里倒,大容器倒满时,小容器里剩有3升油;再重复一次,可得6升.例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.证明 用数学归纳法.当2n =时,取121,2a a ==,命题显然成立. 假设n k =时,命题成立,即存在12,,,k a a a ,使 i j i j a a a a -+,对任意的{},1,2,,,i j k i j ∈≠成立.现取b 为12,,,k a a a 及它们每两个数之差的最小公倍数,则1k +个数12,,,,k b a b a b a b +++满足 ()()()()()(),,t t ij i j a b b a b b a b a b a b a b ⎧+-++⎪⎨+-++++⎪⎩即命题对1n k =+时成立.由数学归纳法知命题对2n ≥成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.证明1 (反证法)假若214143n n ++可约,则存在1d >, ①使 ()214,143n n d ++=, 从而存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩②③消去n ,()()3322⨯-⨯,得()132d q p =-, ④ 的 1d =. ⑤由(1)、(5)矛盾,得1d =. 解题分析:(1)去掉反证法的假设与矛盾就是一个正面证法.(2)式④是实质性的进展,表明()()131432214n n =+-+, 可见 ()214,1431n n ++=. 由此获得2个解法.证明2 设()214,143n n d ++=.存在(),,,1p q p q =,使214, 143, n dp n dq +=⎧⎨+=⎩①② 消去n ,②×3-①×2,得()132d q p =- ③ 得 1d =.证明3 由()()131432214n n =+-+ 得 ()214,1431n n ++=.证明4 ()214,143n n ++()71,143n n =++ ④ ()71,1n =+ ⑤1=.解题分析:第④ 相当于 ①-②;第⑤ 相当于②-2(①-②)=②×3-①×2;所以③式与⑤式的效果是一样的.例12 不存在这样的多项式()1110mm m m f n a n a na n a --=++++,使得对任意的正整数n ,()f n 都是素数.证明 假设存在这样的多项式,对任意的正整数n ,()f n 都是素数,则取正整数n b =,有素数p 使()1110mm m m f b a b a ba b a p --=++++=,进而对任意的整数,k 有()()()()1110mm m m f b kp a b kp a b kp a b kp a --+=+++++++()1110m m m m a b a b a b a Mp --=+++++(二项式定理展开)()1P M =+,其中M 为整数,这表明()f b kp +为合数.这一矛盾说明,不存在这样的多项式,对任意的正整数n ,()f n 都是素数. 三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod 8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.。

迎春杯六年级讲义(6讲)迎春杯第 3 讲数论教师版讲义

第三讲数论综合数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

知识概要整除问题整除是我们很早接触的一个概念,对于它的性质我们也比较熟悉,不过它在题目表现出来的很大的灵活性和很强的技巧性,仍然是值得我们不断学习和思考的.下面我们先回顾一下相关知识:整除的概念a,b,c为整数,且,如果a÷b=c,即整数a除以整数b,得到的商是整数c且没有余数,那么称作n 能被b整除,或者是说b能整除a,记作;否则,称为a不能被b整除,或是说b不能整除n.如果整数a能够被整数b整除,则a叫做b的倍数,b叫做a的约数.整除的基本性质如果a,b都能够被c整除,那么它们的和与差也能够被c整除.即:如果,那么如果b与c的积能整除a,那么b与c都能整除a.即:如果,那么如果c能整除b,b能整除a,那么c能整除a.即:如果如果b,c都能够整除,且b与c互质,那么b与c的乘积能整除a.即:数的整除特征能被2整除的数的特征:个位数字是0,2,4,6,8;能被3(或9)整除的数的特征:各位的数字之和能够被3(或9)整除;能被4(或25)整除的数的特征:末两位数能够被4(或25)整除;能被5整除的数的特征:个位数字是0或5;能被7(或11、13)整除的数的特征:一个整数的末三位与末三位以前的数字所组成的数之差能够被7(或1、11、13)整除;能被8(或125)整除的数的特征:末三位数能够被8(或125)整除;能被11整除的数的特征:奇数位上的数字之和与偶数位上的数字之和的差能够被11整除.1.质数与合数一个数除了l 和它本身,不再有别的约数,那么这个数叫做质数.比如2,3,7,37,….一个数除了1和它本身,还有别的约数,那么这个数是合数.比如4,8,14,48,….特别的:1既不是质数也不是合数.2. 质因数与分解质因数(算术基本定理)如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.把一个合数用质因数相乘的形式表示出来,叫做分解质因数.比如:把42分解质因数应该是42=2×3×7,其中2,3,7是42的质因数.又如:35423=⨯ ,其中2和3都是54的质因数.3. 利用分解质因数求约数的个数一般地,如果分解质因数有下列形式:其中都是质因数,而是指数,即对应A 包含各个质因数的个数.1) 那么A 的所有约数的个数为比如:,那么300的所有约数共有(2+1)(1+1)(2+1)=18个.2) 那么A 的所有约数的和为()[],,ab a b a b =约数与倍数约数与倍数的关系很简单,其实就是整除关系的另外一种称谓;当然也有概念的延伸,就是在多个数之间去研究公约数和公倍数,经常地应用最大公约数与最小公倍数解题.下面我们就先回顾基本的概念:1. 公约数与最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12.18的约数有l ,2,3,6,9,18 那么它们的公约数有l ,2,3,6;其中最大公约数为6.2. 公倍数与最小公倍数 几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数.例如:15的倍数有:15,30,45,60,75,90, 105,120,…. 10的倍数有:10,20,30,40,50,60,70, 80。

第二讲 数论(一)

中环小机灵初赛冲刺讲义第二讲数论(一)第一部分:知识点概述1.本讲涉及整除、质数与合数两部分内容。

整除是五年级数论部分考查重点;质数与合数考查不多,但短除法、分解质因数是解决几乎所有数论问题的基本功,因而也应加以重视。

2.熟练掌握并应用2n、5n、3、9、33、99、7、11、13等数的整除特性,会利用位值原理加以证明。

事实上很多较难的数论问题的解答均离不开位值原理的应用。

3.一部分整除特性只适用于判定,另一部分既适用于判定也适用于构造,在解题时应注意选择的顺序。

如求解被45整除的问题,一般先考虑被5整除,因为只有末尾0或5两种情况,若先考虑被9整除,则一般而言很难进行下去。

4.2是唯一的偶质数,这一点往往是解答很多问题的突破口,同时,忽视这一点有时可能造成漏解。

5.计算乘积末尾零的个数的问题分为两类。

一类是离散型,解决这类问题时先分别统计因子2和5的个数,较少的那个个数即为末尾零的个数。

一类是连续型,不断地(以商)除以5,将得到的一系列商相加,即为末尾零的个数(注意:必须从1开始)。

6.分解质因数时不考虑“1”,但若将一个数写成若干个数的乘积时,根据需要可以乘任意个“1”。

7.完成前19个例题的教学是必要的,最后两道例题供选用。

第二部分:例题精讲1. 下面有9个自然数:14,35,84,152,650,434,4375,9064,24125。

在这些自然数中,请问:(1)有哪些能被2整除?哪些能被4整除?哪些能被8整除?(2)有哪些能被5整除?哪些能被25整除?哪些能被125整除?1.14,84,152,650,434,9064;84,152,9064;152,9064;35,650,4375,24125;650,4375,24125;4375,241252. 有如下9个三位数:452,387,228,975,525,882,715,775,837。

这些数中哪些能被3整除?哪些能被9整除?哪些能同时被2和3整除?387,228,975,525,882,837;387,882,837;228,8823. 一个三位数64a的十位数字未知。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
第三十五讲 数论(3)
数论综合
知识点汇总:

例题练习:
1、1
2+22+32+…+20012+20022
除以7的余数是多少?

2、学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能
地平均分给每位小朋友。余下的苹果、饼干、糖的数量之比是1∶2∶3,问学前班有多
少位小朋友?

3、一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件
的数。

4、恰有8个约数的两位数有________个。
5、一个数减去100是一个平方数,减去63也是一个平方数,问这个数是多少?
2

【举一反三】
一个数减去10是一个平方数,减30也是一个平方数,问这个数是多少?

6、一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比
如16=52-32,16就是一个“智慧数”。在自然数列中从1开始数起,第2009个“智慧数”
是_________

【本讲重要内容回顾】

小试牛刀
1.30313130被13除所得的余数是多少?

2.一个数与16的最大公约为8,最小公倍为80,这个数是多少?
3.200以内除以3余1,除以4余2,除以5余3的自然数中,最大的是哪个数?
3

4.自然数N有45个正约数。N的最小值为 。
5.不是零的自然数m与1512的乘积为完全平方数,m的最小值是 。
6.对四位数abcd,若存在质数p和正整数k,使
kabcdp,且5p
abcdp

求这样的四位数的最小值。

相关文档
最新文档