上海市高一下物理知识点总结汇总

合集下载

上海市高中物理知识点总结(完整版)

上海市高中物理知识点总结(完整版)

上海市高中物理知识点总结(完整版)1.22.343.匀变速直线运动规律(特点:加速度是一个恒量)(1)基本公式:S = v o t + 12a t2 v t = v0+ a t(2)导出公式:①v t2 -v02 = 2aS②S =v t t-12a t2③v=St=02tv v+④初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:SⅡ-SⅠ=aT2(a一匀变速直线运动的加速度T一每个时间间隔的时间)可导出:S M-S N =(M-N)aT2⑤ A B段中间时刻的即时速度: v t/ 2=02tv v+=sttvv t v S/256⑥ AB 段位移中点的即时速度: v S/2 =2202t v v +注:无论是匀加速还是匀减速直线运动均有: v t/2 < v s/2⑦ 初速为零的匀加速直线运动, 在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为:S Ⅰ:S Ⅱ:S Ⅲ:……:Sn = 1:3:5……:(2n-1); n=1、2、3、……⑧ 初速为零的匀加速直线运动,在第1米内、第2米内、第3米内……第n 米内的时间之比为:t Ⅰ:t Ⅱ:t Ⅲ:…:t n =1:()21-:()23-……(n n --1);n=1、2、3、4. 匀减速直线运动至停止:可等效认为反方向初速为零的匀加速直线运动。

(例如:竖直上抛运动)注意“刹车陷井”假时间问题:先考虑减速至停的时间。

75. 自由落体运动(1)条件:初速度为零,只受重力作用. (2)性质:是一种初速为零的匀加速直线运动,a=g.(3)公式: gh v gt h gt v t t 2;21;22===6. 运动图像(1)位移图像(s-t 图像):①图像上一点切线的斜率表示该时刻所对应速度;②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;③图像与横轴交叉,表示物体从参考点的一边运动到另一边.(2)速度图像(v-t 图像):①在速度图像中,可以读出物体在任何时刻的速度; ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.④图线与横轴交叉,表示物体运动的速度反向.⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.曲线运动运动的合成与分解平抛运动知识点点拨1.曲线运动(1)物体的运动轨迹是一条曲线,称曲线运动。

上海高一下物理期中知识点

上海高一下物理期中知识点

上海高一下物理期中知识点高一下物理期中知识点物理是一门研究物质的运动规律和能量转化的科学,它对于我们理解自然界的现象和应用知识具有重要的意义。

上海市高中物理课程的期中考试将涉及以下知识点,本文将对这些知识点进行详细的介绍和解释。

一、运动规律1. 牛顿第一定律牛顿第一定律也称为惯性定律,它表明一个物体如果没有外力作用,将保持匀速直线运动或静止状态。

这一定律揭示了物体的运动状态与外力的关系。

2. 牛顿第二定律牛顿第二定律描述了力和物体运动之间的关系,它认为物体的加速度与作用在它上面的合力成正比,与物体质量成反比。

即 F = ma,其中 F 表示合力,m 表示物体质量,a 表示加速度。

这一定律是经典力学的基础。

3. 牛顿第三定律牛顿第三定律也称为作用-反作用定律,它指出任何一个物体施加在另一个物体上的力,都会引起后者对前者的同样大小、相反方向的力。

这一定律揭示了力的相互作用的本质。

二、力学量1. 位移、速度和加速度位移是物体从一个位置移动到另一个位置的矢量量,速度是物体单位时间内位移的大小,加速度是物体单位时间内速度的变化量。

这些物理量在描述运动过程中起到重要的作用。

2. 力和力的单位力是物体之间相互作用的结果,它可以改变物体的运动状态。

常见的力有重力、弹力、摩擦力等。

国际单位制中力的单位是牛顿(N)。

3. 力的合成和分解力的合成是指将多个力合成为一个力的过程,力的分解是指将一个力分解为多个力的过程。

这些过程可以通过几何方法或使用三角函数来求解。

三、机械能和能量守恒定律1. 势能和动能势能是物体由于位置或状态而具有的能量,动能是物体由于运动而具有的能量。

机械能是势能和动能的总和,根据能量守恒定律,一个系统的机械能在没有非保守力做功的情况下保持不变。

2. 功和功率功是力对物体做功的量度,功率是单位时间内做功的大小。

功和功率是描述能量转化和能量传递的重要物理量。

四、电学知识1. 电流和电阻电流是电荷通过导体的流动,电阻是导体阻碍电荷流动的能力。

上海市高一下学期物理知识点小结

上海市高一下学期物理知识点小结

上海市高一下学期物理知识点小结
一、匀速圆周运动
①.轨迹是圆周的运动叫圆周运动.在相等的时间内通过的_______都相等的圆周运动叫匀速(率)圆周运动。

②.描述匀速圆周运动的物理量:
【线速度】,计算公式或。

线速度方向时刻在改变,匀速圆周运动是一般变速运动。

【角速度】定义式:(Φ一定要用弧度用单位)。

计算公式:或ω=
v/r 或。

【周期】做匀速圆周运动的物体运动一周所用的时间,T=1/n 。

③.在处理不打滑的皮带传问题时,要从“两个相等”入手。

皮带相连的两轮缘上各点的__________相等;同一轮上各点的________相等。

三、机械波
1.定义:_________在介质中的传播,形成机械波.
【注意】①机械波向外传播_______,介质本身并不_______迁移.
②产生机械波的必要条件是:10产生_______的波源;20有传播_______的介质
③【横波与纵波】:振动方向与波的传播方向____的波叫横波.在横波中,最凸起处叫
波峰,凹下的最低处叫波谷;振动方向与波的传播方向在___________的波叫纵波.有明显的质点分布最密集处(叫密部)和质点分布最疏处(叫疏部).
2.波长(λ)、波速(ν)和波的频率(f)
①波长:两个相邻的,在振动过程中对平衡位置的位移______相等的质点间的距离.在一个周期的时间内,振动在介质中传播的距离____波长.故有:v=S/t=_____.或v=______.。

上海高一物理下学期知识点

上海高一物理下学期知识点

上海高一物理下学期知识点在高一物理下学期中,学生将会接触到一系列的物理知识点。

本文将以清晰的排版方式,逐一介绍这些重要知识点,并提供详细的解释和例子以帮助学生更好地理解。

一、电流与电阻1. 电流的定义与单位:电流是电荷通过导体的数量关系。

单位是安培(A)。

2. 电阻的定义与单位:电阻是导体阻碍电荷通过的程度。

单位是欧姆(Ω)。

3. 欧姆定律:电流与电阻成正比,与电压成反比。

用数学公式表示为:电流 = 电压 / 电阻。

二、电路与电路元件1. 电路的组成:电路由导体、电源、电阻和开关组成。

2. 串联电路与并联电路:串联电路中,电流依次通过各电阻;并联电路中,电流在各电阻间分流。

3. 电阻的连接方式:电阻可以串联连接或并联连接,影响电流和电压的分布。

三、电压与电势差1. 电压的定义:电压是电能转化为其他形式能量的能力,单位是伏特(V)。

2. 电势差:电势差是两点之间的电压差异,用于衡量电流的驱动力。

3. 电池与电源:电池是通过化学反应产生电压的装置,是最常见的电源之一。

四、电功与功率1. 电功的定义:电功是电流通过电阻所做的功,单位是焦耳(J)。

2. 电功率的定义:电功率是单位时间内完成的电功,单位是瓦特(W)。

3. 定义公式:电功 = 电流 ×电压,电功率 = 电流 ×电压。

五、电磁感应1. 法拉第电磁感应定律:磁场变化会在导体中感应电压,导致电流的产生。

2. 感应电动势:感应电动势是指导体中感应出的电势差,由磁场变化引起。

3. 楞次定律:感应电流的方向会使得磁场变化减弱。

六、光学知识1. 光的传播:光以直线传播,可通过反射、折射和衍射等现象进行解释。

2. 镜面反射:光线在光滑表面反射,遵循入射角等于反射角的规律。

3. 薄透镜与光的折射:光在透镜中折射,遵循折射定律,并可利用透镜成像。

七、波动学1. 机械波与电磁波:机械波需要介质传播,如水波、声波;电磁波可在真空中传播,如光波。

上海高一下物理知识点总结

上海高一下物理知识点总结

上海高一下物理知识点总结第一章:力学1. 运动的基本概念运动是物体在时空中位置发生变化的过程。

常见的运动类型有匀速直线运动、匀变速直线运动、曲线运动和往复运动等。

2. 力和运动的关系力是导致物体发生运动或改变运动状态的原因。

常见的力包括重力、弹力、摩擦力等。

牛顿第一定律说明了物体在无外力作用下保持静止或匀速直线运动的状态。

3. 牛顿定律- 牛顿第二定律:物体的加速度与作用在其上的力成正比,与物体的质量成反比。

数学表达为F=ma,其中F表示力,m表示质量,a表示加速度。

- 牛顿第三定律:任何两个物体之间都存在相互作用力,且大小相等、方向相反。

即作用力与反作用力。

4. 力的合成与分解力的合成指两个力合成一个力的过程。

力的分解指一个力分解成两个或多个力的过程。

力的合成与分解可以通过平行四边形法则、三角法则等方法进行计算。

第二章:热学1. 温度与热量温度是物体冷热程度的量度,常用单位是摄氏度和开尔文。

热量是物体之间传递的热能,它的传递形式包括传导、对流和辐射。

2. 热力学第一定律热力学第一定律(能量守恒定律)表明热量可以转化为机械功或其他形式的能量,能量也可以转化为热量。

数学表达为ΔQ=ΔU+W,其中ΔQ表示吸收或放出的热量,ΔU表示内能的变化,W表示做功。

3. 理想气体状态方程理想气体状态方程描述了理想气体压强、体积和温度之间的关系。

数学表达为PV=nRT,其中P表示气体压强,V表示体积,n 表示物质的物质量,R为气体常数,T表示温度。

第三章:光学1. 光的直线传播光的传播遵循光的直线传播原理,光线在各种介质交界面上发生反射、折射和透射。

2. 光的折射定律光的折射定律描述了光线从一种介质进入另一种介质时发生的折射现象。

数学表达为n1sinθ1=n2sinθ2,其中n1和n2分别表示两种介质的折射率,θ1和θ2分别表示入射角和折射角。

3. 光的成像光的成像是指透过光学仪器或物体之间的透镜、反射镜等光学元件,光线在焦点或者成像平面上形成具有相似形状和大小的实像或虚像。

上海高一下册物理知识点

上海高一下册物理知识点

上海高一下册物理知识点物理是一门研究自然现象和物质运动规律的科学,作为自然科学的一部分,它在高中课程中占据了重要位置。

下面,将介绍上海高一下册物理的几个重要知识点,帮助同学们更好地理解和掌握物理知识。

一、力和运动1. 力的概念:力是物体之间相互作用的结果,是使物体发生位移或变形的原因。

2. 力的计算:力的计量单位是牛顿(N),力的大小可以通过测量工具(弹簧秤或天平)得出。

3. 牛顿三定律:牛顿第一定律(惯性定律):物体将保持静止或匀速直线运动,直到有外力作用才能改变其状态。

牛顿第二定律(运动定律):F=ma,物体受到的合力等于物体质量乘以加速度。

牛顿第三定律(作用与反作用定律):作用在两个物体之间的力,两个物体之间的力大小相等,方向相反。

二、机械能和功1. 功的概念:力通过距离的作用而改变物体的能量,这个作用叫做功。

功的计算公式为:W=F×s。

2. 功和能量的转化:力对物体做功,会使物体具有能量,因此功和能量密切相关。

机械能是物体具有的由于位置和运动状态而产生的能量,包括动能和势能。

3. 动能定理:物体的动能等于所受合外力沿着物体位移方向所做的功。

动能定理公式为:ΔE=(1/2)×m×(v^2- v0^2)。

三、电学基础1. 历史上的电学发展:电学研究始于古希腊时期,发展至今,形成了电荷、电流、电势差等概念。

2. 电流和电阻:电流是电荷在导体中的流动,单位是安培(A)。

电阻是物体抵抗电流通过的能力,单位是欧姆(Ω)。

3. 欧姆定律:欧姆定律描述了电流、电阻和电压之间的关系,公式为I=U/R,其中I表示电流,U表示电压,R表示电阻。

四、光学基础1. 光的传播:光是一种电磁波,能够在真空和介质中传播。

光在不同介质中的传播速度不同。

2. 光的折射:光从一种介质射入另一种介质时会发生折射,其折射角与入射角满足折射定律。

3. 光的反射:光从光疏介质射入光密介质时会发生反射,根据反射定律,入射角等于反射角。

上海高一下物理知识点

上海高一下物理知识点物理作为一门基础科学,为我们理解和解释世界提供了重要的工具。

在高中物理学习,我们将学习和掌握一系列的物理知识点。

下面,我将以一个整体的观点,按照难易程度和重要性从浅入深地介绍上海高一下学期物理的知识点。

一、光的反射和折射在物理学的世界里,光的反射和折射是非常重要的现象。

在高一下学期的物理学习中,我们将学习光的反射和折射的规律以及相关的概念。

从光的反射定律到折射定律,我们将逐步理解光在不同介质中的传播和行为。

二、力学的扩展在上学期我们已经学习了力学的基本内容,而在下学期,力学的知识将会有所扩展。

我们将学习力和加速度的关系,进一步深入研究动力学和静力学。

重点掌握质点、弹簧振子以及牛顿三大定律。

这些知识将为我们解释物体所受的力以及运动状态提供更加完善的框架。

三、电学的基础知识电学是物理学的一个重要分支,我们将在高一下学期接触电学基本知识。

从电荷的基本特性开始,我们将学习并理解电流和电路以及电阻的概念。

此外,我们还将研究并掌握欧姆定律以及串并联电阻的计算方法。

四、电磁感应和电磁波电磁感应是电学的一个重要部分,也是我们高考考试的重点内容。

我们将学习电磁感应的原理和法拉第电磁感应定律,并掌握利用楞次定律解决一些实际问题的方法。

此外,电磁波也是我们学习的重要内容之一。

我们将学习电磁波的性质和特点,并理解电磁波在日常生活中的应用。

五、力学的应用力学是物理学的一个基础学科,它对其他学科的研究具有重要影响。

在高一下学期,我们将学习力学的应用。

例如,我们将学习弹簧振子的应用、摩擦力对物体运动的影响等。

此外,我们还将研究动量守恒定律和动能定律在实际场景中的应用。

六、热学的基础知识热学是物理学中的重要分支之一。

我们将学习热学的基础知识,包括温度和热量的概念、热量传递的方式以及理想气体的性质等。

通过学习这些知识,我们将更好地理解热现象和热力学定律。

综上所述,上海高一下学期物理知识点涵盖了多个领域,从光学到力学,再到电学和热学。

上海高一物理全知识点总结

上海高一物理全知识点总结上海高一物理课程着重培养学生的科学思维和实验能力,涵盖了广泛的物理知识。

下面将对上海高一物理课程的全知识点进行总结和概述。

1. 力学1.1 运动学:物体的位移、速度、加速度等基本概念。

包括匀速直线运动、变速直线运动和曲线运动的相关内容。

1.2 牛顿定律:牛顿第一定律(惯性定律)、牛顿第二定律(力的等效关系)以及牛顿第三定律(作用-反作用定律)。

1.3 能量和功:机械能的守恒、功的定义和计算,以及能量转化和能量守恒的原理。

1.4 力和压力:力的合成、分解,以及压强和压力的计算。

1.5 圆周运动:圆周运动的基本概念和性质,包括角速度、角加速度、向心力等。

1.6 弹性力学:胡克定律和弹簧的力学性质。

2. 热学2.1 温度与热量:温度的定义和测量,热平衡的概念,热量的传递方式(传导、传导和辐射)。

2.2 热力学第一定律:内能、功、热量和热容的关系,以及热力学第一定律的表达式。

2.3 热力学第二定律:热机效率、热泵效率和熵的概念,卡诺循环和热力学第二定律的表达式。

3. 光学3.1 几何光学:光线的传播规律,包括反射和折射,镜和透镜的成像原理,以及光的色散。

3.2 光的波动性:光的波粒二象性以及干涉、衍射、偏振等现象。

3.3 光的传播:光速的测量,光的相干性和光的衍射实验。

3.4 光的光谱学:原子和分子的能级结构,光的发射和吸收谱线。

4. 电磁学4.1 静电:电荷和电场的基本概念,库仑定律,等电位面和电场线的性质。

4.2 电场:电势能和电势差的关系,电场的叠加和场强的计算。

4.3 电流和电阻:电流的定义和特性,欧姆定律,戴维南和冯·诺依曼定理,电阻和电阻率的关系。

4.4 磁场:磁场的基本特性,洛伦兹力和洛伦兹力的应用。

4.5 电磁感应:法拉第电磁感应定律,电感和自感的基本原理和应用。

4.6 电磁振荡和电磁波:LC振荡电路,电磁波的基本特性和传播规律,光的电磁波性质。

5. 原子物理5.1 原子结构:玻尔理论和波尔模型,原子的能级结构和能级跃迁。

上海高一物理知识总结归纳

上海高一物理知识总结归纳高一是一个关键的学习阶段,对于学科知识的掌握和理解程度直接影响到后续学习的进展。

作为一门基础学科,物理在高一的学习中起到了非常重要的作用。

本文将对上海高一物理知识进行总结归纳,旨在帮助学生们更好地掌握这门学科。

一、力学部分1. 牛顿运动定律:牛顿第一定律、牛顿第二定律、牛顿第三定律的原理和应用。

2. 力的合成与分解:力的合力与分力的概念及计算方法,图示法进行力的合成分解。

3. 物体受力分析:物体受力分析方法,如自由体图的绘制与应用、平衡条件的建立与应用。

4. 动量与冲量:动量和冲量的基本概念,动量守恒定律与冲量定理的表述和应用。

二、热学部分1. 热力学基础:热力学的基本概念,包括温度、热量、热容、比热容等。

2. 热量传递:热传导、热对流、热辐射三种热量传递方式的特点和应用。

3. 理想气体定律:理想气体状态方程、玻意尔定律等基本公式的推导与应用。

4. 热力学第一定律:热力学第一定律的表述和应用,包括热量、功和内能的关系。

三、光学部分1. 光的直线传播:光的直线传播特性的理解与应用,包括光的反射、折射、色散等。

2. 光的成像:薄透镜成像规律和方法,如薄透镜的焦点、放大率等。

3. 光的波动性:光的波动性质的基本认识,如干涉、衍射、光的波长等。

4. 光的光电效应:光电效应的概念、条件和应用。

四、电学部分1. 电流与电阻:电流、电阻和电阻率的基本概念与计算方法。

2. 欧姆定律与电功率:欧姆定律的表述和应用,电功率的计算方法和特性。

3. 串联与并联:电路中串联和并联的基本概念和计算方法。

4. 电磁感应:电磁感应的基本原理和法拉第电磁感应定律的应用。

五、近代物理部分1. 光的粒子性:光的粒子性质的认识和波粒二象性理论的基本概念。

2. 原子核物理:原子核的基本结构、放射性衰变以及核反应等内容的了解。

3. 粒子物理学:基本粒子的分类和相互作用的认识,如强相互作用、弱相互作用等。

通过对上海高一物理知识的总结归纳,希望学生们能够更好地把握物理学科的核心知识和基本原理,为后续的学习打下坚实的基础。

上海高一物理知识点整理

上海高一物理知识点整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高一物理知识点整理一、 第一章 直线运动1、质点模型:可以不考虑物体的形状和大小,用一个有质量的点来代替物体。

用来代替物体的有质量的点叫质点。

物理学研究问题时有一种重要的思想方法,就是考虑主要因素、忽略次要因素的科学方法,即建立理想模型。

质点模型就是一种理想模型。

2、a)位移:初始位置到末位置的有向线段。

(矢量)b)路程:物体运动的轨迹长度。

路程是一个只有大小、没有方向的物理量。

(标量) c)在一般的运动中,路程往往大于位移的大小,只有做直线运动的质点始终向着同一方向运动时,位移的大小才等于路程。

d)位移、距离和运动的路程无关。

路程和运动的路径有关。

3、匀速直线运动A .位移公式:vt s =,位移公式表明,匀速直线运动的位移跟所用的时间成正比。

B .s-t 图线是过原点、倾斜的一条直线,直线的斜率表示速度,从s-t 图上能得到质点在任一时刻的位移。

C .v-t 图线是一条平行于横轴(t 轴)的直线,直线的斜率为零,直线和t 轴围成的面积表示对应时间内的位移,从v-t 图上能得到质点在任一时刻的速度。

4、变速直线运动:*A .平均速度:在变速直线运动中,平均速度等于运动物体的位移s 跟发生这段位移所用时间t 的比值,用公式来表示v =ts ,平均速度可以粗略地描述物体在某段时间(或某一过程)内的运动的快慢程度。

平均速度是一个矢量,某段时间内平均速度的方向跟这段时间内的位移方向相同。

(物理方法: 比值定义,等效替代)B .瞬时速度:运动物体在某一时刻(或某一位置)的速度叫瞬时速度。

C.加速度:描述物体速度变化快慢的物理量。

即:tv a ∆∆=。

t v v t v a o t -=∆=。

(比值定义)(1)加速度是一个矢量,它的方向就是速度变化v ∆的方向。

(2)加速度大小与速度大小是两个不同的概念。

物体的加速度大,说明它的速度变化快,而它的速度不一定大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动、万有引力知识点点拨:1.圆周运动:质点的运动轨迹是圆或是圆的一部分。

(1)速率不变的是匀速圆周运动。

(2)速率变化的是非匀速圆周运动。

注:圆周运动的速度方向和加速度方向时刻在变化,因此圆周运动是一种变加速运动。

2.描写匀速圆周运动的物理量(1)线速度:质点沿圆弧运动的快慢(即瞬时速度)。

大小: tsv =方向: 圆弧在该点的切线方向。

(2)角速度:质点绕圆心转动的快慢。

t θω= vRω=(3)周期:质点完成一次圆周运动所用的时间。

22R T v ππω==(4)转速:质点1秒内完成圆周运动的次数。

122vn TRωππ===3.向心加速度向心加速度是描写线速度方向变化快慢的物理量。

大小: 2222222()(2)v a R v R v a R v R n R R T ωωπωωπ======== 方向: 始终指向圆心。

注:匀速圆周运动只有向心加速度而没有切向加速度。

而非匀速圆周运动不仅有向心加速度, 还有切向加速度,切向加速度是改变线速度大小的。

4.向心力:提供向心加速度所需要的力。

(向心力是效果力)大小: v m R m Rv m ma F ωω====22方向:始终指向圆心。

这组公式对于匀速圆周运动和非匀速圆周运动都适用。

这组公式只适用匀速圆周运动。

⎧⎪⎪⎨⎪⎪⎩注:对于匀速圆周运动是合外力提供向心力。

对于非匀速圆周运动是合外力的法向分力提供向心力,而切向分力是产生切向加速度的。

5.皮带传动问题解决方法:结论:1).固定在同一根转轴上的物体转动的角速度相同。

2).传动装置的轮边缘的线速度大小相等。

6.万有引力定律宇宙间的一切物体都是相互吸引的,这个吸引力称万有引力。

大小: 122m m F Gr= 方向:两个物体连线上、相吸。

其中2211/6.6710G -=⨯牛米千克 称为万有引力恒量,由卡文迪许钮秆测定。

机 械 能知识点拨:1.功的概念:功是能量转化的量度。

(1)力做功的计算公式: W =FScosθ θ为力与位移之间夹角。

在0 ≤ θ < 900时:W >0 力对物体做正功,此力为动力。

反映物体机械能增加。

在θ = 0时:W =0 力对物体不做功。

物体机械能不变。

在900 <θ ≤1800时:W < 0 力对物体做负功,即物体克服此力做功,此力为阻力。

反映物体机械能减少。

(2)求功的几条途径:(Ⅰ)利用W =FScosθ求功,此式一般用来求恒力的功,但对于力F 随位移S 变化是一次函数的,可以用力对位移的算术平均值F 计算功。

(Ⅱ)利用W =P t 求功,此式一般用来求恒功率的功。

(Ⅲ)利用动能定理∑W =ΔE K 求功,此式不仅可求恒力的功,也可求变力的功。

(Ⅳ)利用示功图(即F —S 图)求功,示功图(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积. 滑动摩擦力做功:W=fd (d 是两物体间的相对位移),且W=Q (摩擦生热) 2.功率:表示做功的快慢,即能量转化快慢的物理量。

(1)功率定义式: W P t=(2)功率的一个导出公式: P =Fv cos θ θ为力与速度之间夹角。

注:计算平均功率:W P t=或 cos P Fv θ= 其中v 为平均速度。

计算瞬时功率:P =Fv cos θ 其中v 为瞬时速度。

(3)额定功率与实际功率 :额定功率:发动机正常工作时的最大功率。

实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率。

(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率. ①以恒定功率P 启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度v m =P/f 作匀速直线运动。

v-t 图像。

②以恒定牵引力F 启动:机车先作匀加速运动,当功率增大到额定功率时速度为v 1=P/F ,而后开始作加速度减小的加速运动,最后以最大速度v m =P/f 作匀速直线运动。

v-t 图像。

3.动能定理:外力对物体做功的代数和等于物体动能的增量。

即2221211122KK K W EE E mv mv =∆=-=-∑在∑W >0:ΔE K >0 动能增加; 在∑W =0:ΔE K =0 动能不变;在∑W <0:ΔE K <0 动能减少。

说明:(1)动能定理是标量方程。

(2)凡是与位移有关的质点力学问题,一般都可以用动能定解决,而且往往比应用牛顿定律更为方便。

(3)应用动能定理解题的步骤:①选择研究对象,进行受力分析; ②分析各个力做功的情况;③确定研究过程的初动能和末动能; ④根据动能定理列方程求解。

4.重力做功与重力势能变化关系W G =-ΔE P =-(E P2-E P1)=-(mgh 2-mgh 1)当W G >0:ΔE P <0 即重力做正功,重力势能减少; 当W G =0:ΔE P =0 即重力不做功,重力势能不变; 当W G <0:ΔE P >0 即物体克服重力做功,重力势能增加。

说明:(1)重力做功与路径无关,只与物体的始、末位置有关。

(2)重力势能具有相对性。

E P =mgh 中h 为物体的高度,h 只有对于确定的参考平面才有意义,即h 具有相对性,因此重力势能也具有相对性。

(3)重力势能是标量,但有正、负:在参考平面上方E P >0,正势能。

在参考平面下方E P <0,负势能。

5.机械能守恒定律在只有重力和弹力(这里指遵守胡克定律f =kx 的弹力)做功的情形下,物体的动能和势能发生相互转化,在转化过程中机械能的总量保持不变。

(1)表达式:E K1+ E P1=E K2+ E P2 或ΔE K =-ΔE P 或2211221122mv mgh mv mgh +=+(2)机械能守恒条件:只有重力和弹力(这里指遵守胡克定律f =kx 的弹力)做功,而其他力不做功。

(3)应用机械能守恒解题的步骤:①选择研究对象,进行受力分析; ②判断是否满足机械能守恒条件; ③确定研究过程中始、末状态的机械能,包括动能、重力势能、弹性势能。

④根据机械能守恒定律列方程求解。

6.功能关系(1)当只有重力(或弹簧弹力)做功时,物体的机械能守恒.(2)重力对物体做的功等于物体重力势能的减少:G p W E -=∆ (势能定理) (3)合外力对物体所做的功等于物体动能的变化:总W E k =∆(动能定理)(4)除了重力(或弹簧弹力)之外的力对物体所做的功等于物体机械能的变化:E W ∆=G 除 (功能原理-机械能定理)机械振动与机械波知识点点拨: 一、振动部分1.表征机械振动的物理量⑴ 位移(x ):振动物体始终以平衡位置为参考点的位移。

⑵ 回复力(F ):振动物体偏离平衡位置后,受到一个始终指向平衡位置的力称回复力。

注:① 回复力是效果力是根据力的作用效果来命名的,不是性质力。

② 回复力总是沿作振动物体运动的切线方向,它是振动物体在切线方向上的合力。

⑶ 振幅 (A):振动物体离开平衡位置的最大距离,用来描写振动的强弱。

⑷ 周期(T ):振动物体完成一次全振动所需要的时问,用来描写振动的快慢。

⑸ 频率(f ):振动物体1秒内完成全振动的次数,它也是用来描写振动的快慢。

1f T= 2.简谐振动⑴ 简谐振动的动力学特点:F kx =-回 “-”表示 F 回与 x 的方向相反。

F ka x m m==-回回 “-”表示 a 回 与 x 的方向相反。

其中k 为振动系数,它是一个常数。

x 为相对平衡位置的位移。

⑵ 简谐振动的图象:① 振动图象表示振动物体相对平衡位置的位移x 随时间t 的变化规律。

② 简谐振动的图象是一条余弦(或正弦)的曲线。

③ 从图象中可直接得知振幅A、周期T以及振动物体在任意时刻相对平衡位置的位移。

根据曲线的切线斜率变化可定性得知振体的速度变化。

⑶ 作简谐振动的物体它的位移、速度及加速度的关系和与之对应的回复力、动能及势能的关系:在平衡位置:0x =; 0a =; m v v =最大; 0F =回; k km E E =最大; 0p E =。

在振幅位置:x A =±最大;ka A m=最大;0v =;F kA =回最大;0k E =;p km E E =最大。

⑷ 简谐振动的两个特例① 弹簧振子:弹簧振子的周期T 与振幅无关,与振子质量m 和弹簧的劲度系数k 有关,m大k 小,T 就大;m 小k 大,T 就大。

a) 位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量。

b) 回复力F :使振动物体回到平衡位置的力。

回复力始终指向平衡位置,回复力是以效果命名的力。

此模型中的回复力是由弹簧的弹力提供。

c) 加速度a :因为a=F 合/m ,此模型中的振子所受的合力就是弹簧的弹力,即回复力,所以a 的大小和方向与F 相同。

速度v :在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大;所以,远离平衡位置的过程是加速度变大的减速运动,靠近平衡位置的过程是加速度变小的加速运动,是一种变加速运动。

② 单摆:a .一个可视为质点的小球与一根不能伸长的轻绳相连组成一个单摆,单摆是理想模型。

b .使单摆振动的回复力是重力在切线方向上的分力。

c .在摆角05θ≤时,单摆的振动才是简谐振动。

d .单摆的周期公式:2T π= T 与振幅、单摆的质量m 无关。

Be .周期T =2秒的单摆称秒摆。

3.振动的能量振动的动能与势能之和即为振动的能量 k p km pm E E E E E =+==振 在平衡位置:∵ 0p E =、 k km E E = ∴ km E E =振在振幅位置:∵ 0k E =、 p pm E E = ∴ pm E E =振 4.受迫振动⑴ 物体在周期性策动力作用下的振动。

⑵ 稳定时,受迫振动的频率与策动力的频率相同。

⑶ 在策动力的频率与物体的固有频率相等时,振动的振幅达到最大,即发生共振。

二、波动部分1.机械波:机械振动在介质中的传播。

⑴ 产生条件:① 作机械振动的波源;② 传播振动的介质。

⑵ 机械波传播的是振动的运动形式和振动的能量,介质不会随波迁移。

⑶ 机械波的种类:横波与纵波。

注:介质中每个质点都在自己的平衡位置附近作振动,并不随波迁移。

介质中后振动的质点振动情况,总是落后于相邻先振动质点的振动。

2.表征机械波的物理量⑴ 波长(λ):两个相邻的、在振动过程中振动情况完全相同的质点之间的距离叫波长。

在波的图象中即是两个相邻波峰(或波谷)之间的距离。

⑵ 频率(f )和周期 (T ):波的频率和周期由波源的振动频率和周期决定,在任何介质中波的频率和周期是不变的。

⑶ 波速(v ):单位时间内,振动在介质中传播的距离。

它的大小由介质决定。

公式: x v f t Tλλ=== 3.简谐波的图象波的图象表示在某一时刻,介质中各个质点离开平衡位置的位移情况。

相关文档
最新文档