统计学知识点

合集下载

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。

统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。

下面将全面准确地归纳统计学的基本知识点。

1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。

抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。

2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。

-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。

3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。

-随机变量:随机变量是随机试验结果的数值表示。

可以分为离散随机变量和连续随机变量。

4.概率分布-离散分布:包括二项分布、泊松分布等。

二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。

-连续分布:包括正态分布、指数分布等。

正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。

-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。

5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。

-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。

-假设检验:用来检验一个关于总体参数的假设是否成立。

根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。

6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。

可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。

-回归分析:用来研究一个或多个自变量与因变量之间的关系。

统计学的知识点

统计学的知识点

统计学的知识点统计学是一门研究数据收集、整理、分析和解释的科学。

它在各个领域都有着广泛的应用,从社会科学到自然科学,从商业决策到医学研究,都离不开统计学的支持。

接下来,让我们一起深入了解一些重要的统计学知识点。

一、数据的类型数据可以分为定性数据和定量数据两大类。

定性数据是描述事物性质或类别的数据,例如性别(男、女)、职业(教师、医生、工程师等)。

定量数据则是可以用数字来度量的数据,又进一步分为离散数据和连续数据。

离散数据只能取有限个或可数个值,比如班级里的学生人数;连续数据可以在某个区间内取任意值,例如身高、体重等。

二、数据收集方法常见的数据收集方法包括普查和抽样调查。

普查是对研究对象的全体进行调查,能得到全面、准确的信息,但往往成本高、耗时费力。

抽样调查则是从总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。

抽样方法有简单随机抽样、分层抽样、系统抽样等。

简单随机抽样保证了每个个体被抽到的概率相等;分层抽样将总体按某些特征分成若干层,然后在各层中独立抽样;系统抽样则是按照一定的规律抽取样本。

三、数据的整理与展示收集到数据后,需要对其进行整理和展示,以便更直观地理解数据的分布和特征。

常用的图表有柱状图、折线图、饼图、直方图等。

柱状图用于比较不同类别之间的数据量;折线图适合展示数据随时间或其他顺序变量的变化趋势;饼图用于展示各部分在总体中所占的比例;直方图则能展示数据的分布情况。

四、集中趋势的度量描述数据集中趋势的统计量主要有平均数、中位数和众数。

平均数是所有数据的总和除以数据的个数,它容易受到极端值的影响。

中位数是将数据从小到大排序后位于中间位置的数值,如果数据个数为偶数,则中位数是中间两个数的平均值。

众数是数据中出现次数最多的数值。

五、离散程度的度量离散程度反映了数据的分散程度。

常见的度量指标有极差、方差和标准差。

极差是最大值与最小值之间的差值,它只考虑了极端值。

方差是每个数据与平均数之差的平方的平均值,标准差则是方差的平方根。

统计学知识点

统计学知识点

第一章思考题1.1统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。

1.3 统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4 解释分类数据,顺序数据和数值型数据答案同1.31.5 对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。

1.6 变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经验变量和理论变量。

1.7 离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。

1.8 统计应用实例:人口普查,商场的名意调查等。

1.9 统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。

统计学知识点

统计学知识点

统计学第三章1.数值型数据的分组方法有哪些?简述组距分组的步骤。

(1)数据分组的方法有单变量值分组和组距分组两种。

①单变量值分组是把每一个变量值作为一组,这种分组通常只适合离散变量,且变量值较少的情况下使用②在连续变量或变量值较多的情况下,通常采用组距分组。

它是将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。

在组距分组中,一个组的最小值称为下限;一个组的最大值称为上限。

(2)组距分组步骤①确定组数。

组数的确定应以能够显示数据的分布特征和规律为目的。

一般情况下,一组数据所分的组数不应少于5组且不多于15组,即5≤K≤15;②确定各组的组距。

组距是一个组的上限与下限的差。

组距可根据全部数据的最大值和最小值及所分的组数来确定,即组距=(最大值一最小值)÷组数;③根据分组编制频数分布表。

2.直方图与条形图有何区别?①条形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义;②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

3.茎叶图与直方图相比有什么优点?它们的应用场合是什么?优点:(1)茎叶图类似于横置的直方图,与直方图相比,茎叶图既能给出数据的分布状况,又保留了原始数据。

而直方图虽然能很好地显示数据的分布,但不能保留原始的数值。

应用场合:(2)直方图通常适用于大批量数据,茎叶图通常适用于小批量数据。

第四章:1.一组数据的分布特征可以从哪几个方面进行测度?从三个方面进行测度和描述:(1)分布的集中趋势,反映各数据向其中心值聚集的程度(2)分布的离散程度,反映各数据远离其中心值的趋势;(3)分布的形状,反映数据分布的偏态和峰态。

2.简述众数、中位数和平均数的特点和应用场合。

统计学知识点

统计学知识点

一、总论一、概念题1.统计总体的同质性是指总体各单位具有某一共同的品质标志或数量标志;2.统计指标、可变的数量标志都是变量,变量可以是绝对数、相对数和平均数。

4.不是所有总体单位与总体之间都存在相互转换关系。

5.指标是说明总体数量特征的概念和数值,标志是说明总体单位的属性和特征的名称。

6.统计指标是由总体各单位的数量标志值和品质标志表现对应的单位数汇总而成的。

7.年份、产品质量、信用等级、宾馆星级以及是非标志等是品质标志。

8.统计中的相加性是指几个数相加后具有实际意义。

二、思考题1.统计学的研究对象是什么?统计学的研究对象的特点有哪些?答:统计学的研究对象是社会经济现象总体的数量特征和数量关系,以及通过这些数量方面反映出来的客观现象发展变化的规律性。

统计学研究对象的特点:数量性、总体性、变异性。

2.统计学的学科性质及特点是什么?统计学的研究方法有哪些?答:学科性质:统计学是一门方法论科学,特点:“定性分析—定量分析—定性分析”。

研究方法:大量观察法、统计分组法、综合指标法、统计模型法、归纳推断法。

3.什么是数量指标和质量指标?举例说明。

答:数量指标是反映社会经济现象总规模水平或工作总量的统计指标,用绝对数表示。

如人。

口总数、国民生产总值。

质量指标是反映社会经济现象相对水平或工作质量的统计指标,用相对数或平均数表示。

如平均工资、人口密度等。

4.统计指标的概念和构成要素是什么?举例说明。

答:统计指标是反映总体现象数量特征概念和数值。

构成要素有:(1)时间限定;(2)空间范围;(3)指标名称;(4)指标数值;(5)计量单位;(6)计算方法。

如2009年6月全国粗钢产量4942. 5万吨。

5.什么是简单现象总体?什么是复杂现象总体?答:将几个小总体组成一个大总体,这时小总体变成了大总体的总体单位。

如果各总体单位的数量标志值或总体单位数有相加性,则这个大总体叫做简单现象总体;如果无相加性,则叫做复杂现象总体。

统计的知识点总结

统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。

描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。

2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。

推论统计包括了参数估计和假设检验两个主要方法。

在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。

推论统计方法在科学研究和决策制定中具有重要的应用价值。

3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。

概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。

4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。

它包括了简单线性回归、多元线性回归、非线性回归等。

回归分析的方法对于预测和决策具有重要的应用价值。

5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。

它包括了单因素方差分析、双因素方差分析、多因素方差分析等。

方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。

6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。

它包括了生存函数、风险集与危险比、生存曲线、生存比较等。

生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。

以上是统计学的一些基本知识点总结。

统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。

统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。

统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。

统计学知识点梳理

统计学知识点梳理

统计学第一章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。

数据分析所用的方法分为描述统计方法和推断统计方法。

1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。

分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。

例如:支付方式、性别、企业类型等。

顺序数据:只能归于某一有序类别的非数字型数据。

例如:员工对改革措施的态度、产品等级、受教育程度等。

数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。

例如:年龄、工资、产量等。

统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。

1.2.2 观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。

观测数据:通过调查或观测而收集的数据。

例如:降雨量、GDP、家庭收入等。

实验数据:在实验中控制实验对象而收集到的数据。

例如:医药实验数据、化学实验数据等。

1.2.3 截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。

截面数据:在相同或近似相同的时间点上收集的数据。

例如:2012年我国各省市的GDP。

时间序列数据:同一现象在不同的时间收集的数据。

例如:2000-2012年湖北省的GDP。

1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。

样本:从总体中抽取的一部分元素的集合。

1.3.2 参数和统计量参数:用来描述总体特征的概括性数字度量。

统计量:用类描述样本特征的概括性数字度量。

例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。

这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。

第二章数据的搜集2.1 数据的来源2.1.1 数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。

统计学各章节期末复习知识点

统计学各章节期末复习知识点

统计学各章节期末复习知识点统计学是一门研究数据收集、分析和解释的学科。

作为一门广泛应用于各个领域的学科,统计学的知识点非常丰富。

以下是统计学各章节的期末复习知识点汇总:1.数据收集与描述-数据类型:定量数据和定性数据-数据收集方式:问卷调查、观察、实验-描述统计:中心趋势(均值、中位数、众数)、离散程度(范围、方差、标准差)、数据分布(直方图、条形图、饼图)2.概率论基础-随机试验与样本空间-事件与事件概率-古典概型、几何概型和统计概型-条件概率与独立性-伯努利试验与二项分布3.随机变量及其分布-随机变量与分布函数-离散型随机变量与其分布律-连续型随机变量与其概率密度函数-均匀分布、正态分布、指数分布等常见分布4.多个随机变量的分布-边缘分布与条件分布-两个离散型随机变量的联合分布律-两个连续型随机变量的联合概率密度函数-相互独立的随机变量的分布5.随机变量的数字特征-数学期望与其性质-方差与标准差-协方差与相关系数-矩、协方差矩阵与相关系数矩阵6.大数定律与中心极限定理-辛钦大数定律-中心极限定理-切比雪夫不等式与伯努利不等式7.统计推断基础-参数估计:点估计、区间估计-置信区间与置信水平-假设检验:原假设与备择假设、显著性水平、拒绝域-类型Ⅰ错误和类型Ⅱ错误-样本容量与统计检验的效应大小8.单样本与双样本推断-单个总体均值的推断:正态总体与非正态总体-单个总体比例的推断-两个总体均值的推断:独立样本与配对样本-两个总体比例的推断9.方差分析与回归分析-单因素方差分析-两因素方差分析-简单线性回归分析:最小二乘法-多元线性回归分析:拟合优度、剩余平方和、变量选择10.非参数统计方法-指标:秩和检验、秩和相关检验、符号检验- 分布:符号检验、秩和检验、秩和相关检验、Kolmogorov-Smirnov检验这些是统计学各个章节的期末复习知识点的一个概述。

每个章节都拥有更加详细和复杂的内容,需要学生在复习中深入理解并进行练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章思考题1.1统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。

1.2描述统计:它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。

推断统计:它是研究如何利用样本数据来推断总体特征的统计方法。

1.3统计学的类型和不同类型的特点统计数据:按所采用的计量尺度不同分;〔定性数据〕分类数据:只能归于*一类别的非数字型数据,它是对事物进展分类的结果,数据表现为类别,用文字来表述;〔定性数据〕顺序数据:只能归于*一有序类别的非数字型数据。

它也是有类别的,但这些类别是有序的。

〔定量数据〕数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。

统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。

实验数据:在实验中控制实验对象而收集到的数据。

统计数据;按被描述的现象与实践的关系分;截面数据:在一样或相似的时间点收集到的数据,也叫静态数据。

时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。

1.4解释分类数据,顺序数据和数值型数据答案同1.31.5对一千灯泡进展寿命测试,则这千个灯泡就是总体,从中抽取一百个进展检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象*种特征的概念,比方说灯泡的寿命。

1.6变量可以分为分类变量,顺序变量,数值型变量。

变量也可以分为随机变量和非随机变量。

经历变量和理论变量。

1.7离散型变量,只能取有限个值,取值以整数位断开,比方"企业数〞连续型变量,取之连续不断,不能一一列举,比方"温度〞。

1.8统计应用实例:人口普查,商场的名意调查等。

1.9统计应用的领域:经济分析和政府分析还有物理,生物等等各个领域。

第二章思考题2.1由别人调查和试验而来已经存在,并会被我们利用的资料为"二手资料〞。

使用时要进展评估,要考虑到资料的原始收集人,收集目的,收集途径,收集时间使用时要注明数据来源。

2.2概率抽样:抽样时按一定的概率以随机原则抽取样本。

每个单位被抽中的概率或可以计算,当用样本对总体目标量进展估计时,要考虑到每个单位样本被抽到的概率。

技术含量和本钱都比拟高。

如果调查目的在于掌握和研究对象总体的数量特征,得到总体参数的置信区间,就使用概率抽样。

非概率抽样:操作简单,时效快,本钱低,而且对于抽样中的统计学专业技术要求不是很高。

它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。

它同样使用市场调查中的概念测试〔不需要调查结果投影到总体的情况〕。

2.3试验式和观察式等2.4自填式;优点:1、调查组织者管理容易,2、本钱低,可进展大规模调查,3、对被调查者,可选择方便时间答卷,减少答复敏感问题压力缺点:1、返回率低2、不适合构造复杂的问卷,调查内容有限3、调查周期长4、在数据搜集过程中遇见问题不能及时调整。

面访式;优点:1答复率高2数据质量高3在调查过程中遇见问题可以及时调整。

缺点:1本钱比拟高2搜集数据的方式对调查过程的质量控制有一定难度3对于敏感问题,被访者会有压力。

式;优点:1速度快2对调查员比拟平安3对访问过程的控制比拟容易。

缺点:1实施地区有限2调查时间不能过长3使用的问卷要简单4被访者不愿答复时,不易劝服。

第三章思考题3.1数据审核〔完整性和准确性;适用性和实效性〕,数据筛选和数据排序。

3.2分类数据:制作频数分布表,用比例,百分比,比率等进展描述性分析。

可用条形图,帕累托图和饼图进展图示分析。

顺序数据:制作频数分布表,用比例,百分比,比率。

累计频数和累计频率等进展描述性分析。

可用条形图,帕累托图和饼图,累计频数分布图和环形图进展图示分析。

3.3分组方法:单变量值分组和组距分组,组距分组又分为等距分组和异距分组。

分组步骤:1确定组数2确定各组组距3根据分组整理成频数分布表3.4直方图和条形图的区别1条形图使用图形的长度表示各类别频数的多少,其宽度固定,直方图用面积表示各组频数,矩形的高度表示每一组的频数或频率,宽度表示组距,2直方图各矩形连续排列,条形图分开排列,3条形图主要展示分类数据,直方图主要展示数值型数据。

3.5时间在横轴,观测值绘在纵轴。

一般是长宽比例10:7的长方形,纵轴下端一般从0开场,数据与0距离过大的话用折断符号折断。

3.6饼图和环形图的不同饼图只能显示一个样本或总体各局部所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个"空洞〞,每个样本或总体的数据系类为一个环。

3.7茎叶图比直方图的优势茎叶图既能给出数据的分布情况,又能给出每一个原始数据,即保存了原始数据的信息。

在应用方面,直方图通常适用于大批量数据,茎叶图适用于小批量数据。

3.8鉴别图标优劣的准则P753.9制作统计表应注意的问题1,合理安排统计表构造2表头一般包括表号,总标题和表中数据的单位等内容3表中的上下两条横线一般用粗线,中间的其他用细线4在使用统计表时,必要时可在下方加注释,注明数据来源。

公式:组中值=〔上限+下限〕/2第4章数据的概括性度量4.1一组数据的分布特征可以从哪几个方面进展测度?数据分布特征可以从三个方面进展测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或集中的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

4.2怎样理解平均数在统计学中的地位?平均数在统计学中具有重要的地位,是集中趋势的最主要的测度,主要适用于数值型数据,而不适用于分类数据和顺序数据。

4.3简述四分位数的计算方法。

四分位数是一组数据排序后处于25%和75%位置上的值。

根据未分组数据计算四分位数时,首先对数据进展排序,然后确定四分位数所在的位置,该位置上的数值就是四分位数。

4.4对于比率数据的平均为什么采用几何平均?在实际应用中,对于比率数据的平均采用几何平均要比算数平均更合理。

从公式〔中也可看出,G就是平均增长率。

4.5简述众数、中位数和平均数的特点和应用场合众数是一组数据分布的峰值,不受极端值的影响,缺点是具有不唯一性。

众数只有在数据量较多时才有意义,数据量较少时不宜使用。

主要适合作为分类数据的集中趋势测度值。

中位数是一组数据中间位置上的代表值,不受极端值的影响。

当数据的分布偏斜较大时,使用中位数也许不错。

主要适合作为顺序数据的集中趋势测度值。

平均数对数值型数据计算的,而且利用了全部数据信息,在实际应用中最广泛。

当数据呈对称分布或近似对称分布时,三个代表值相等或相近,此时应选择平均数。

但平均数易受极端值的影响,对于偏态分布的数据,平均数的代表性较差,此时应考虑中位数或众数。

4.6简述异众比率、四分位差、方差或标准差的适用场合对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。

4.7标准分数有哪些用途?标准分数给出了一组数据中各数值的相对位置。

在对多个具有不同量纲的变量进展处理时,常需要对各变量进展标准化处理。

它还可以用来判断一组数据是否有离群数据。

4.8为什么要计算离散系数?方差和标准差是反映数据分散程度的绝对值,一方面其数值大小受原变量值本身水平上下的影响,也就是与变量的平均数大小有关;另一方面,它们与原变量的计量单位一样,采用不同计量单位的变量值,其离散程度的测度值也就不同。

因此,为消除变量值水平上下和计量单位不同对离散程度测度值的影响,需要计算离散系数。

4.9测度数据分布形状的统计量有哪些?对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。

第五章概率与概率分布5.1频率与概率有什么关系?在一样条件下随机试验n次,*事件A出现m次,则比值m/n称为事件A发生的频率。

随着n的增大,该频率围绕*一常数p波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。

5.2独立性与互斥性有什么关系?互斥事件一定是相互依赖〔不独立〕的,但相互依赖的事件不一定是互斥的。

不互斥事件可能是独立的,也可能是不独立的,但独立事件不可能是互斥的。

5.3根据自己的经历体会举几个服从泊松分布的随机变量的实例。

如*种仪器每月出现故障的次数、一本书一页中的印刷错误、*一医院在*一天内的急诊病人数等5.4根据自己的经历体会举几个服从正态分布的随机变量的实例。

如*班*次的考试成绩、*地区成年男性的身高、*公司年销售量、同一车间产品的质量等第六章思考题6.1统计量:设*1,*2…,*n是从总体*中抽取的容量为n的一个样本,如果由此样本构造一个函数T〔*1,*2…,*n〕,不依赖于任何未知参数,则称函数T(*1,*2…,*n)是一个统计量。

原因:为了使统计推断成为可能。

6.2T1和T2是6.3P1596.4统计量加工过程中一点信息都不损失的统计量为充分统计量6.5自由度:独立变量的个数6.62分布:设,则F分布:设假设U为服从自由度为n1的2分布,即U~2(n1),V为服从自由度为n2的2分布,即V~ 2(n2),且U和V相互独立,则称F为服从自由度n1和n2的F分布,记为6.7抽样分布:样本统计量的概率分布是一种理论概率分布随机变量是样本统计量6.8中心极限定理:设从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ2/n的正态分布第七章思考题7.1估计量:用于估计总体参数的随机变量估计值:估计参数时计算出来的统计量的具体值7.2评价估计量的标准:无偏性:估计量抽样分布的数学期望等于被估计的总体参数有效性:对同一总体参数的两个无偏点估计量,有更小标准差的估计量更有效一致性:随着样本容量的增大,估计量的值越来越接近被估计的总体参数7.3置信区间:由样本统计量所构造的总体参数的估计区间7.495%的置信区间指用*种方法构造的所有区间中有95%的区间包含总体参数的真值。

7.5含义:Za/2是标准正态分布上侧面积为a/2的z值,公式是统计总体均值时的边际误差。

7.6独立样本:如果两个样本是从两个总体中独立抽取的,即一个样本中的元素与另一个样本中的元素相互独立。

匹配样本:一个样本中的数据与另一个样本中的数据相对应。

7.7(1)、两个总体都服从正态分布(2)、两个随即样本独立地分别抽自两个总体7.8样本量越大置信水平越高,总体方差和边际误差越小第8章思考题8.1假设检验和参数估计有什么一样点和不同点?答:参数估计和假设检验是统计推断的两个组成局部,它们都是利用样本对总体进展*种推断,然而推断的角度不同。

相关文档
最新文档