苏教版高一数学必修一知识点归纳总结
苏教版高一数学必修一知识点归纳总结.doc

苏教版高一数学必修一知识点归纳总结.doc
苏教版高一数学必修一知识点归纳总结
【一】
一、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。
有一些特殊的集合需要记忆:
非负整数集(即自然数集)N正整数集N*或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。
如{xR|x-
3>2},{x|x-3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}。
苏教版高一知识点总结

苏教版高一知识点总结### 苏教版高一知识点总结#### 数学1. 集合与函数- 集合的基本概念:元素、集合、子集、并集、交集、补集。
- 函数的定义、性质、表示法。
- 函数的单调性、奇偶性、周期性。
2. 三角函数- 三角函数的定义:正弦、余弦、正切。
- 三角恒等变换:和差化积、积化和差、倍角公式、半角公式。
3. 解析几何- 直线的方程:点斜式、斜截式、一般式。
- 圆的方程:标准式、一般式。
- 直线与圆的位置关系。
4. 不等式与方程- 不等式的性质:可加性、乘法性质。
- 一元二次不等式的解法。
- 线性方程组的解法。
5. 数列- 等差数列与等比数列的定义、通项公式、求和公式。
#### 物理1. 力学基础- 力的基本概念:重力、弹力、摩擦力。
- 牛顿运动定律:第一、第二、第三定律。
2. 运动学- 描述运动的物理量:位移、速度、加速度。
- 匀速直线运动、匀变速直线运动。
3. 能量守恒与转换- 功、功率、能量的概念。
- 能量守恒定律。
4. 动力学- 动量守恒定律。
- 碰撞问题。
#### 化学1. 原子结构- 原子的组成:质子、中子、电子。
- 原子核外电子的排布。
2. 化学键与分子结构- 离子键、共价键。
- 分子的极性。
3. 化学反应- 化学反应的类型:合成、分解、置换、复分解。
- 化学方程式的书写。
4. 化学计量- 摩尔概念、摩尔质量。
- 物质的量与质量、体积、浓度的关系。
#### 生物1. 细胞结构与功能- 细胞的组成:细胞膜、细胞质、细胞核。
- 细胞器的功能。
2. 遗传与进化- DNA的结构与功能。
- 遗传的基本规律。
3. 生态与环境- 生态系统的组成与功能。
- 人类活动对环境的影响。
#### 语文1. 文学鉴赏- 文学作品的类型:诗歌、散文、小说。
- 文学鉴赏的基本方法。
2. 文言文阅读- 古文的句式结构。
- 常见古汉语词汇的用法。
3. 现代文阅读- 文章结构的分析。
- 作者观点与写作手法。
苏教版高中数学必修一第一章 集合知识点整理

第一章集合§1.1集合基础知识点:⒈集合的定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.常用的数集及记法:非负整数集(或自然数集),记作N;*正整数集,记作N或N;N内排除0的集. +整数集,记作Z;有理数集,记作Q;实数集,记作R;5.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的. ⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现如:方程(x-2)(x-1)=0的解集表示为1, 2,而不是1, 的。
. 21, 2 ⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴大于3小于11的偶数;⑵我国的小河流;2⑶非负奇数;⑷方程x+1=0的解;⑸徐州艺校校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点 6.元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种) ⑴若a是集合A中的元素,则称a属于集合A,记作aA; ⑵若a不是集合A的元素,则称a不属于集合A,记作aA。
例如,(1)A表示“1~20以内的所有质数”组成的集合,则有3∈A,4A,等等。
(2)A={2,4,8,16},则4A,8A,32A. 典型例题 例1.用“∈”或“”符号填空:2⑴8 N;⑵0 N;⑶-3 Z;⑷ Q; 1⑸设A为所有亚洲国家组成的集合,则中国 A,美国 A,印度 A,英国A。
苏教版高一数学知识点总结

苏教版高一数学知识点总结高一上册数学必修一知识点梳理空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h 为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高一数学必修五知识点总结空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
苏教版高中数学必修1知识点总结及题型

如果您想要完整电子版,关注后私信发送数字333即可!高中数学讲义必修一第一章复习知识点一集合的概念1.集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素:构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记为.知识点二集合与元素的关系1.属于:如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于:如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性_______、________、________.2.集合的分类:(1)有限集:含有_______元素的集合;(2)无限集:含有_______元素的集合.3.常用数集及符号表示名称非负整数集(自然数集) 整数集实数集符号N N*或N+Z Q R知识点四集合的表示方法1.列举法:把集合的元素______________,并用花括号“{}”括起来表示集合的方法2.描述法:用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系1.子集与真子集定义符号语言图形语言(Venn图)子集如果集合A中的________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集________(或________)真子集如果集合A⊆B,但存在元素________,且________,我们称集合A是集合B的真子集________(或________)2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A,都有________.(2)任何一个集合A都是它本身的子集,即________.(3)如果A⊆B,B⊆C,则________.(4)如果A⊆B,B⊆C,则________.3.集合相等知识点六 集合的运算 1.交集 2.并集自然语言符号语言图形语言由_________________ _________________组成的集合,称为A 与B 的并集A ∪B =_______________3.交集与并集的性质交集的运算性质并集的运算性质 A ∩B =________ A ∪B =________ A ∩A =________ A ∪A =________ A ∩∅=________ A ∪∅=________ A ⊆B ⇔A ∩B =________A ⊆B ⇔A ∪B =________4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________. 5.补集文字语言 对于一个集合A ,由全集U 中__________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________符号语言 ∁U A =________________图形语言典例精讲题型一 * 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。
高一数学上册知识点归纳苏教版

高一数学上册知识点归纳苏教版高一数学上册知识点归纳 (苏教版)高一是学生入门阶段的重要学年,也是数学学科中的重要转折点。
在高一数学上册中,学生开始接触更为抽象和深入的数学概念,需要建立起良好的数学基础。
本文将对高一数学上册苏教版的知识点进行归纳和总结,以帮助学生更好地掌握这些内容。
一、函数和方程1. 实数集与绝对值:通过对实数的相关性质进行学习,了解实数集合的划分,并理解绝对值的概念及其在实际问题中的运用。
2. 函数的概念:认识函数的定义及其基本性质,掌握函数的表示方法和函数的图像。
3. 一次函数:学习怎样通过函数的定义域、值域、单调性等特点来描述一次函数,能够解一次方程、不等式及应用问题。
4. 二次函数:掌握二次函数的标准式和一般式,研究二次函数的图像、性质及应用问题,了解与二次函数相关的方程和不等式。
5. 指数与对数函数:了解指数函数和对数函数的性质,能够运用指数和对数的知识解决实际问题。
6. 复合函数与函数的运算:掌握复合函数的概念和性质,熟悉函数的加减乘除、乘方、反函数等运算方法。
二、三角函数与解三角形1. 三角函数基本概念:了解三角函数的定义、性质及其图像,学习正弦函数、余弦函数等的变换规律。
2. 几何应用:掌握解直角三角形的基本原理和方法,能够利用三角函数解决有关角度和长度的实际问题。
3. 三角函数的图像与周期性:研究正弦函数和余弦函数的图像特点及其周期性,了解相位差对图像的影响。
4. 三角函数的相等与化简:掌握三角函数相等的条件和化简方法,能够将复杂的三角函数式子化简为简单的形式。
5. 解非直角三角形:学习解非直角三角形的基本原理和方法,能够运用正弦定理和余弦定理解决相关问题。
三、空间几何与向量1. 点、直线与平面:了解点、直线和平面的基本概念及相互关系,学习如何确定点、直线和平面的位置和方向。
2. 空间几何条件:掌握平面的平行、垂直和夹角等性质,能够判断线段、直线和平面之间的位置关系。
苏教版高中数学必修一知识点总结

苏教版高中数学必修一知识点总结【篇一:苏教版高中数学必修一知识点总结】必修一第一章集合与函数概念 1.用字母表示下列集合。
必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
优秀文档,精彩无限!优质文档,精彩无限!优秀文档,精彩无限!优质文档,精彩无限!引言 1.课程内容:必修课程由5 个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有3 个系列:选修系列1:由2 个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3 个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。
高一上册数学苏教版知识点

高一上册数学苏教版知识点数学是一门需要掌握基本知识点才能够从根本上理解和运用的学科。
本文将介绍高一上册数学苏教版中的一些重要知识点,帮助同学们更好地掌握数学知识。
一、函数与方程1. 函数的基本概念函数是一种具有特定关系的映射关系,通常表示为f(x),其中x为自变量,f(x)为对应的因变量。
函数的定义域、值域以及图像是理解函数的重要方面。
2. 一次函数与二次函数一次函数是形如y=kx+b的函数表达式,其中k为斜率,b为截距。
二次函数是形如y=ax²+bx+c的函数表达式,其中a、b、c 为常数。
3. 方程与不等式方程是含有等号的数学表达式,例如ax+b=0,其中a、b为已知常数。
不等式则是含有不等关系的数学表达式,例如ax+b>0。
二、几何与三角1. 平面几何基本定义基本图形包括点、线、面以及它们之间的关系。
例如,直线上的点称为线上的点,在同一平面内的点称为共面。
2. 相似与全等相似指两个物体在形状上相似,但尺寸可能不同。
全等则指两个物体在形状和尺寸上完全相同。
3. 三角函数的概念三角函数是描述角度与边长之间关系的函数,包括正弦、余弦、正切等。
这些函数在解三角形问题时经常被使用。
三、数列与数学归纳法1. 数列的定义与性质数列是按一定顺序排列的一组数,可以是等差数列、等比数列等。
数列的通项公式和前n项和公式是数列的重要性质。
2. 数列的应用数列在实际问题中的应用非常广泛,例如等差数列可以描述人口增长,等比数列可以描述物质的衰减等。
四、概率与统计1. 概率的基本概念概率是描述随机事件发生可能性的数值,位于0到1之间。
事件的概率可以通过实验次数与事件发生次数的比值来计算。
2. 排列与组合排列指的是从n个元素中取出r个元素进行排列,组合指的是从n个元素中取出r个元素进行组合。
3. 统计的基本概念统计是关于数据收集、整理、分析和解释的学科。
通过统计可以得到对现象的客观描述和分析。
综上所述,高一上册数学苏教版的知识点包括函数与方程、几何与三角、数列与数学归纳法、概率与统计等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版高一数学必修一知识点归纳总结
【一】
一、集合及其表示
1、集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c 就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d A。
有一些特殊的集合需要记忆:
非负整数集(即自然数集)N正整数集N*或N+
整数集Z有理数集Q实数集R
集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}
②描述法:将集合中的元素的公共属性描述出来。
如{x R|x-3>2},{x|x-
3>2},{(x,y)|y=x2+1}
③语言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x R|x-3>2}或{x|x-3>2}
强调:描述法表示集合应注意集合的代表元素
A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性
(1)无序性
指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:该题有两组解。
(2)互异性
指集合中的元素不能重复,A={2,2}只能表示为{2}
(3)确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含
混不清的情况。
二、集合间的基本关系
1.子集,A包含于B,记为:,有两种可能
(1)A是B的一部分,
(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之: 集合A不包含于集合B,记作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。
A是C的子集,同时A也是C的真子集。
2.真子集: 如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)
3、不含任何元素的集合叫做空集,记为Φ。
Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。
如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个
非空真子集。
例:集合共有个子集。
(13年高考第4题,简单)
练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集
合有多少个非空真子集,并将其写出来。
解析:
集合A有3个元素,所以有23=8个子集。
分别为:①不含任何元素的子集
Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集
{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。
集合B有4个元素,所以有24-2=14个非空真子集。
具体的子集自己写出来。
此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。
一定要养成自己的逻辑习惯。
如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。
三、交集、并集、补集
这个是高考的重点,但是一般题目较简单。
1.交集:
由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.
如集合A={1,2,3},集合B={2,3,4},则A∩B={2,3}。
例:已知集合则(11年高考第1题,简单)
练习:
(2014北京)已知集合,则()
答案:C
解析:,所以{0,2}
2、并集
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.
如集合A={1,2,3},集合B={2,3,4},则A∪B={1,2,3,4}.
例:已知集合,,则.(12年高考第1题,简单)
答案:{1,2,4,6}
3、全集与补集
(1)补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={x x S且x A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
【二】
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。
A A
②真子集: 如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A B,B C,那么A C
④如果A B同时B A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
【三】
知识点1.集合与元素
一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。
例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。
班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的
知识点2.解集合问题的关键
解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合,比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。