物理法拉第电磁感应定律的专项培优练习题(含答案)及答案

合集下载

高考物理法拉第电磁感应定律习题培优题及答案解析

高考物理法拉第电磁感应定律习题培优题及答案解析

高考物理法拉第电磁感应定律习题培优题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。

2.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向;(2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q.【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C【解析】【分析】【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V B E L L t t ∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0F =-0.5N外力F 大小为0.5N .方向沿斜面向上(3)q =It ,E I R r =+;E t ∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++3.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mR t B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L v f R=;(2)22 mvR x B L = 2Q mv =;(3)丙图正确 【解析】【详解】(1)根据右手定则,感应电流方向a 至b依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A又有F A =BI 1L ,1BLv I R = 联立解得:22B L v f R= (2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLv I R =,x vt = 联立得:22mvR x B L = 根据动能定理有:()21022A fx W m v --=-根据功能关系有:Q =W A得:Q =mv 2(3)丙图正确当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.4.如图所示,电阻不计且足够长的U 型金属框架放置在倾角37θ=︒的绝缘斜面上,该装置处于垂直斜面向下的匀强磁场中,磁感应强度大小0.5B T =,质量0.1m kg =、电阻0.4R =Ω的导体ab 垂直放在框架上,从静止开始沿框架无擦下滑,与框架接触良好,框架的质量0.2M kg =、宽度0.4L m =,框架与斜面间的动摩擦因数0.6μ=,与斜面间最大静摩擦力等于滑动摩擦力,g 取210/m s 。

【物理】培优法拉第电磁感应定律辅导专题训练含答案

【物理】培优法拉第电磁感应定律辅导专题训练含答案

【物理】培优法拉第电磁感应定律辅导专题训练含答案一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图甲所示,一个电阻值为R ,匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路。

物理 法拉第电磁感应定律的专项 培优练习题附答案解析

物理 法拉第电磁感应定律的专项 培优练习题附答案解析

物理法拉第电磁感应定律的专项培优练习题附答案解析一、法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

(2)a 、b 两点间电压U ab 为2.4V 。

3.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度1L m =,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接一阻值为0.40R =Ω的电阻,质量为0.01m kg =、电阻为0.30r =Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g 取210/(m s 忽略ab 棒运动过程中对原磁场的影响).()1判断金属棒两端a 、b 的电势哪端高; ()2求磁感应强度B 的大小;()3在金属棒ab 从开始运动的1.5s 内,电阻R 上产生的热量.【答案】(1) b 端电势较高(2) 0.1B T = (3) 0.26J 【解析】 【详解】()1由右手定可判断感应电流由a 到b ,可知b 端为感应电动势的正极,故b 端电势较高。

物理 法拉第电磁感应定律的专项 培优练习题含答案

物理 法拉第电磁感应定律的专项 培优练习题含答案

物理法拉第电磁感应定律的专项培优练习题含答案一、法拉第电磁感应定律1.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:(1)拉力做功的功率P;(2)ab边产生的焦耳热Q.【答案】(1)P=222B L vR(2)Q=234B L vR【解析】【详解】(1)线圈中的感应电动势E=BLv 感应电流I=E R拉力大小等于安培力大小F=BIL 拉力的功率P=Fv=222 B L v R(2)线圈ab边电阻R ab=4R 运动时间t=L vab边产生的焦耳热Q=I2R ab t =23 4B L vR2.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面。

已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R1=6 Ω,线圈电阻R2=4Ω求:(1)磁通量变化率,回路的感应电动势。

(2)a 、b 两点间电压U ab 。

【答案】(1)0.04Wb/s 4V (2)2.4V 【解析】 【详解】(1)由B =(2+0.2t )T 得磁场的变化率为0.2T/s Bt∆=∆ 则磁通量的变化率为:0.04Wb/s BS t t∆Φ∆==∆∆ 根据E nt∆Φ=∆可知回路中的感应电动势为: 4V BE nnS t t∆Φ∆===∆∆ (2)线圈相当于电源,U ab 是外电压,根据电路分压原理可知:1122.4V ab ER R R U =+=答:(1)磁通量变化率为0.04Wb/s ,回路的感应电动势为4V 。

(2)a 、b 两点间电压U ab 为2.4V 。

3.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒=解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=g4.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.5.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

高考物理法拉第电磁感应定律(大题培优)附答案

高考物理法拉第电磁感应定律(大题培优)附答案

由楞次定律知该电流由 b 向 a 通过 R1。
(2)由 I q 得在 0 至 t1 时间内通过 R1 的电量为: t
q
It1
n B0r22t1 3Rt0
2.如图所示,在垂直纸面向里的磁感应强度为 B 的有界矩形匀强磁场区域内,有一个由 均匀导线制成的单匝矩形线框 abcd,线框平面垂直于磁感线。线框以恒定的速度 v 沿垂直 磁场边界向左运动,运动中线框 dc 边始终与磁场右边界平行,线框边长 ad=l,cd=2l,线 框导线的总电阻为 R,则线框离开磁场的过程中,求:
(1)请根据法拉第电磁感应定律,推导金属棒 MN 中的感应电动势 E; (2)在上述情景中,金属棒 MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛 伦兹力有关.请根据电动势的定义,推导金属棒 MN 中的感应电动势 E. (3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做 功.那么,金属棒 MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的
(1)线框离开磁场的过程中流过线框截面的电量 q; (2)线框离开磁场的过程中产生的热量 Q; (3)线框离开磁场过程中 cd 两点间的电势差 Ucd.
【答案】(1) q
2Bl 2 R
(2)
Q
4B2l3v R
(3) Ucd
4Blv 3
【解析】
【详解】
(1)线框离开磁场的过程中,则有:
E B 2lv
量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦 兹力通过两个分力做功起到“传递”能量的作用. 【点睛】 本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒 子的受力及做功情况.
4.如图,水平面(纸面)内同距为 l 的平行金属导轨间接一电阻,质量为 m、长度为 l 的

高考物理 法拉第电磁感应定律 培优练习(含答案)含答案解析

高考物理 法拉第电磁感应定律 培优练习(含答案)含答案解析

高考物理 法拉第电磁感应定律 培优练习(含答案)含答案解析一、法拉第电磁感应定律1.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.2.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

高考物理 法拉第电磁感应定律 培优练习(含答案)附答案解析

高考物理 法拉第电磁感应定律 培优练习(含答案)附答案解析

高考物理 法拉第电磁感应定律 培优练习(含答案)附答案解析一、法拉第电磁感应定律1.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘.(1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J【解析】【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高; ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒=解得cd 杆的质量:0.1kg m =则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】【详解】解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ=== 感应电流为:0.25A E I R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL =由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯= 设3s 后到撤去外力F 时又运动了1s ,则有: 11BLs q q I t R R Φ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求:(1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量;(3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J = 【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解.【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s感应电动势为:E 1=BL v 1根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ代入数据解得:B =2T(2)当t=6 s时,设MN的速度为v2,则速度为:v2=at=6 m/s感应电动势为:E2=BLv2=12 V根据闭合电路欧姆定律:224MN PQEI AR R==+安培力为:F安=BI2L=8 N规定沿斜面向上为正方向,对PQ进行受力分析可得:F2+F安cos 37°=mg sin 37°代入数据得:F2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN棒做变加速直线运动,当x=5 m时,v=0.4x=0.4×5 m/s=2 m/s因为速度v与位移x成正比,所以电流I、安培力也与位移x成正比,安培力做功:12023MN PQBLvW BL x JR R=-⋅⋅=-+安【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.4.如图所示,电阻不计且足够长的U型金属框架放置在倾角37θ=︒的绝缘斜面上,该装置处于垂直斜面向下的匀强磁场中,磁感应强度大小0.5B T=,质量0.1m kg=、电阻0.4R=Ω的导体ab垂直放在框架上,从静止开始沿框架无擦下滑,与框架接触良好,框架的质量0.2M kg=、宽度0.4L m=,框架与斜面间的动摩擦因数0.6μ=,与斜面间最大静摩擦力等于滑动摩擦力,g取210/m s。

备战高考物理法拉第电磁感应定律(大题培优)含答案

备战高考物理法拉第电磁感应定律(大题培优)含答案

备战高考物理法拉第电磁感应定律(大题培优)含答案一、法拉第电磁感应定律1.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。

(1)求金属棒达到稳定时的速度是多大;(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46【解析】 【详解】(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有sin A mg F θ=其中,A EF BIL I R r==+ 根据法拉第电磁感应定律,有E BLv = 联立解得:m 1.6sv =(2) 根据能量关系有21·sin 2mgs mv Q θ=+ 电阻R 上产生的热量R RQ Q R r=+ 解得:0.0183J R Q =(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:sin mg ma θ=根据位移时间关系公式,有212x vt at =+设t 时刻磁感应强度为B ,总磁通量不变,有:()BLs B L s x '=+当t =1s 时,代入数据解得,此时磁感应强度:5T 46B '=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t V V == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V BE Ld t tΦ===V V V V 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t V =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-===V V &解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mRt B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L vf R=;(2)22mvR x B L = 2Q mv =;(3)丙图正确 【解析】 【详解】(1)根据右手定则,感应电流方向a 至b依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A又有F A =BI 1L ,1BLvI R=联立解得:22B L vf R=(2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLvI R=,x vt = 联立得:22mvRx B L=根据动能定理有:()21022A fx W m v --=- 根据功能关系有:Q =W A 得:Q =mv 2 (3)丙图正确当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.4.如图所示,两根间距为L 的平行金属导轨,其cd 右侧水平,左侧为竖直的14画弧,圆弧半径为r ,导轨的电阻与摩擦不计,在导轨的顶端接有阻值为R 1的电阻,整个装置处在竖直向上的匀强磁场中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理法拉第电磁感应定律的专项培优练习题(含答案)及答案一、法拉第电磁感应定律1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。

求:(1)线圈中的感应电流的大小和方向;(2)电阻R两端电压及消耗的功率;(3)前4s内通过R的电荷量。

【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。

4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。

【解析】【详解】(1)0﹣4s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:由楞次定律知感应电流方向沿逆时针方向。

4﹣6s内,由法拉第电磁感应定律有:线圈中的感应电流大小为:,方向沿顺时针方向。

(2)0﹣4s内,R两端的电压为:消耗的功率为:4﹣6s内,R两端的电压为:消耗的功率为:故R消耗的总功率为:(3)前4s内通过R的电荷量为:2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。

当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。

重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgdqR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆ 根据闭合回路的欧姆定律得到:()E I R r =+解得:()B mgd R r t NqRS∆+=∆3.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。

【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q=mgx-12mv2解得:Q=0.455 J 所以Q R=Rr RQ=0.26 J答:(1) v=7 m/s B=0.1 T (2) q=0.67 C (3)0.26 J4.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab施加水平向右的力,使其从图示位置开始运动并穿过n个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R的电荷量q。

(2)对导体棒ab施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t。

(3)对导体棒ab施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab保持该匀速运动穿过整个磁场区,求棒ab通过第i磁场区时的水平拉力Fi和棒ab通过整个磁场区过程中回路产生的电热Q。

【答案】⑴;⑵;⑶【解析】试题分析:⑴电路中产生的感应电动势。

通过电阻的电荷量。

导体棒穿过1区过程。

解得(2)棒匀速运动的速度为v,则设棒在前x0/2距离运动的时间为t1,则 由动量定律:F0 t 1-BqL=mv ;解得:设棒在后x0/2匀速运动的时间为t2,则所以棒通过区域1所用的总时间:(3)进入1区时拉力为,速度,则有。

解得;。

进入i 区时的拉力。

导体棒以后通过每区都以速度做匀速运动,由功能关系有解得。

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化5.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J【解析】【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ ) 根据P =I 2 R PQ 代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:224MN PQE I A R R ==+安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.6.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。

【答案】(1)3V (2)0.5W (3)(1)(1)44N F N ππ-≤≤+ 【解析】 【分析】本题考查的是导体棒切割磁感线的动力学问题,我们首先把导体棒的运动情况和受力情况分析清楚,然后结合相应规律即可求出相应参量。

【详解】(1)匀速时,导体棒收到的安培力等于重力的下滑分力,可得:EBL=mgsin θR+r,求出电动势为E=4V ,所以金属棒匀速下滑时电阻R 两端的电压U=3V (2)设磁感应强度随时间变化的规律为B=kt ,则电路中产生的电动势为ΔΦΔB E=n =S =kS Δt Δt ,安培力的大小为kSF =kt L R+r安,当t=2s 时,外力等于零,可得:kS2kL=mgsin θR+r,解出k=0.5T/s ,最后可得P=I 2R=0.5W 。

(3)根据法拉第电磁感应定律可得:ΔΦΔBE==S Δt Δt,根据F =BIL 安可得,E F =BLR+r 安,最后化简可得πF =-sin200πt(N)4安,所以外力F 的取值范围ππ1-N F 1+N 44≤≤()()【点睛】过程比较复杂的问题关键在于过程分析,对运动和受力进行分析。

相关文档
最新文档