煤层气钻井与完井技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤层气井钻井完井技术浅议

蒋作焰

【摘要】:煤层在储层物性、机械力学性质及储集方式等方面具有与常规油气储层不同的特征;这些特征决定了煤层气井钻井、取心、完井及储层保护诸技术的特殊性。据此,我们从钻井完井工程的角度分析了现有技术存在的问题和制约煤层气开发效果的主要因素。研究并形成了一整套煤层气井的取心技术、储层保护技术和完井技术。这套技术应用于中国多个煤层气试验开发区,不仅满足了地质评价的需要,也为实现煤层气工业性开采起到了积极推动作用。

【关键词】:煤层气钻井技术完井技术

【作者】:蒋作焰2006年毕业于长江大学石油工程专业,中原石油勘探局钻井一公司工程师。

前言

煤层气又称煤层甲烷,是一种优质高效清洁能源。凭借良好的安全效益、环保效益和经济效益,煤层气的勘探开发已在国际上引起广泛的关注。我国煤层气资源十分丰富,但是目前我国的天然气勘探开发还处于起步阶段。中原钻井通过多年的攻关研究和试验,形成并掌握了一整套适合煤层气的钻井完井工艺技术,其内容包括:煤层造穴技术、连通技术、煤层井眼轨迹控制技术、水平分支井技术、充气欠平衡钻井技术、煤层绳索取心技术、煤层气完井技术、煤储层保护技术、煤层气井完井技术等。

一、煤层气井钻井完井的特殊性

煤层气钻井完井技术是建立在煤层地质力学性质及开采要求基础之上的。煤层具有不同于其他储层的特殊地质特性表现在以下几个方面:

1、井壁稳定性差,容易发生井下复杂故障。

煤层机械强度低,裂缝和割理发育,均质性差,存在较高剪切应力作用。因而煤层段井壁极不稳定,在钻井完井过程中极易发生井壁坍塌、井漏、卡钻甚至埋掉井眼等井下复杂。

2、煤层易受污染,实施煤层保护措施难度大。

煤层段孔隙压力低且孔隙和割理发育,极易受钻井液、完井液和固井水泥浆中固相颗粒及滤液的污染;但在钻井完井过程中,为安全钻穿煤层,防止井壁坍塌,又要适当提高钻井液完井液的密度,保持一定的压力平衡。这就必然会增加其固相含量和滤失量,加重煤层的污染。因此,存在着防止煤层污染和保证安全钻进的矛盾,从而使实施煤层保护较油气层更为困难。

3、煤层破碎含游离气多,取心困难。

煤层机械强度低,一般煤层取心收获率低,完整性差。而且煤层气井都是选择在含气量较高的煤区,割心提升时,随着取心筒与井口距离的缩短,煤心中游离气不断逸出,当达到一定值时会将煤心冲出取心筒,造成取心失败。

4、煤层气井产气周期长,对井的寿命要求高。

煤层气主要是吸附在煤层缝、隙表面上的吸附气,它的产出规律与天然气正好逆向,须经过较长时间的排水降压后才慢慢地解吸。据有关资料介绍,煤层气井少可供开采20年以上,因此对井的寿命要求特别高。

二、煤层气井钻井技术

1、煤层造穴技术

为了易于实现水平井与洞穴井在煤层中成功对接并且建立气液通道,需要在洞穴井的煤层部位造一洞穴,洞穴的直径一般为0.8~1.5m,高为2~5m。目前有两种造穴方式,即水力造穴和机械工具造穴。

水力射流造穴法利用了高压水射流破碎岩石的能力,施工中用钻具把特殊设计的水力射流装置送入造穴井段,开泵循环,使循环钻井液经过小喷嘴时产生高压水力射流,破坏煤储层,形成洞穴。

机械工具造穴法利用了机械切削的原理,用钻具把特殊设计的机械装置送入造穴井段,然后通过液压控制方式使造穴工具的刀杆张开,并在钻具的带动下旋转,切削储层,形成满足实际需要的洞穴。

2、井眼轨迹控制技术

煤层气多分支水平井定向控制的主要参数包括:井斜角、方位角、垂深。为了很好地将井眼轨迹控制在煤层中,采用地质导向技术进行井眼轨迹适时监测与控制。首先利用前期地震的资料建立区块的地质模型,然后利用从LWD随钻监测到的储层伽玛、电阻率参数来修正地质模型并调整井眼轨迹。另外,定向工程师可以结合综合录井仪实时监测到的钻

时和泥浆返出的岩屑,判断钻头是否穿出煤层。

2.1各井段钻具组合

主井眼垂直段重点控制井斜,所以常用塔式钻具组合。如果直井段增斜较严重,应使用钟摆钻具等纠斜钻具组合。

主井眼造斜段一般常用“导向马达+MWD”的定向钻具组合,施工过程中要确保工具的造斜率能够达到设计要求,使井眼轨迹在煤层中顺利着陆。

水平段及分支一般采用“单弯螺杆+LWD+减阻器”的地质导向钻具组合钻进。通过连续滑动钻进的方式实现增斜、降斜;通过复合钻进的方式稳斜,既达到了连续钻进的目的,又可根据需要随时调整井眼状态,有效提高了钻井速度和轨迹控制精度。

2.2分支侧钻工艺

煤层中的各分支是在裸眼中侧钻完成的,裸眼侧钻是煤层气分支井钻井中的难点。由于煤层比较脆,所以煤层气多分支井的侧钻不同于油井的侧钻,具体侧钻工艺如下:

(1)起钻至每一个分支的设计侧钻点上部,然后开始上下活动钻具,将钻柱中的扭力释放后开始悬空侧钻。

(2)侧钻时采取连续滑动的方式,严格控制ROP30S参数(30s的平均机械钻速),新井眼进尺1~2m内ROP30S控制为0.8~1.2m/h,2~3m内控制为1.2~2.5m/h,3~10m内控制为3m/h,整个侧钻工序预计需要5个小时。

(3)侧钻时将工具面角摆到 90º,首先向左/右下方侧钻,形成了一条向下倾斜的曲线。因为钻柱处于水平井眼的底部,而不是中心线部位,90º的工具面角能够让钻头稳定地和井眼接触,以防止振动引起煤层的跨塌。

(4)滑动侧钻至设计方位和井斜后开始复合钻进,钻进过程中要密切注意摩阻扭矩的变化。钻完每一个分支后,至少循环一周,然后起钻至下个分支的侧钻点位置。重复上述步骤,完成其余分支井眼的作业。

2.3 PZP08-1H悬空侧钻工作程序

(1)、起钻至侧钻位置,开泵将工具面摆至110.00°。

(2)、保持工具面在110.00°,慢慢上提下放钻具8~10m,控制下放速度100m/h以内,反复划槽3~5次。

(3)、将钻头放至侧钻点,开始侧钻。

(4)、控制钻速在2m/h,钻进1m,然后控制钻时在3m/h钻进2m,再控制钻时在4m/h钻进2m。最后控制钻时在5m/h钻进3m,然后将工具面摆至90°控制钻时6~10m/h再钻进3~4m,悬空侧钻结束。

悬空侧钻结束后地质导向师利用LWD随钻测井数据超前预测和识别钻头在煤层相对位置,地层走向,地层倾角,并指导钻井工程师根据需要来调整井眼轨迹,引导钻头准确在煤层钻进。

3、水平井与洞穴井连通技术

两井连通过程中采用的技术为近钻头电磁测距法。国外通常称为Rotating Magnet Ranging Service,英文缩写为RMRS。RMRS这一概念是在1995年提出的。随着两井对接技术服务的市场需求,到1999年该技术得到了进一步发展并逐渐走向成熟。目前RMRS技术在CBM井、SAGD、控制井喷等领域得到了广泛应用。

3.1硬件构成

包括永磁短节和强磁计或探管。永磁短节的长度约为40㎝,由横行排列的多个永磁体组成,它主要用来提供一个恒定的待测磁场,电磁信号的有效传播距离为50m。探管由三部分组成:扶正器、传感器组件、加重杆,其长度约为3m。RMRS必须与MWD和马达等配合使用。

相关文档
最新文档