郑州大学高等数学教材
郑州大学大一高等数学教材

郑州大学大一高等数学教材高等数学作为大一学生所必修的课程之一,对于培养学生的数学思维和分析问题的能力有着非常重要的作用。
郑州大学大一高等数学教材是经过精心编写和筛选的教学资料,旨在帮助学生全面掌握高等数学的基本概念、原理和方法,为他们打下坚实的数学基础。
一、教材概述郑州大学大一高等数学教材是基于多年的教学经验和教学研究成果编写而成的。
该教材以系统性、严谨性和实用性为特点,各章节之间联系紧密,内容层次分明,适合大一学生的学习需求。
二、教材内容郑州大学大一高等数学教材包含了大学高等数学的核心内容,共分为多个章节,涵盖了微积分、线性代数、概率论等基本数学理论和方法。
以下是教材的主要内容概述:1. 微积分微积分是高等数学的重要分支,也是郑州大学大一高等数学教材的重点内容。
该部分介绍了函数、极限、导数、积分等微积分的基本概念和运算规则,并通过大量的例题和练习题帮助学生巩固理论知识和解题能力。
2. 线性代数线性代数是数学中的一门重要学科,也是郑州大学大一高等数学教材的一部分。
该部分涵盖了向量、矩阵、行列式、特征值和特征向量等线性代数的基本概念和运算方法。
学生通过学习线性代数的知识,可以更好地理解和应用数学在实际问题中的作用。
3. 概率论概率论是数学中研究随机现象的一门学科,也是郑州大学大一高等数学教材中的一部分。
该部分主要介绍了概率的基本概念、概率分布、随机变量以及概率统计等内容。
通过学习概率论,学生可以了解到概率在现实生活中的应用,提高自己的统计和分析能力。
4. 其他内容郑州大学大一高等数学教材还包含了其他一些重要的数学内容,如数列、级数、常微分方程等。
这些内容对于进一步学习数学和相关学科具有重要的作用,也为学生的思维训练和问题解决能力提供了良好的基础。
三、教材特点郑州大学大一高等数学教材具有以下几个特点:1. 系统性该教材的编写遵循了数学知识的逻辑顺序,各章节之间有机地连接在一起,构成一个系统的教学体系。
高等数学第七版上下册教材

高等数学第七版上下册教材高等数学是大学本科数学系列课程的重要组成部分,对于培养学生的综合科学素质和提高其数学分析和解决问题的能力具有重要意义。
高等数学第七版上下册教材是广泛使用的教材之一,旨在帮助学生系统地学习高等数学的理论和方法,并能够熟练运用于实际问题的解决中。
一、教材概述高等数学第七版上下册教材由国内著名数学教育专家编写,结合了多年的教学经验和研究成果。
该教材以培养学生的数学思维和运算能力为主线,注重理论与实践的结合,既有精心设计的理论讲解,又有丰富的例题和习题供学生练习和巩固。
教材内容紧扣高等数学的核心概念和基本原理,层次分明,内容丰富,是学习高等数学的理想教材。
二、教材结构高等数学第七版上下册教材总共分为十个章节,包括函数、极限、导数与微分、不定积分、定积分与数列、重积分与重积分应用、曲线与曲面积分、无穷级数、常微分方程与控制论、级数展开与傅里叶级数。
每个章节都按照一定的逻辑顺序展开了相应的知识内容,并在最后附有习题供学生巩固所学知识。
三、教材特色1. 理论与实践结合:教材旨在培养学生的数学思维和解决问题的能力,因此理论部分辅以大量的例题和习题,学生可以通过实际运用理论知识解决实际问题,提高数学应用能力。
2. 核心概念突出:教材将重点章节放在最前面,如函数、极限、导数与微分等,这些章节中的知识是后续章节的基础,对于学生建立数学思维和分析问题的能力至关重要。
3. 文字简洁明了:教材中的文字简练明了,用词精确,避免了繁复的叙述和冗长的解释,帮助学生快速理解和掌握知识点。
4. 丰富的例题和习题:教材中提供了大量的例题和习题,每个章节后都附有习题答案和详细解析,学生可以通过练习巩固所学知识,并检验自己的掌握程度。
5. 多媒体辅助教学:教材配套的多媒体教学材料丰富多样,包括课件、教学视频等,可以帮助学生更加直观地理解和应用数学知识。
总之,高等数学第七版上下册教材是一本设计合理、内容丰富、适合广大学生学习的理想教材。
高等数学下册郑大版教材

高等数学下册郑大版教材高等数学是大学本科学习中的一门重要课程,它承接了初等数学的基础知识,并深入研究了各种数学理论和方法。
高等数学下册是郑州大学精心编写的教材,下面将为大家介绍该教材的特点和内容。
一、教材特点高等数学下册郑大版教材具有以下几个特点:1. 知识点准确全面:教材对于高等数学下册的知识点进行了全面而准确的介绍,包括微积分、级数、微分方程等各个方面。
每个知识点都经过精心编排,确保学生能够全面理解和掌握。
2. 理论与实践结合:教材不仅仅注重理论知识的讲解,还注重理论与实践的结合。
在每个章节中,都会有一些实际问题的引入,帮助学生将理论知识应用到实际中去,提升学生的综合能力。
3. 题目分类明确:教材中的习题按照难易程度和题型进行了分类,方便学生进行选择和练习。
每道题目都带有详细的解析过程,学生可以通过自主练习巩固知识点。
二、教材内容高等数学下册郑大版教材的内容较为广泛,包括但不限于以下几个部分:1. 微积分:教材对微积分的内容进行了详细讲解,包括函数的极限、连续性与间断点、导数、微分、不定积分等方面。
通过对微积分的学习,学生能够了解函数的变化规律,并能够应用微积分方法解决实际问题。
2. 级数:在级数部分,教材介绍了级数的概念、收敛性与发散性、常用级数的性质等。
级数是高等数学中的重要概念,对于理解数列和函数的性质有着关键作用。
3. 微分方程:微分方程是应用数学领域非常重要的内容,教材对常微分方程做了详细讲解,包括一阶常微分方程、高阶线性常微分方程、变量分离方程等。
通过学习微分方程,学生可以了解物理、经济等实际问题的数学描述方法。
4. 多元函数微分学:在多元函数微分学部分,教材详细介绍了多元函数的极限、连续性、偏导数、全微分等内容。
通过学习多元函数微分学,学生能够深入理解多元函数的性质,为进一步学习数学分析、高等代数等课程打下坚实基础。
5. 重积分与曲线积分:重积分与曲线积分是高等数学中较为复杂的内容,教材通过实例和题目的讲解,帮助学生逐步理解和掌握这两个概念,并能够灵活运用于实际问题的求解中。
郑州大学高等数学1教材

郑州大学高等数学1教材高等数学是一门对于大部分理工科学生来说十分重要的基础课程,也是培养学生分析问题、解决问题的思维方式的重要一门课。
在郑州大学,高等数学1教材扮演着至关重要的角色。
本文将对郑州大学高等数学1教材进行介绍和评价,并对其内容和编排进行详细的分析。
首先,郑州大学高等数学1教材以系统性和完整性为主要特点。
教材内容包含了大学高等数学1课程的基础知识,涵盖了数学的各个分支,包括函数、极限、连续性、微分等内容。
教材内容的编排合理,章节之间的内容有层次感和连贯性。
学生可以通过系统地学习这本教材,逐步建立起对高等数学的整体认识和理解。
其次,郑州大学高等数学1教材注重理论与实践相结合。
在教材中,理论部分与实例部分相互补充,既有基本理论的讲解,又有丰富的例题以及解题方法的详细讲解。
这种理论与实践相结合的教学模式,有助于学生更好地理解和掌握数学知识,并能够灵活运用于实际问题的解决中。
第三,郑州大学高等数学1教材注重启发式教学和培养学生的数学思维能力。
在教材的编写过程中,尽量避免简单的机械记忆和死板的计算方法,而是通过启发性的问题设置和解题思路的引导,培养学生的数学思维能力和创新意识。
教材中的一些拓展题目和思考题目,可以帮助学生培养自主学习和独立思考问题的能力。
此外,郑州大学高等数学1教材的编写团队非常强大,教材的内容准确、精炼,深入浅出地讲解了数学的基本概念和方法。
教材中的例题选择恰到好处,难度适中,有助于巩固和应用所学知识。
同时,教材还提供了大量的习题和答案,供学生进行课后练习和自测,以便学生加深对知识点的理解和运用。
综上所述,郑州大学高等数学1教材是一本系统性、完整性强的教材,注重理论与实践相结合,能够有效地培养学生的数学思维能力和解决实际问题的能力。
教材的内容准确、精炼,注重培养学生的自主学习和独立思考能力,对于大学的高等数学教学起到了积极的推动作用。
作为郑州大学的学生,我们要认真学习和运用这本教材,提升自己的数学素养和问题解决能力。
郑州大学大一高等数学教材

郑州大学大一高等数学教材高等数学作为大学数学基础课程之一,是培养学生数学思维和解决问题能力的重要环节。
郑州大学的大一高等数学教材经过精心编写与多年的教学实践,旨在帮助学生建立扎实的数学基础,并为他们未来的学习与研究打下坚实的基础。
第一章:数列与极限数列与极限作为高等数学的第一章,是引领学生进入数学世界的重要一步。
本章从数列的定义开始,逐步介绍数列的性质、极限的定义与性质,并引导学生通过一些例题来理解与掌握这些概念。
此外,本章还介绍了常用的极限计算方法,如夹逼定理和洛必达法则。
第二章:函数与极限在数学分析中,函数与极限是密不可分的。
本章从函数的定义与性质开始,逐步介绍函数极限的概念与性质。
通过讲解与分析各种常用函数的极限运算,学生能够更好地理解极限的求解过程,并能够应用到实际问题中。
此外,本章还引入了微分学中的重要概念,为学生打下微积分基础。
第三章:导数与微分导数与微分是高等数学中的核心内容之一,也是应用最广泛的数学工具之一。
本章从导数的定义与性质开始,逐步介绍导数的计算方法以及导数的应用。
通过解析各种函数的导数,学生能够更好地理解函数的变化趋势,进而应用导数来解决实际问题。
此外,本章还介绍了高阶导数、隐函数与参数方程等内容。
第四章:不定积分不定积分是微积分学中的重要内容,是导数的逆运算。
本章从不定积分的定义与性质开始,逐步介绍不定积分的计算方法,包括基本积分公式、换元积分法、分部积分法等。
通过解析各种函数的不定积分,学生能够更好地理解积分的意义与应用,并能够应用到实际问题中。
此外,本章还介绍了定积分、曲线长度与曲面面积的计算方法。
第五章:定积分与微积分基本定理定积分与微积分基本定理是微积分学中的重点内容,也是应用最广泛的数学工具之一。
本章介绍了定积分的定义与性质,并引入了微积分基本定理,通过这些定理,学生能够更好地理解积分与导数之间的关系,学会应用积分解决实际问题。
此外,本章还介绍了变限积分、参数方程下的曲线面积等内容。
河南省高等数学教材第七版

河南省高等数学教材第七版随着科技的发展和数学理论的不断推进,高等数学已经成为大学本科教育中不可或缺的一门学科。
为了适应不断变化的数学教学需求,河南省编写了第七版的高等数学教材,旨在提供更加全面、准确、深入的数学知识,帮助学生掌握高等数学的基本理论和应用技巧。
第一章极限与连续极限与连续是高等数学的基础,也是理解其他数学分支的关键。
本章首先介绍了极限的概念及特性,包括数列极限和函数极限,引导学生把握数学分析的基本思想和方法。
接着,详细探讨了连续函数的定义和性质,通过实例演示了如何判断函数的连续性以及应用连续函数解决实际问题的过程。
第二章导数与微分导数与微分是高等数学中的重点内容,对于理解函数的变化规律和求解最值问题具有重要意义。
本章从导数的定义和几何意义入手,引导学生理解导数的基本概念,并通过大量的例题培养学生的计算能力。
此外,还介绍了微分的概念和求导法则,探究了函数的高阶导数及其应用,为后续章节的内容打下坚实的基础。
第三章微分学应用微分学应用是高等数学的重要分支,它将抽象的数学理论与现实生活相结合,使学生能够将所学知识运用到实际问题中。
本章围绕极值问题展开,通过最值定理、拉格朗日乘数法等方法,让学生掌握如何求取函数的最大值和最小值,并且能够灵活应用于工程、经济、科学等领域的实际问题。
第四章定积分与反常积分定积分与反常积分是高等数学中的重要内容,它们是求解区域面积、计算物体体积以及求解一切与积分相关的问题的基础。
本章详细介绍了定积分的概念、性质和计算方法,强调了定积分在几何学和物理学中的应用。
同时,还引入了反常积分的概念和计算方法,使学生能够处理特殊情况下的积分问题。
第五章微分方程微分方程是高等数学中的重要组成部分,它广泛应用于自然科学和工程技术中。
本章从基本概念出发,系统介绍了常微分方程和偏微分方程的解法和应用。
通过大量的例题和实际问题,培养学生的微分方程分析和求解能力,使他们能够灵活运用微分方程解决实际问题。
郑州大学高等数学下课后习题答案解析

习题7.73.指出下列方程所表示的曲线.(1)⎩⎨⎧==++;3,25222x z y x (2)⎩⎨⎧==++;1,3694222y z y x(3)⎩⎨⎧-==+-;3,254222x z y x (4)⎩⎨⎧==+-+.4,08422y x z y【解】(1)表示平面3=x 上的圆周曲线1622=+z y ;(2)表示平面1=y 上的椭圆19323222=+zx ;(3)表示平面3-=x 上的双曲线141622=-y z ; (4)表示平面4=y 上的抛物线642-=x z .4.求()()⎪⎩⎪⎨⎧=++=++Γ2,21,:2222222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 22243R y x =+ 所以,Γ在xoy 面上的投影曲线为⎪⎩⎪⎨⎧==+.0,43222z R y x (二)(1)、(2)联立消去y 得R z 21=所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤⎪⎩⎪⎨⎧==(三)(1)、(2)联立消去x 得R z 21=所以,Γ在yoz 面上的投影曲线为.23.0,21R y x R z ≤⎪⎩⎪⎨⎧==6.求由球面224y x z --= ①和锥面()223y x z += ②所围成的立体在xoy 面上的投影区域.【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为⎩⎨⎧==+.0,122z y x所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D .习题7.82.设空间曲线C 的向量函数为(){}t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与20=t 相应的点处的单位切向量.【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为(){}2,4,42='r .C 相应20=t 的点处的单位切向量为(){}.31,32,322,4,4612⎭⎬⎫⎩⎨⎧±=±=' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为()()(){}|1,,='''=t t z t y t x {}{}3,2,13,2,1|12===t t t .所以,Γ在0M 点处的切线方程为 312111-=-=-z y x . 法平面为()()()01.31.21.1=-+-+-z y x ,即 0632=-++z y x .4.在曲线32,,:t z t y t x ===Γ上求一点,使在该点处的切线平行于平面y x 2:+π4=+z .【解】平面y x 2+4=+z 的法向量为{}1,2,1=n .在Γ上任取一点()0000,,z y x M ,并设0M 对应参数0t t =.Γ在0M 点处的切线方向为()()(){}000,,t z t y t x '''={}{}20023,2,13,2,1|0t t t t tt ===. 由题意,欲使0M 点处的切线与平面π平行,只须与垂直,为此令200341.0t t n s ++==,即0341200=++t t .解之得, 10-=t 或 310-=t .所以,所求点为()1,1,10---M 或⎪⎭⎫⎝⎛-271,91,310M .5.求曲线⎰=tu udu e x C 0cos :,t t y cos sin 2+=,t e z 31+=在0=t 处的切线方程和法平面方程.【解】参数0=t 对应曲线C 上的点()2,1,00M .C 在0M 点处的切线方向为()()(){}|,,='''=t t z t y t x s {}{}3,2,13,s i n c o s 2,c o s |3=-==t tt e t t t e .所以,Γ在0M 点处的切线方程为322110-=-=-z y x . 法平面为()()()02.31.20.1=-+-+-z y x ,即 0832=-++z y x .习题8.11.求下列函数的的定义域,并画出定义域的图形. (3)221yx z w --=;(4)19222222-++---=z y x z y x u .【解】(3)要使函数表达式有意义,必须满足 0122>--y x 即 122<+y x 故所求函数的定义域为(){}1|,22<+=y x y x D . (4)要使函数表达式有意义,必须满足⎪⎩⎪⎨⎧>-++≥---.01,09222222z y x z y x 即 ⎪⎩⎪⎨⎧>++≤++.1,9222222z y x z y x 故所求函数的定义域为(){}91|,,222≤++<=z y x z y x D .3.求下列各极限. (1)()()⎪⎪⎭⎫ ⎝⎛++→z y x z y x 111lim3,2,1,,; (2)()()⎪⎪⎭⎫ ⎝⎛+→x y y x y x 1sin 1sin lim 0,0,; (3)()()()xyy x xy tan 10,0,1lim+→; (4)()()()22220,0,lim y x y x xy y x +-→;(5)()()y x y x y x +-++→11lim220,0,; (6)()()2220,0,lim yx yx y x +→. 【解】(1)因为函数()zy x z y x f 111,,++=是三元初等函数,其定义域为(){}0,0,0|,,≠≠≠=z y x z y x D ,且()D ∈3,2,1,所以三元函数()zy x z y x f 111,,++=在()3,2,1处连续,从而有 ()()611312111111lim3,2,1,,=++=⎪⎪⎭⎫ ⎝⎛++→z y x z y x . (2)()()⎪⎪⎭⎫⎝⎛+→x y y x y x 1sin 1sin lim 0,0, ()()y x y x 1sinlim0,0,→=()()0001sin lim 0,0,=+=+→xy y x . 【其中()()y x y x 1sinlim 0,0,→()()01sin lim 0,0,==→xy y x 均是利用有界量乘以无穷小量还是无穷小量】. (3)()()()xyy x xy tan 10,0,1lim+→()()()e e xy xyxyxyy x ==⎥⎦⎤⎢⎣⎡+=→1tan 10,0,1lim.(4)()()()22220,0,lim y x y x xy y x +-→()()()0.lim 22220,0,=+-=→xy y x y x y x .【上述结论中用到12222≤+-y x y x 及()()0lim 0,0,=→xy y x ,即利用有界量乘以无穷小量还是无穷小量】. (5)()()y x y x y x +-++→11lim220,0,()()()()11lim 22220,0,+++++=→y x y x y x y x()()().lim 220,0,y x y x y x ++=→()().0210111lim220,0,=⨯=+++→y x y x 【上述结论中用到()y x yx y x y x y x +=++≤++≤2220,()()()0lim 0,0,=+→y x y x 及夹逼准则】.(6)()()2220,0,lim y x y x y x +→()()0.lim 2220,0,=+=→y y x x y x .【上述结论中用到1222≤+yx x 及()()0lim 0,0,=→y y x ,即利用有界量乘以无穷小量还是无穷小量】.4.证明极限()()4220,0,lim y x xy y x +→不存在.【证】(一)让动点()y x P ,沿直线0=y 趋于点()0,0O 时,()4220lim y x xy y x +=→000.lim 4220=+=→x x x . (二)让动点()y x P ,沿抛物线x y =2趋于点()0,0O 时,()42202lim y x xy xy x +=→21.l i m 220=+=→x x x x x .习题8.21.证明:函数()444,y x y x f +=在原点()0,0处连续,但不存在偏导数()0,0x f ',()0,0y f '.【证明】 (一)因为()()()()0,00,lim0,0,f y x f y x ==→,所以,()y x f ,在()0,0处连续.(二)因为()()x f x f x ∆-∆+→∆0,00,0lim 0()xx x ∆-+∆=→∆00lim4440 xx x ∆∆=→∆0l i m不存在,所以不存在偏导数()0,0x f ';由轮换对称性知,也不存在偏导数()0,0y f '. 2.求下列函数对各自变量的一阶偏导数.(1)x y y x z 33-=; (2)xy z ln =;(3)xy e z x sin =; (4)xyz arctan =;(5)()yxy z +=1; (6)2yxe z y=.【解】(1)323y y x xz-=∂∂;x y x y z 233-=∂∂ . (2)因y x z ln ln +=,故x x z 1=∂∂;yy z 1=∂∂. (3)xy ye xy e xzx x cos sin +=∂∂; xy xe y z x cos =∂∂ (4)x x y x y xz '⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222222y x y x y y x x +-=⎪⎭⎫⎝⎛-+=; yx y x y xz'⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+=∂∂211222221y x x x y x x +=⎪⎭⎫⎝⎛+=. (5)()()xy y ye xy z +=+=1ln 1;()()[]x xy y xy y e x z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+=+y xy y e xy y .111ln ()1211-++=y xy xy y ;()()[]y xy y xy y e y z '+=∂∂+1ln 1ln ()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+++=+x xy y xy e xy y .11)1ln(1ln ()⎥⎦⎤⎢⎣⎡++++=xy xy xy xy y 1)1ln(1()()[]xy xy xy xy y ++++=-)1ln(111. (6)2y e x z y =∂∂;422.y y e y e x y z y y -=∂∂()422y y y xe y -=()32yy xe y -=. 3.求曲线⎪⎩⎪⎨⎧=+=Γ,4,4:22y y x z 在点()5,4,20M 处的切线方程及切线对于x 轴的倾角的度数. 【解】(一)Γ的参数方程为⎪⎪⎩⎪⎪⎨⎧+===Γ416,4,:2x z y x x (x 为参数).点0M 对应参数2=x ,故切向量为{}1,0,12,0,1|2=⎭⎬⎫⎩⎨⎧==x x s 切. 所以,点()5,4,20M 处的切线方程为150412-=--=-z y x . (二)因为()()1244,2||4,2)4,2(22=='⎪⎪⎭⎫ ⎝⎛+='xy x f x x ,所以切线对于x 轴的倾角的度数为41arctan πα==. 4.求下列函数的所有二阶偏导数.(1)()y x z 32sin +=; (2)42244y y x x z +-=; (3)xy z 2=; (4)yxy x y x z arctan arctan 22-=. 【解】 (1)()y x xz32cos 2+=∂∂; ()y x y z 32cos 3+=∂∂;()y x x z 32sin 422+-=∂∂;()y x y x z 32sin 62+-=∂∂∂;()y x yz32sin 922+-=∂∂. (2)2384xy x xz-=∂∂; 3248y y x y z +-=∂∂; 2222812y x x z -=∂∂;xy y x z 162-=∂∂∂;2222128y x yz +-=∂∂. (3)()x xy xy x z '=∂∂2.2121()x yy xy 212.2121==;()y xy xy y z '=∂∂2.2121()yx x xy 212.2121==. xyx y x y x y x z 42.12121222-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂;xyx x y y x z 421.121212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛=∂∂∂; xyy xy x y x y z 42.12121222-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=∂∂. (4)yx y x y x z arctan arctan22-=. x x y xy x y x x z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++=y y x y x y x y x x y x 1.11.11a r c t a n 222222 223222a r c t a n 2yx y y x y x x y x +-+-= ()2222a r c t a n 2y x yy x x y x ++-=y x y x -=a r c t a n 2; y y y x y x y x y z '⎪⎪⎭⎫ ⎝⎛-'⎪⎭⎫ ⎝⎛=∂∂arctan arctan 22 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=22222.11a r c t a n 21.11y x y x y y x y x x y x 222223a r c t a n 2yx xy y x y y x x ++-+= ()y xy yx x y xa r c t a n 22222-++=y x y x a r c t a n 2-=.⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛++='⎪⎭⎫ ⎝⎛-=∂∂2222.112arctan 2arctan 2x y x y x x y y x y x x z x 222a r c t a n 2yx xyx y +-=. 11.112a r c t a n 222-⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+='⎪⎭⎫ ⎝⎛-=∂∂∂x x y x y x y x y x z y 12222-+=y x x 2222yx y x +-=; y y x y x y z '⎪⎪⎭⎫ ⎝⎛-=∂∂arctan 222 ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛++-=22.112a r c t a n 20y x y x y y x 222a r c t a n 2yx xyy x ++-=. 5.验证下列等式.(1)设xy xe z =,证明: z yz y x z x=∂∂+∂∂; (2)证明函数r u 1=,222z y x r ++=满足0222222=∂∂+∂∂+∂∂zu y u x u ;(3)证明()bx e t x T tab sin ,2-=满足热传导方程22xTa t T ∂∂=∂∂,其中a 为正常数,b 为任意常数.【证】(1)因⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∂∂x y e x y e x e x z x y x y x y 12;x yx y e x e x y z =⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=∂∂1.所以,z xe ye x y e x y z y x z x x y x y x y ==+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=∂∂+∂∂1.(2)()x z y x z y x x r '++++=∂∂22222221()r xx z y x =++=221222;①x r dr du x u ∂∂=∂∂.【因为①】32.1rx r x r -=-=. 623322.3..1rx r r x r r x x x u ⎪⎭⎫ ⎝⎛∂∂--=⎪⎭⎫ ⎝⎛-∂∂=∂∂【因为①】 5226233.3..1rx r r r x r x r --=⎪⎭⎫ ⎝⎛--=; ② 同理可得522223ry r y u --=∂∂; ③ 522223r z r z u --=∂∂ ④所以,222222zuy u x u ∂∂+∂∂+∂∂【因为②,③,④】()5222233r z y x r ++--=033522=--=rr r . (3)由()bx e t x T t ab sin ,2-=,得()[]bx e ab bx ab e tTt ab t ab sin sin 2222---=-=∂∂. ① []bx be b bx e xTt ab t ab cos .cos 22--==∂∂.[]b bx be x T tab .sin 222-=∂∂-bx e b t ab sin 22--=. ② 所以有22xTa t T ∂∂=∂∂bx e ab t ab sin 22--=.6.设()()⎪⎩⎪⎨⎧=+≠+++=,0,0,0,1cos ,22222222y x y x y x y x y x f 求()0,0x f ',()0,0y f '.【解】因为()()xf x f x ∆-∆+→∆0,00,0lim 0 ()[]()xx x x ∆-+∆+∆=→∆001cos0lim222201coslim 0=∆∆=→∆x x x 【上述结论中用到11cos ≤∆x及0lim 0=∆→∆x x ,即利用有界量乘以无穷小量还是无穷小量】,所以,()00,0='x f . 同理,()00,0=''y f .习题8.31.求下列函数的全微分.(1)yxy x z +=24;(2)32y x ez +=;(3)xyz u =;(4)z xy u =.【解】 (1)因为y xy x z 18+=∂∂,224yx x y z -=∂∂,所以 dy y zdx x z dz ∂∂+∂∂=dy y x x dx y xy ⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=22418. (2)因为()xyx y x e xz'+=∂∂+2222⎪⎪⎭⎫ ⎝⎛+=+x y x eyx 2.2122222222y x xe y x +=+; 由轮换对称性知,2222yx ye y z yx +=∂∂+.所以dy y zdx x z dz ∂∂+∂∂=()ydy xdx yx e y x ++=+2222. (3)因为yz x u =∂∂,xz y u =∂∂,xy zu=∂∂,所以,x y d z x z d y y z d x dz zu dy y u dx x u du ++=∂∂+∂∂+∂∂=. (4)z xy u =. 因为z y x u =∂∂,1-=∂∂z xzy y u ,y xy zuz ln =∂∂,所以, ydz xy dy xzy dx y dz zu dy y u dx x u du z z z ln 1++=∂∂+∂∂+∂∂=-. 2.求下列函数在指定点的全微分.(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .【解】(2)zy x u 1⎪⎪⎭⎫⎝⎛=,()1,1,1|du .因为x zy x y x z x u '⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=∂∂-111⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-y y x z z1111; yz y x y x z y u '⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂-111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2111y x y x z z ; ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∂∂211.ln z y x y x z u z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-2111ln 1z y x y x z z.所以dz zu dy y u dx x u du ∂∂+∂∂+∂∂=+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-dx y y x z z1111dy y x y x z z⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-2111dz z y x y x z z⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+-2111ln 1.从而 ()dy dx du -=1,1,1|.4.求曲面22:y x z S +=在点()2,1,10M 处的切平面方程和法线方程.【解】令()z y x z y x F -+=22,,. 则曲面S 在点0M 处的切平面的法向量为 ()()(){}000,,M F M F M F z y x '''= {}(){}1,2,21,2,2|2,1,1-=-=y x .所以S 在点0M 处的切平面方程为()()()02.1121.2=---+-z y x . 化简得0222=--+z y x . 法线方程为122121--=-=-z y x . 6.利用全微分求近似值. (1)()()3397.102.1+;【解】(1)令(),,33y x y x f z +==则()()332133223,,23,yx y y x f yxyx x y x f y y x +='+='-.取03.0,02.0,2,100-=∆=∆==y x y x ,则有()()()()()03.02,102.02,12,103.02,02.01-⨯'+⨯'+≈-+y x f f f f ,即:()()().95.203.0202.021397.102.133=-⨯+⨯+≈+8.已知函数()⎪⎩⎪⎨⎧=+≠++=,0,0,0,1sin ,222222y x y x y x xy y x f证明: (1)()y x f ,在点()0,0处连续且偏导数存在; (2)()y x f ,在点()0,0处可微. 【证】(1)因为()y x f y x ,lim 0→→01sinlim 220=+=→→yx xy y x 【无穷小乘以有界量还是无穷小量】()0,0f =,所以()y x f ,在点()0,0处连续. 又因为()()xf x f x ∆-∆+→∆0,00,0lim000lim 0=∆-=→∆x x ,所以()00,0='x f ;同理()00,0='y f ,所以()y x f ,在点()0,0处偏导数存在.(2)()y x f ,在点()0,0处的全增量为()()()()()220,01s i n0,00,0|y x y x f y x f z ∆+∆∆∆=-∆+∆+=∆.因为 ()()[]()()22000,00,0limy x yf x f z y x y x ∆+∆∆'+∆'-∆→∆→∆()()()()01sinlim22220=∆+∆∆+∆∆∆=→∆→∆y x y x yx y x ,所以,()y x f ,在点()0,0处可微. 【上述结论用到了()()()()22221sin0y x y x yx ∆+∆∆+∆∆∆≤()()()()22221s i n.y x y x y x ∆+∆∆+∆∆∆=()()[]()()()[]()()()0,0,02121222222→∆∆→∆+∆=∆+∆∆+∆≤y x y x y x y x及夹逼准则 . 】习题8.41.求下列复合函数的偏导数或全导数. (1)设uv e z =,而2,sin x v x u ==,求dxdz ; (2)设()xyx z ln =,求xz∂∂,y z ∂∂; (3)设()xy y x yf x z ,222+=,求xz∂∂,y z ∂∂. 【解】(1)因为uv ve u z =∂∂,uv ue v z =∂∂;x dx du cos =,x dxdv2=.所以由全导数公式,有 ()x x x x e x ue x ve dxdvv z dx du u z dx dz x x uv uv cos sin 22.cos ..2sin 2+=+=∂∂+∂∂=. 【另解:因为x x e z sin 2=,故 ()'=x x e dx dz x x sin 2sin 2()x x x x e x x c o s s i n 22s i n2+=.】 (2)()[]x x xy e x z '=∂∂ln ln ()[]x x xy x xy e '=ln(ln ln ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=x x xy x y e x xy 1.ln 1)ln(ln ln()⎥⎦⎤⎢⎣⎡+=x y x y x xy ln )ln(ln ln ()()()x x y x y xy xy ln ln ln ln 1+=-; ()()()y xy xy x x yz '=∂∂ln ln .ln ()()x x x xy ln ln .ln =. (3)()()()[]x x xy y x f y x xy y x f y x xz'+++'=∂∂,.,.222222 ()[]y f x f y x xy y x f xy .2..,.221222'+'++=;()()()[]y y xy y x f y x xy y x f y x yz'+++'=∂∂,.,.222222 ()[]x f y f y x xy y x f x .2..,.212222'+'++=.2.设⎪⎭⎫⎝⎛+=x y x xy z ϕ,其中()u ϕ是可微函数,证明: +∂∂x z x xy z y z y +=∂∂. 5.设()221,,z yx e z y x f u ++==,而y x z sin 2=,求xu∂∂,y u ∂∂. 6.求下列函数的22xz ∂∂,y x z ∂∂∂2和22y z∂∂.(1)()y xy f z ,=;(2)()y x e y x f z +=,cos ,sin . 【解】(1)由()y xy f z ,=得1f y xz'=∂∂,21f f x y z '+'=∂∂; []()11211122f y f y y f y xz x ''=''=''=∂∂;[]()1211112111112f y f xy f f f x y f f y f yx z y ''+''+'=''+''+'=''+'=∂∂∂; [][]()()22121122221121121222f f x f x f f x f f x x f f x y z y y ''+''+''=''+''+''+''=''+''=∂∂. 【注意:书中有关22yz∂∂的答案有误】.(2)由()y x e y x f z +=,cos ,sin 得31.c o s f e f x xzy x '+'=∂∂+;32.sin f e f y y z y x '+'-=∂∂+; [][]x y x x f e f x xz ''+''=∂∂+3122.c o s()[]13111cos cos .sin f e f x x f x y x ''+''+'-=+ ()[]33313.cos f e f x e f e y x y x y x ''+''+'++++[][]y y x y f e f x yx z ''+''=∂∂∂+312.c o s ()[]333231312sin sin cos f e f y e f e f e f y x y x y x y x y x ''+''-+'+''+''-=++++; 33223231312sin cos sin cos f e f ye f e f xe f y x y x y x y x y x ''+''-'+''+''-=++++; [][]y yx y f e f y y z ''+''-=∂∂+3222.s i n()[]23222sin sin .cos f e f y y f y y x ''+''-+'-=+ ()33323sin f e f y e f e y x y x y x ''+''-+'++++ 33223232222sin 2sin .cos f e f e f ye f y f y y x y x y x ''+'+'''-''+'-=+++. 【注意:书中有关22yz∂∂的答案有误】.8.设()[]z x f z ϕ+= ①,其中ϕ,f 可导,求dxdz . 【解】①式两端对x 求导并注意到z 是关于x 的函数,得 ()[]()[]x z x z x f dx dz '++'=ϕϕ()[]()⎥⎦⎤⎢⎣⎡'++'=dx dz z z x f .1ϕϕ()[]()()[]dxdzz x f z z x f ..ϕϕϕ+''++'=. ② 由②式解得()[]()()[]z x f z z x f dx dz ϕϕϕ+'-+'=1.9.设()y x z z ,=由方程0ln 2=-+⎰-dt e z z xy t ①得到,求x z∂∂,yz ∂∂,y x z ∂∂∂2.【解】(一)①式两端对x 求导并注意到z 是关于y x ,的二元函数得012=-∂∂+∂∂-x e xzz x z ,即 211x e x zz -=∂∂⎪⎭⎫ ⎝⎛+ . ②由②式解得21x e zz x z -+=∂∂. ③ (二)①式两端对y 求导并注意到z 是关于y x ,的二元函数得012=+∂∂+∂∂-y e yzz y z ,即 211y e y z z --=∂∂⎪⎭⎫ ⎝⎛+ . ④ 由④ 式解得 21y e zz y z -+-=∂∂. ⑤ (三)由③式得212x y e z z y x z -'⎥⎦⎤⎢⎣⎡+=∂∂∂()2.112x e y z z -⎥⎦⎤⎢⎣⎡∂∂+=【代入④】 ()22.1.112x y e e z z z --⎥⎦⎤⎢⎣⎡+-+=()22.13y x e z z--+-=.10.设f 可微,试验证: (1)()22yx f y z -=① 满足方程211y zy z y x z x =∂∂+∂∂; 【证】()x y x f y x z '⎥⎦⎤⎢⎣⎡-=∂∂221()()[]x y x f y x f y '⎭⎬⎫⎩⎨⎧---=222221()()()⎥⎦⎤⎢⎣⎡'--'--=xy x y x f yx fy2222222.()()222222y x f yx fxy-'--=; ()yy x f y y z '⎥⎦⎤⎢⎣⎡-=∂∂221.()()y y x f y y x f '⎥⎦⎤⎢⎣⎡-+-=222211 ()()()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡'--'--+-=y y x y x f y x f y y x f 222222222.11()()()2222222221y x f yx f y y x f -'---=. 所以yz y x z x ∂∂+∂∂11()()⎥⎦⎤⎢⎣⎡-'--=2222221y x f y x f xy x ()()()⎥⎦⎤⎢⎣⎡-'---+22222222211y x f y x f y y x f y ()221.1y x f y -=【由①式】..12y z y z y == (2)()y x f z ,=满足方程t z s z y z x z ∂∂∂∂=⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂.22,其中t s y t s x -=+=,. 【证】y zx z s y y z s x x z s z ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂..; yz x z t y y z t x x z t z ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂... 故 t z s z ∂∂∂∂.⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y z x z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂y z x z .22⎪⎪⎭⎫⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=y z x z . 14.设函数()y x f ,具有二阶连续偏导数,且满足等式0512422222=∂∂+∂∂∂+∂∂yuy x u x u . ①试确定b a ,的值,使等式在变换by x ay x +=+=ηξ,下化为02=∂∂∂ηξu. 【解】因为ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂uu u u x u x u x u1.1...;ηξηξηηξξ∂∂+∂∂=∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u b u a b u a u y u y u y u ..... 故有⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂x u x u x u x u u u x u xx ηηξξηηηξξξηξ (2222222)2 222222ηηξξ∂∂+∂∂∂+∂∂=uu u . ② ⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∂y u y u y u y u u u y x u yy ηηξξηηηξξξηξ....2222222 ()22222..ηηξξ∂∂+∂∂∂++∂∂=ub u b a u a . ③⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂∂+∂∂∂∂='⎪⎪⎭⎫ ⎝⎛∂∂+'⎪⎪⎭⎫ ⎝⎛∂∂=∂∂y u y u b y u y u a u b u a y uyy ηηξξηηηξξξηξ (2222222)222222222ηηξξ∂∂+∂∂∂+∂∂=u b u ab u a . ④ 将②、③、④代入①式左边,得①左⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂=2222224ηηξξu u u ()⎪⎪⎭⎫⎝⎛∂∂+∂∂∂++∂∂+22222.12ηηξξu b u b a u a⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂+∂∂+222222225ηηξξu b u ab u a ()()()2222222512410121285124ηηξξ∂∂+++∂∂∂++++∂∂++=u b b u ab b a u a a 因此方程①化为()()()05124101212851242222222=∂∂+++∂∂∂++++∂∂++ηηξξu b b u ab b a u a a . ⑤因此要使①在变换下化为02=∂∂∂ηξu,必须 ⎪⎩⎪⎨⎧=++=++.05124,0512422b b a a 解之得 ⎪⎩⎪⎨⎧-=-=,52,2b a 或⎪⎩⎪⎨⎧-=-=,2,52b a 习题8.51.验证下列方程在指定点的邻域存在以x 为自变量的隐函数,并求dxdy. (1)4422y x y x +=+,在点()1,1;【解】令()4422,y x y x y x F --+=,则()342,x x y x F x -=',()342,y y y x F y -=',()01,1=F ,()()021,11,1≠-='='y x F F ,由隐函数存在定理知,方程04422=--+y x y x在点()1,1的某邻域内能唯一确定一个单值可导且当1=x 时,1=y 的函数()x y y =.由公式()()()()223321124242,,y y x x y y x x y x F y x F dx dy y x --=---=''-=. (2)xyy x arctan ln 22=+①,在点()0,1.【解】令()x y y x y x F arctan ln ,22-+=()xyy x arctan ln 2122-+=,则()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='2222.112.1.21,x y x y x y x y x F x 22y x y x ++=; ()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+='x x y y y x y x F y 1.112.1.21,22222y x x y +-=. ()00,1=F ,()()010,1,10,1≠-='='y x F F ,由隐函数存在定理知,方程0arctanln 22=-+xyy x 在点()0,1的某邻域内能唯一确定一个单值可导且当1=x 时,0=y 的函数()x y y =.由公式()()yx yx x y y x y x F y x F dx dy y x -+=-+-=''-=,,. 2.求下列方程所确定的隐函数()y x z z ,=的偏导数xz∂∂,y z ∂∂. (1)()0ln 22=+-xyz xyz xz ;【解】令()()xyz xyz xz z y x F ln 22,,+-=z y x xyz xz ln ln ln 22+++-=,则x yz z F x 122+-=';y xz F y 12+-=';zxy x F z 122+-='.所以zxy x x yz z F F x z zx 122122+-+--=''-=∂∂;z xy x y xz F F y z z y 12212+-+--=''-=∂∂. (2)()z y x f z +-=2.【解】令()()z z y x f z y x F -+-=2,,,则()z y x f F x +-'='2;()z y x f y F y +-'-='22;()12-+-'='z y x f F z .所以()()122-+-'+-'-=''-=∂∂z y x f z y x f F F x z z x ()()zy x f zy x f +-'-+-'=221; ()()1222-+-'+-'--=''-=∂∂z y x f z y x f y F F y z z y ()()1222-+-'+-'=z y x f zy x f y . 3.设()y x z z ,=满足方程03333=-++axyz z y x ,求22xz∂∂.【解】令()axyz z y x z y x F 3,,333-++=,则ayz x F x 332-=';axy z F z 332-='.所以a x y z a y z x F F x z z x 333322---=''-=∂∂a x y z x a y z --=22. ① 所以=∂∂22x z ()()()222222a x yz ay x z z x ayz axy z x x z ay -⎪⎭⎫⎝⎛-∂∂---⎪⎭⎫ ⎝⎛-∂∂【代入①】()()()2222222222.axyz ay axy z x ayz z x ayz axy z x axy z x ayz ay -⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛---=()()[]()()()()[]()3222222222axy zaxy z ay x ayz z x ayz axy z axy zx x ayz ay ----------=()()323312a x yza z xy --=.4.设函数()z y x f u ,,=可微,其中()()x z z x y y ==,由方程组⎪⎩⎪⎨⎧==,,xyxze z e y 确定,求dx du . 【解】方程组⎪⎩⎪⎨⎧==,,xyxze z e y 两边关于x 求导【并注意到()()x z z x y y ==,】得 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y e dx dz dx dz x z e dx dy xy xz 即⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=,,dx dy x y z dxdz dx dz x z y dx dy解得()()⎪⎪⎩⎪⎪⎨⎧-+=-+=.11,1122yzx xz yz dx dz yz x xy yz dx dy所以,由全导数公式得 dx dz f dx dy f f dx du z y x ..'+'+'= ()()z y x f yzx xz yz f yz x xy yz f '-++'-++'=.11.1122. 5.求曲面4:=+zy zx e e S ①在点()1,2ln ,2ln 0M 处的切平面方程.【解】令()4,,-+=zy z xe e z y x F ,则z xx e z F 1=';z yy e z F 1=';z yz xz e zye z x F 22--='.曲面S 在点0M 处的切平面的法向量为 {}()||1,2ln ,2ln 22,1,1,,0⎭⎬⎫⎩⎨⎧--='''=z yz x z y z x M z y x e z ye z x e z e z F F F {}2ln 4,2,2-=.所以,曲面S 在点0M 处的切平面方程为()()().012ln 42ln 22ln 2=---+-z y x 即 ()02ln 422=-+z y x .8.求曲线⎩⎨⎧=-+-=-++Γ,04532,03:222z y x x z y x ①在点()1,1,10M 处的切线方程与法平面方程.【解法一】方程组两边关于x 求导【并注意到()()x z z x y y ==,】得⎩⎨⎧='+'-=-'+'+.0532,03222z y z z y y x ②将点()1,1,10M 代入②式有()()()()⎩⎨⎧='+'-=-'+'.015132,011212z y z y ③由③式解得 ()()1611,1691-='='z y . 故Γ在点()1,1,10M 处的切向量为()(){}{}1,9,16||161,169,11,1,1-⎭⎬⎫⎩⎨⎧-=''=z y s 切. 所以,Γ在点()1,1,10M 处的切线方程L 为1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【解法二】(一)先求03:222=-++x z y x S 在点()1,1,10M 处的切平面方程. 令()x z y x z y x F 3,,222-++=,则32-='x F x ;y F y 2=';z F z 2='. 曲面S 在点0M 处的切平面的法向量为 {}{}(){}2,2,12,2,32,,||1,1,10-=-='''=z y x F F F n M z y x .所以,曲面S 在点0M 处的切平面方程为 ()()()012121.1=-+-+--z y x ,即 0322=-++-z y x . (二) Γ在点()1,1,10M 处的切线方程为⎩⎨⎧=-+-=-++-,04532,0322:z y x z y x L若进一步化L 为点向式,则为 1191161--=-=-z y x . ()1,1,10M 处的法平面方程为()()()01191.16=---+-z y x ,即 024916=--+z y x . 【注意】解法二的一般思路叙述如下:欲求曲线()()⎩⎨⎧==Γ,0,,,0,,:z y x G z y x F 在其上某点()0000,,z y x M 处的切线方程.首先分别求出曲面()0,,:1=z y x F S 在点0M 处的切线平面01111=+++D z C y B x A . ①及曲面()0,,:2=z y x G S 在点0M 处的切线平面02222=+++D z C y B x A . ② 然后将方程①、②联立即为Γ在0M 处的切线方程.即⎩⎨⎧=+++=+++Γ.0,0:22221111D z C y B x A D z C y B x A请同学们思考此解法的理论依据是什么?10.设函数()y x z z ,=由方程0,,=⎪⎪⎭⎫⎝⎛x z z y y x F ① 所确定,且F 为可微函数,求dz .【解】由①得0,,=⎪⎪⎭⎫⎝⎛x z z y y x dF由微分形式的不变性,有0...321=⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'x z d F z y d F y x d F 即01.1.1.232221=⎪⎭⎫ ⎝⎛+-'+⎪⎭⎫ ⎝⎛-'+⎪⎪⎭⎫ ⎝⎛-'dz x dx x zd F dz z y dy z d F dy y x dx y F 于是有dy F z F y x dx F y F x z dz F z y F x .111212`132223'-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫ ⎝⎛'-'=⎪⎭⎫⎝⎛'-' 所以得223212`1321.11F zy F x dyF z F y x dx F y F x z dz '-''-⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎭⎫⎝⎛'-'=. 习题8.62.求133223++-=xy y x x z 在点()1,31M 处从1M 到()5,62M 的方向的方向导数. 【解】{}4,321==M M,⎭⎬⎫⎩⎨⎧==54,530h .()12363||1,3221=+-=∂∂y xy x x z M ;()963||1,3221-=+-=∂∂xy x y z M . {}().0549531254,53.9,121=⨯-+⨯=⎭⎬⎫⎩⎨⎧-=∂M h3.求xyz u =在点()2,1,51M 处从1M 到()14,4,92M 的方向的方向导数. 【解】{}12,3,421==M M,⎭⎬⎫⎩⎨⎧==1312,133,1340h .()2||2,1,51==∂∂yz x u M ;()10||2,1,51==∂∂xz y u M ,()5||2,1,51==∂∂xy zuM . {}.1398131251331013421312,133,134.5,10,21=⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧=M4.求()()222321ln ,,z y x z y x f +++=在点()1,1,20M 处的梯度. 【解】()523212||1,1,22220=+++=∂∂z y x x x f M ; ()523214||1,1,22220=+++=∂∂z y x y y f M ; ()533216||1,1,22220=+++=∂∂z y x z z f M . 所以,()⎭⎬⎫⎩⎨⎧=53,52,521,1,2gradf .5.求22z xy u -=在()1,1,2-M 处方向导数的最大值. 【解】()22||1,1,2-==∂∂-y x u M ;()42||1,1,2==∂∂-x y u M ,()22||1,1,2-=-=∂∂-z z uM, 故 (){}2,4,21,1,2--=-g r a du ,所以方向导数的最大值为 ()()().622421,1,2222=-++-=-g r a d u6.求222z y x u ++=沿曲线()⎪⎪⎩⎪⎪⎨⎧===Γ,sin 6,,2:3t z t y t x ππ在点()0,1,2M 处的切线方向的方向导数.【解】()0,1,2M 点对应参数1=t .Γ在点()0,1,2M 处的切向量为()()(){}(){}{}6,3,2c o s6,3,2,,||121-=='''===t t t t t z t y t x h π.⎭⎬⎫⎩⎨⎧-==76,73,720h .()42||0,1,2==∂∂x x u M ;()22||0,1,2==∂∂y y u M ,()02||0,1,2==∂∂z xuM . 所以有{}.276073272476,73,72.0,2,4=⎪⎭⎫⎝⎛-⨯+⨯+⨯=⎭⎬⎫⎩⎨⎧-=∂Mh9.设l 是曲面632:222=++z y x S 在点()1,1,1A 处指向外侧的法向量,求zy x u 2286+=在A 点沿l 方向的方向导数. 【解】令()632,,222-++=z y x z y x F ,则x F x 4=';y F y 6=';z F z 2='.曲面S 在点()1,1,1A 处指向外侧的法向量为 {}{}(){}{}1,3,2||2,6,42,6,4,,||1,1,1=='''=z y x F F F Az y x ;⎭⎬⎫⎩⎨⎧==141,143,1420l . ()146866||1,1,122=+=∂∂y x z x x u A ;()148868||1,1,122=+=∂∂y x z y y u A ;()1486||1,1,1222-=+-=∂∂z y x z uA .所以,().14,148,1461,1,1⎭⎬⎫⎩⎨⎧-=∂l ⎭⎬⎫⎩⎨⎧141,143,142()71114114143148142146=⨯-+⨯+⨯=. 习题8.71.求下列的极值:(1)()223333,y x y x y x f z --+==; 【解】(一)解方程组()()⇒⎪⎩⎪⎨⎧=-='=-='.063,,063,22y y y x f x x y x f y x ⎩⎨⎧==2,0,2,0y x 得四个驻点:()()()().2,2,0,2,2,0,0,04321P P P P(二)()()().66,,0,,66,-=''==''=-=''=y y x f C y x f B x y x f A yy xy xx.因为该函数不存在不可微点,故()00,0=f 为函数的极大值;()82,2-=f 为 函数的极小值.(2)x xy y x z 82322+-+=; 【解】(一)解方程组()()⇒⎩⎨⎧=-='=+-='.026,,0822,x y y x f y x y x f yx ⎩⎨⎧-=-=26y x 故得唯一驻点:()2,60--P ;无不可微点.(二)()2,=''y x f xx,()2,-=''y x f xy ;()6,=''y x f yy .在()2,60--P 处,因为 ()022,6>=--''=xxf A ;()22,6-=--''=xy f B ;()62,6=--''=yy f C , ()0826222>=--⨯=-=∆B AC ,故()242,6-=--f 为函数的极小值.(3)()()y y y x y x f ln 2,22++=; 【解】(一)解方程组()()()⇒⎪⎩⎪⎨⎧=++='=+='.0ln 12,,022,22y y x y x f y x y x f y x ⎩⎨⎧==-.,01e y x 故得唯一驻点:()10,0-e P ;无不可微点.(二)()224,y y x f xx+='',()xy y x f xy 4,='';()yx y x f yy 12,2+=''.在()10,0-e P 处, 因为()024,021>+=''=--e e f A xx;()0,01=''=-e f B xy ;()e ef C yy =''=-1,0, ()0024222>-⨯+=-=∆-e e B AC ,故()ee f 1,01-=-为函数的极小值.(4)()y y x e z x 222++=. 【解】(一)解方程组()()()()⇒⎪⎩⎪⎨⎧=+='=+++='.022,,01422,222y e y x f y y x e y x f xyx x ⎪⎩⎪⎨⎧-==.1,21y x 故得唯一驻点:⎪⎭⎫⎝⎛-1,210P ;无不可微点.(二)()()124,22+++=''y y x e y x f x xx,()()44,2+=''y e y x f x xy ;()x yy e y x f 22,=''. 在⎪⎭⎫ ⎝⎛-1,210P 处,因为021,21>=⎪⎭⎫ ⎝⎛-''=e f A xx;01,21=⎪⎭⎫ ⎝⎛-''=xy f B ;⎪⎭⎫ ⎝⎛-''=1,21yy f C e 2=,002222>-⨯=-=∆e e B AC ,故21,21e f -=⎪⎭⎫⎝⎛-为函数的极小值.2.求下列的极值:(1)()22222,y x y x y x f -+=在区域(){}0,4|,22≥≤+=y y x y x D ; 【解】(一)内部 解方程组()()()()⇒⎪⎩⎪⎨⎧=-='=-='.022,,012,22x y y x f y x y x f yx ⎩⎨⎧==.0,0y x ;⎩⎨⎧-=-=.1,2y x (舍);⎩⎨⎧=-=.1,2y x ;⎩⎨⎧-==.1,2y x (舍); ⎩⎨⎧==.1,2y x .因此得区域D 内三驻点:()0,01P 、()1,22-P 、()1,23P .计算得()00,0=f ,()21,2=±f . (二)边界1.在区域D 的边界[]()2,0422∈=+y y x 上,由于。
郑州工商学院高等数学教材

郑州工商学院高等数学教材高等数学是大学理工科专业的基础课程之一,也是培养学生逻辑思维和分析问题能力的关键学科。
作为郑州工商学院的高等数学教材,旨在帮助学生掌握高等数学的基本概念、理论和应用技巧,为他们的学术和职业发展奠定坚实基础。
Ⅰ. 高等数学教材的编写目的和原则高等数学教材的编写目的是为了培养学生的抽象思维、逻辑推理和问题解决能力。
在编写过程中,我们始终坚持以下原则:1. 系统性原则:按照知识的逻辑结构和发展规律进行编排,形成一个系统完整的知识体系。
2. 渐进性原则:循序渐进,由浅入深,使学生可以循序渐进地掌握和运用高等数学的知识和技巧。
3. 应用性原则:注重理论与实际应用的结合,通过案例分析和实际问题求解,使学生将理论知识应用于实际问题中。
4. 可读性原则:用通俗易懂的语言,结合具体例子,进行生动形象的解释和阐述,增加学生对知识的兴趣和理解。
Ⅱ. 高等数学教材的组织结构该教材共分为六个主要章节,包括微积分、多元函数微积分、无穷级数、常微分方程、概率论与数理统计、线性代数。
每个章节按照知识的难易程度和逻辑关系进行分节,内容有机衔接,有序推进。
1. 微积分微积分是高等数学的基础,本章从函数、极限和连续性开始,重点介绍了导数和微分、不定积分和定积分等内容。
通过大量的例题和习题,学生可以掌握微积分的基本概念和计算方法。
2. 多元函数微积分在本章中,我们介绍了多元函数的极限、连续性和偏导数,并探讨了多元函数积分与微分的关系。
此外,还包括了多元函数的重要应用,如梯度、拉格朗日乘数法等。
3. 无穷级数无穷级数是数学中的重要分支,本章重点介绍了数列和级数的概念、性质和收敛判别法,并深入讲解了常见函数的幂级数展开和泰勒级数的应用。
4. 常微分方程常微分方程是应用数学中的核心内容,本章主要涵盖了一阶常微分方程和二阶常微分方程的基本理论和求解方法。
学生通过学习本章的知识,可以解决与实际问题相关的常微分方程初值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州大学高等数学教材
高等数学是大学数学的重要组成部分,对于培养学生的数学思维能
力和分析解决问题的能力具有重要作用。
而郑州大学的高等数学教材,作为培养优秀人才的重要教育资源之一,具有丰富的教学内容和独特
的教学风格,深受广大学生的喜爱与好评。
一、教材的编写团队
郑州大学高等数学教材的编写团队由多位经验丰富的数学教师组成,他们具有深厚的学术背景和教学经验。
他们研究教学大纲,结合学生
的学习特点和需要,精心打造了一本既符合课程要求又易于理解的教材。
二、教材的内容设计
郑州大学高等数学教材的内容设计非常全面,包括了数学分析、数
学推理、微积分等多个领域。
教材内容结构合理,层次清晰,将抽象
的数学概念与具体的实际问题相结合,能够帮助学生更好地理解和掌
握数学知识。
三、教材的教学方法
郑州大学高等数学教材注重培养学生的数学思维和解决问题的能力,通过引导学生思考、分析和实践,激发学生的学习兴趣和动力。
教材
内设有大量的例题和习题,既有基础的计算题,也有思维拓展题,帮
助学生巩固基础知识的同时培养数学思维能力。
四、教材的特色亮点
1. 理论联系实际:教材将抽象的数学概念与具体的实际问题相结合,使学生能够更好地理解和应用数学知识。
2. 知识渗透互动:教材通过引导学生思考和讨论,增强师生之间的
互动,促进知识的更好吸收和理解。
3. 注重实践应用:教材内设置了大量的实例和习题,帮助学生将所
学知识应用于实际问题的解决过程中。
4. 强调思维能力培养:教材设计了一系列的思维拓展题,帮助学生
培养创新思维和解决问题的能力。
五、教材的使用效果
郑州大学高等数学教材在教学实践中取得了良好的效果。
许多学生
在学习过程中对教材的内容表达了肯定和赞美之词。
教材内容的贴近
生活和应用性,以及对学生思维能力培养的重视,使学生在学习高等
数学课程中取得了更好的成绩。
综上所述,郑州大学高等数学教材以其丰富的教学内容和独特的教
学风格,成为提高学生数学思维和解决问题能力的重要工具。
通过该
教材的学习,学生能够更好地理解和掌握数学知识,提升自身的学术
能力,并为未来的学习和研究打下坚实的数学基础。