苏教版高中数学知识点总结
苏教版高中数学必修+选修知识点归纳总结(精编版)

高中数学必修+选修知识点归纳恒则成人生一连串的奋斗 追求理想要奋战不懈坚持到底有恒则成引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:三角函数、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有3个系列:选修系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数的引入、框图选修系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数的引入选修2—3:计数原理、概率,统计案例。
选修系列4:由4个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念 §、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
高中数学知识点全总结苏教

高中数学知识点全总结苏教一、代数表达式与方程1. 代数基础代数表达式是由数字、字母和运算符组成的式子。
例如:3x^2 + 2x - 1。
字母代表变量,数字称为系数。
2. 单项式与多项式单项式是只有一个乘法运算的代数式,如:5x^3。
多项式是由若干个单项式相加或相减组成的代数式,如:2x^2 + 3x - 5。
3. 同类项与合并同类项同类项是指变量的指数相同的项,如:3x^2 和 -2x^2。
合并同类项即将同类项的系数相加。
4. 一元一次方程一元一次方程是只含有一个变量,且变量的最高次数为1的方程,如:3x + 2 = 0。
5. 二元一次方程组二元一次方程组是由两个含有两个变量的一次方程组成的方程组,如:x + y = 3 和 2x - y = 1。
6. 一元二次方程一元二次方程是只含有一个变量,且变量的最高次数为2的方程,标准形式为:ax^2 + bx + c = 0。
二、函数1. 函数的概念函数是将一个集合中的每个数(自变量)映射到另一个集合中的一个唯一确定的数(因变量)的关系。
2. 函数的表示方法函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
3. 函数的性质函数具有单调性、奇偶性、周期性等基本性质。
4. 基本初等函数包括幂函数、指数函数、对数函数、三角函数等。
5. 函数的图像函数的图像是函数关系的几何表示,通过坐标系可以直观地展示函数的性质。
6. 函数的应用函数在实际问题中有着广泛的应用,如物理中的运动规律、经济学中的成本收益分析等。
三、立体几何1. 空间几何体包括点、线、面、体等基本元素,以及由这些元素构成的多面体、旋转体等。
2. 空间直线与平面空间直线是一维的无限延伸,平面是二维的无限延展。
直线与平面的位置关系有平行和相交两种。
3. 立体图形的性质包括体积、表面积的计算,以及棱柱、棱锥、圆柱、圆锥、球等常见几何体的性质。
4. 空间向量空间向量是具有大小和方向的量,可以用来表示空间中的位置关系和直线与平面的方程。
江苏高中数学知识点总结

江苏高中数学知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义- 函数的表示方法:解析式、图像、表格- 函数的性质:定义域、值域、单调性、奇偶性、周期性2. 一次函数与二次函数- 一次函数的图像与性质- 二次函数的图像与性质:顶点、对称轴、开口方向- 二次函数的应用问题3. 指数函数与对数函数- 指数函数的定义与性质- 对数函数的定义与性质- 指数与对数的运算法则4. 三角函数- 三角函数的定义:正弦、余弦、正切- 三角函数的图像与性质- 三角恒等变换5. 解析几何- 直线的方程:点斜式、两点式、一般式- 圆的方程:标准式、一般式- 椭圆、双曲线、抛物线的方程6. 不等式- 不等式的基本性质- 解一元一次不等式、一元二次不等式 - 绝对值不等式的解法7. 函数的极限与连续性- 极限的概念与性质- 函数的连续性:连续函数、间断点二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质与计算- 圆的性质与计算2. 空间几何- 空间直线与平面的位置关系- 空间角的计算:线面角、面面角- 多面体与旋转体的性质与计算3. 向量- 向量的基本概念与运算- 向量的坐标表示与线性运算- 向量的数量积与向量积三、概率与统计1. 概率- 随机事件与概率的定义- 条件概率与独立事件- 概率分布:离散型与连续型2. 统计- 数据的描述:均值、方差、标准差 - 抽样与估计- 假设检验与置信区间四、数列1. 等差数列与等比数列- 数列的概念与性质- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式2. 递推数列- 递推关系式- 递推数列的通项与求和3. 数列的极限- 数列极限的概念与性质- 无穷数列的极限计算五、微积分1. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 微分的概念与应用2. 积分- 不定积分与定积分的概念- 常见函数的积分方法- 定积分的应用:面积、体积、弧长3. 微分方程- 常微分方程的基本概念- 一阶微分方程的解法- 二阶常系数线性微分方程六、复数1. 复数的概念与运算- 复数的代数形式与几何形式- 复数的四则运算- 复数的模与共轭2. 复数的极限与连续性- 复数序列的极限- 复数函数的连续性3. 复数的应用- 复数在解析几何中的应用- 复数在三角函数中的应用七、矩阵与行列式1. 矩阵的基本概念与运算- 矩阵的定义与表示- 矩阵的加法、减法、数乘、矩阵乘法 - 矩阵的逆2. 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式与矩阵的关系3. 线性方程组- 线性方程组的矩阵表示- 线性方程组的解法:高斯消元法、克拉默法则以上是江苏高中数学的主要知识点总结。
高中数学知识点大全总结苏教版

高中数学知识点大全总结苏教版高中数学知识点大全总结(苏教版)一、函数与导数1. 函数的概念与性质- 函数的定义- 函数的表示方法- 函数的域与值域- 函数的奇偶性- 函数的单调性与周期性2. 基本初等函数- 幂函数、指数函数与对数函数- 三角函数及其性质- 反三角函数- 双曲函数3. 函数的极限与连续性- 极限的概念与性质- 无穷小与无穷大- 函数的连续性与间断点4. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 高阶导数- 微分的概念与应用5. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 洛必达法则- 函数的单调区间与曲线的凹凸性二、三角函数与解三角形1. 三角函数的图像与性质- 三角函数的图像- 三角函数的基本性质- 三角函数的和差化积与积化和差2. 三角函数的恒等变换- 同角三角函数的基本关系- 恒等变换公式3. 解三角形- 三角形的边角关系- 正弦定理与余弦定理- 三角形面积的计算三、数列与数学归纳法1. 等差数列与等比数列- 数列的基本概念- 等差数列与等比数列的定义、通项公式与求和公式2. 数列的极限- 数列极限的概念- 极限的四则运算3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、平面向量与解析几何1. 平面向量- 向量的基本概念与运算- 向量的模、方向角与投影2. 直线与圆的方程- 直线的点斜式、两点式与一般式方程- 圆的标准方程与一般方程3. 圆锥曲线- 椭圆、双曲线与抛物线的方程及其性质五、立体几何1. 空间直线与平面- 空间直线的方程- 平面的方程- 直线与平面的位置关系2. 立体图形的性质- 棱柱、棱锥与圆柱、圆锥、圆台的体积与表面积 - 球的体积与表面积六、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与概率密度函数3. 统计初步- 总体与样本- 统计量的概念与计算- 线性回归与相关分析以上是苏教版高中数学的主要知识点总结,涵盖了函数、三角函数、数列、向量、解析几何、立体几何、概率与统计等多个领域。
苏教版高中数学必修知识点总结

苏教版高中数学必修知识点总结高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义:集合是由一些确定的元素所组成的整体。
2.集合的元素有三个特性:1) 确定性:元素是确定的,如“世界上最高的山”。
2) 互异性:元素不重复,如由HAPPY的字母组成的集合{H,A,P,Y}。
3) 无序性:元素排列顺序不影响集合本身,如{a,b,c}和{a,c,b}是同一个集合。
3.集合的表示方法:1) 用大括号{…}表示,如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}。
2) 用拉丁字母表示集合,如A={我校的篮球队员},B={1,2,3,4,5}。
3) 集合的表示方法有列举法和描述法。
4.常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集记作N*或N+;整数集记作Z;有理数集记作Q;实数集记作R。
5.列举法:{a,b,c……}。
6.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法,如{x R| x-3>2},{x| x-3>2}。
7.语言描述法:如{不是直角三角形的三角形}。
8.Venn图。
4、集合的分类:1) 有限集:含有有限个元素的集合。
2) 无限集:含有无限个元素的集合。
3) 空集:不含任何元素的集合,记为Φ。
二、集合间的基本关系1.“包含”关系—子集:A B表示A是B的子集,即A中的元素都属于B。
注意:A B有两种可能:(1) A是B的一部分;(2) A与B是同一集合。
反之:A B表示A不包含于B,或B不包含于A。
2.“相等”关系:A=B表示A和B的元素完全相同,即任何一个集合都是它本身的子集。
实例:设A={x|x-1=0},B={-1,1},则“元素相同则两集合相等”,即:①任何一个集合是它本身的子集。
A A;②真子集:如果A B,且A B,则集合A是集合B的真子集,记作A⊂B(或B⊃A);③如果A B,B C,则A C;④如果A B且B A,则A=B。
高中数学必修选修全部知识点精华归纳总结苏教版

高中数学必修选修全部知识点精华归纳总结苏教版在高中数学的学习过程中,我们需要掌握一系列的必修和选修知识点。
这些知识点对于我们的学习和未来的发展都具有重要的意义。
本文将对高中数学必修和选修知识点进行精华归纳总结,以帮助大家更好地掌握这些知识。
一、必修一1. 数和式- 自然数、整数和有理数的概念以及它们之间的关系- 数的性质和运算法则- 代数式的定义和基本操作2. 数据的收集整理与分析- 统计调查的基本方法和步骤- 统计图表的制作和解读- 统计指标的计算和应用3. 几何基础知识- 点、线、面的基本概念- 几何图形的性质和分类- 空间图形的投影和展开二、必修二1. 二次函数与一元二次方程- 二次函数的定义和性质- 二次函数的图像和应用- 一元二次方程的解法和应用2. 概率与统计- 随机事件、样本空间和事件概率 - 组合与排列的计算- 概率统计的应用3. 三角函数与解三角形- 三角函数的定义和性质- 三角函数的图像和应用- 解三角形的基本方法和技巧三、必修三1. 平面向量- 向量的概念和运算法则- 向量的共线、垂直和平行关系- 向量的投影和数量积2. 导数与函数的应用- 导数的定义和性质- 函数的极值和最值- 函数图像的绘制和变换3. 空间几何- 空间直线和平面的性质- 空间几何体的体积计算- 空间几何的投影和旋转四、选修一1. 平面解析几何- 平面直角坐标系和平面曲线的方程 - 直线和圆的性质及其方程- 曲线的参数方程和极坐标方程2. 函数与导数的应用- 函数的应用和建模- 导数在几何和物理问题中的应用 - 曲线的切线和法线3. 理数与数系- 实数的性质和运算法则- 数列的概念和基本性质- 数学归纳法的应用五、选修二1. 矩阵与变换- 矩阵的定义和运算法则- 线性方程组的解法- 平面向量与矩阵的关系2. 空间解析几何- 空间直角坐标系和空间曲线的方程 - 空间几何体的性质和计算- 曲线在空间中的投影和旋转3. 指数与对数- 指数函数和对数函数的性质- 指数方程和对数方程的解法- 对数函数在科学计算中的应用以上是高中数学必修和选修知识点的精华归纳总结。
高中数学必修+选修全部知识点精华归纳(苏教版)讲义

专题一:推理与证明知识结构1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由特殊到一般的推理。
归纳推理的一般步骤:∙通过观察个别情况发现某些相同的性质;∙从已知的相同性质中推出一个明确表述的一般命题(猜想);∙证明(视题目要求,可有可无).2、类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:∙找出两类对象之间可以确切表述的相似特征;∙用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;∙检验猜想。
3、合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.归纳推理和类比推理统称为合情推理,通俗地说,合情推理是指“合乎情理”的推理.4、演绎推理从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.演绎推理的一般模式———“三段论”,包括⑴大前提-----已知的一般原理;⑵小前提-----所研究的特殊情况;⑶结论-----据一般原理,对特殊情况做出的判断.用集合的观点来理解:若集合M中的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.框图表示: 要点:顺推证法;由因导果.⑵分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示: 要点:逆推证法;执果索因.⑶反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.的证明方法.它是一种间接的证明方法. 反证法法证明一个命题的一般步骤: (1)(反设)假设命题的结论不成立;(2)(推理)根据假设进行推理,直到导出矛盾为止; (3)(归谬)断言假设不成立;(4)(结论)肯定原命题的结论成立. 6、数学归纳法n 的命题的一种方法. 用数学归纳法证明命题的步骤;(1)(归纳奠基)证明当n 取第一个值*00()n n N ∈时命题成立;(2)(归纳递推)假设*0(,)n k k n k N =≥∈时命题成立,推证当1n k =+时命题也成立. 只要完成了这两个步骤,就可以断定命题对从0n 开始的所有正整数n 都成立.用数学归纳法可以证明许多与自然数有关的数学命题,其中包括恒等式、不等式、数列通项公式、几何中的计算问题等.专题二:数系的扩充与复数 1、复数的概念 ⑴虚数单位;⑵复数的代数形式(,)z a bia b R =+∈;⑶复数的实部、虚部,虚数与纯虚数. 2、复数的分类 复数(),z a bi a b R =+∈3、相关公式⑴d c b a di c bi a ==⇔+=+且, ⑵00==⇔=+b a bi a ⑶22b a bi a z +=+=⑷z a bi =-z z ,指两复数实部相同,虚部互为相反数(互为共轭复数). 4、复数运算⑴复数加减法:()()()()i d b c a di c bi a ±+±=+±+; ⑵复数的乘法:()()()()a bi c di ac bd bc ad i ++=-++;⑶复数的除法:()()()()a bi c di a bi c di c di c di +-+=++- (类似于无理数除法的分母有理化→虚数除法的分母实数化) 5、常见的运算规律)9(设231i +-=ω是1的立方虚根,则012=++ωω,1,,332313===+++n n n ωωωωω6、复数的几何意义x 轴叫做复平面的实轴,y 轴叫做复平面的虚轴. 专题三:排列组合与二项式定理 1、基本计数原理⑴ 分类加法计数原理:(分类相加)做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事情共有n m m m N +++= 21种不同的方法. ⑵ 分步乘法计数原理:(分步相乘)做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法.那么完成这件事情共有n m m m N ⨯⨯⨯= 21种不同的方法. 2、排列与组合⑴排列定义:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列.⑵组合定义:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合.⑶排列数:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的元素中任取m 个元素的排列数,记作mn A .⑷组合数:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的元素中任取m 个元素的组合数,记作m n C .⑸排列数公式:①()()()121+---=m n n n n A mn()!m n n A m n -=!;②!n A n n =,规定1!0=.⑹组合数公式: ①()()()!121m m n n n n C mn +---=或()!!m n m n C mn -=!;②m n n m n C C -=,规定10=n C .⑺排列与组合的区别:排列有顺序,组合无顺序.⑻排列与组合的联系:mm m n m n A C A ⋅=,即排列就是先组合再全排列.()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-⑼排列与组合的两个性质性质排列11-++=m n m n m n mA A A ;组合11-++=m nm n m n C C C . ⑽解排列组合问题的方法①特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置).②间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉).③相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列). ④不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间). ⑤有序问题组合法.⑥选取问题先选后排法. ⑦至多至少问题间接法.⑧相同元素分组可采用隔板法.⑨分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组问题别忘除以n !. 3、二项式定理⑴二项展开公式:()011222nnn n r n r rn n n n a b C a C ab C a b C a b ---+=++++ ()n nn C b n N +++∈.⑵二项展开式的通项公式:()+-+∈∈≤≤=N n N r n r b a C T rr n r n r ,,01.主要用途是求指定的项.⑶项的系数与二项式系数项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1时,系数就是二项式系数.如在()nax b +的展开式中,第1r +项的二项式系数为rn C ,第1r +项的系数为rn rr n C a b -;而1()n x x+的展开式中的系数等于二项式系数;二项式系数一定为正,而项的系数不一定为正.⑷()n x +1的展开式:()0221101x C x C x C x C x n n n n n n n n n++++=+-- ,若令1=x ,则有()nnn n n n n C C C C ++++==+ 210211. 二项式奇数项系数的和等于二项式偶数项系数的和.即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C⑸二项式系数的性质:(1)对称性:与首末两端“等距离”的两个二项式系数相等,即mn n m n C C -=;(2)增减性与最大值:当12n r +≤时,二项式系数C r n 的值逐渐增大,当12n r +≥时,C rn 的值逐渐减小,且在中间取得最大值。
高三数学苏教版所有知识点

高三数学苏教版所有知识点随着高考的临近,高三的学生们正加紧备战数学考试。
作为一门重要的科目,数学的学习对考生来说至关重要。
下面将整理出高三数学苏教版所涉及的所有知识点,以供学生们参考。
一、数与代数1. 数的性质与运算- 自然数、整数、有理数、无理数等的概念及性质- 加法、减法、乘法、除法等运算法则- 整数幂、乘方、根式等的运算方法2. 代数式与方程- 代数式的性质与运算- 简单方程及其解法- 一次方程与一元一次方程组的解法- 二次方程及其根的判别式与求解方法3. 等差数列与等比数列- 等差数列与等比数列的概念- 等差数列与等比数列的通项公式以及求和公式 - 应用等差数列与等比数列的解题方法二、几何与图形1. 平面几何- 平面直角坐标系及其应用- 直线与圆的性质及定理- 三角形、四边形、多边形的性质与面积计算方法 - 圆锥曲线及其特性2. 空间几何- 空间直角坐标系以及空间图形的性质- 点、直线、平面的位置关系- 空间几何体的体积计算方法- 空间曲线与曲面的特性三、函数与图像1. 一元函数与图像- 函数的定义及函数值的计算- 常用函数及其性质(线性函数、二次函数、指数函数、对数函数等)- 函数图像的基本性质与绘制方法2. 参数方程与极坐标方程- 参数方程与极坐标方程的概念及应用- 参数方程与极坐标方程的图像绘制方法3. 函数的性质与运算- 函数的奇偶性、周期性及增减性等性质- 函数的复合、求导、求极限等运算方法四、概率与统计1. 随机事件与概率- 随机事件的概念及基本性质- 概率的定义及计算方法- 排列、组合、概率统计等应用方法2. 数据的收集与处理- 数据的收集方式及调查设计- 数据的整理、分析与展示方法- 均值、中位数、众数等统计指标的计算方法以上就是高三数学苏教版所涉及的所有知识点。
希望同学们可以认真复习这些内容,并结合习题进行巩固。
通过系统的学习与训练,相信大家都能在数学考试中取得好成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版高中数学知识点总结
【篇一】
等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)a>bb
(2)a>b,b>ca>c(传递性)
(3)a>ba+c>b+c(c∈R)
(4)c>0时,a>bac>bc
c<0时,a>bac
运算性质有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
【篇二】
1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C<0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。
“线定界,点定域”。
6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。
所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C>0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C 与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
9.从实际问题中抽象出二元一次不等式(组)的步骤是:
(1)根据题意,设出变量;
(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。