高中数学知识点总结PPT (2)
合集下载
人教版高中数学必修2《平面与平面垂直的性质》PPT课件

3,∴h=
3 2.
在△BCD 中,BF=BD·cos 60°=2×12=1,DF=BD·sin 60°= 3,∴DC=2 3,
故 S△BCD=12BF·DC=12×1×2 3= 3.
∴VD-BCG=VG-BCD=13S△BCD·h=13× 3× 23=12.
[方法技巧] (1)在有关垂直问题的证明过程中要注意线线垂直、线面垂直、面面垂直的 相互转化.因此,判定定理与性质定理的合理应用是证明垂直问题的关键. (2)空间问题转化成平面问题是解决立体几何问题的一个基本原则.解题时, 要通过几何图形自身的特点,如等腰(等边)三角形的“三线合一”、中位线定理、 菱形的对角线互相垂直等,得出一些题目所需要的条件.对于一些较复杂的问 题,注意应用转化思想解决问题.
【对点练清】 如图,在四棱锥 P-ABCD 中,平面 PAB⊥平面 ABCD,BC∥平 面 PAD,∠ABC=90°,PA=PB= 22AB.求证: (1)AD∥平面 PBC; (2)平面 PBC⊥平面 PAD. 证明:(1)∵BC∥平面 PAD,BC⊂平面 ABCD,平面 ABCD∩平面 PAD=AD, ∴BC∥AD. ∵AD⊄平面 PBC,BC⊂平面 PBC,∴AD∥平面 PBC.
若①m⊥n,③n⊥β,④m⊥α 成立,则②α⊥β 一定成立; 若②α⊥β,③n⊥β,④m⊥α 成立,则①m⊥n 一定成立. ∴①③④⇒②(或②③④⇒①). 答案:①③④⇒②(或②③④⇒①)
• 题型二 垂直关系的综合应用
• [探究发现]
• 试总结线线垂直、线面垂直、面面垂直之间的转化关 系.
提示:在线线垂直、线面垂直、面面垂直的相互转化中.每一种垂直的
判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:
高中数学必修2第二章点直线平面之间的位置关系211平面及其表示法(含习题课)PPT课件

1,2,3(1)(2)
21
补充练习金太:阳教育网
l 1、A为直线 l上的点,又点A不在平面
与 的公共点最多有 _______1个.
品质来自专业 信赖源于诚信
内,则
2、四条直线过同一点,过每两条直线作一个平
面,则可以作_____1_或___4_或___6个不同的平面 .
22
金太阳教育网
品质来自专业 信赖源于诚信
2
金实太阳教例育网引入
品质来自专业 信赖源于诚信
观察活动室里的地面,它呈现出怎样的形象?
3
一.平面金太的阳教育概网 念:
品质来自专业 信赖源于诚信
光滑的桌面、平静的湖面等都是我们
熟悉的平面形象,数学中的平面概念是现
实平面加以抽象的结果。
二.平面的特征:
平面没有大小、厚薄和宽窄,平面在空 间是无限延伸的。
文字语金言太阳:教育网 公理1.如果一条直线上两点品信质赖在来源自于专诚一业信 个平面内,那么这条直线在此平
面内(即这条直线上的所有的点
23
点、线金、太阳面教之育网间的位置关系及语言表达
品质来自专业
信赖源于诚信
文字语言表达 图形语言表达 符号语言表达
点A在直线a上 点A不在直线a上
A
a
A
a
A∈a A∈a
点A在平面α上 点A不在平面α上 直线a在平面α内
α
A
α
α
A
a a
A∈α A∈ α
aα
a b∩α=A
直线a在平面α外 α
A α
a∩α=φ 或 a∥α24
B A
B
CαA
C
公理2.过不在同一直线上的三点,有且只有一个平面.
人教B版高中数学必修一 《函数及其表示方法》函数的概念与性质PPT(第2课时函数的表示方法)

3.已知两个函数 f(x)和 g(x)的定义域和值域都是集合{1,2,3}, 其函数对应关系如下表:
x
1
2
3
f(x)
2
3
1
x
1
2
3
g(x)
3
2
1
则方程 g(f(x))=x 的解集为________.
解析:当 x=1 时,f(1)=2,g(f(1))=2,不符合题意; 当 x=2 时,f(2)=3,g(f(2))=1,不符合题意; 当 x=3 时,f(3)=1,g(f(3))=3,符合题意. 综上,方程 g(f(x))=x 的解集为{3}.
函数图像的作法及应用 作出下列函数的图像并求出其值域. (1)y=2x+1,x∈[0,2]; (2)y=2x,x∈[2,+∞); (3)y=x2+2x,x∈[-2,2].
【解】 (1)列表:
x
0
1 2
1
3 2
2
y
1
2
3
4
5
当 x∈[0,2]时,图像是直线的一部分,观察图像可知,其值域
为[1,5].
函数 f(x)的图像如图所示,则 f(x)的定义域是________,值 域是________.
答案:[-1,0)∪(0,2] [-1,1)
函数的三种表示方法 某商场新进了 10 台彩电,每台售价 3 000 元,试求售 出台数 x(x 为正整数)与收款数 y 之间的函数关系,分别用列表 法、图像法、解析法表示出来.
2.下表表示函数 y=f(x),则 f(x)>x 的整数解的集合是________.
x
0<x<5 5≤x<10 10≤x<15 15≤x<
高中数学集合与常用逻辑用语知识点总结PPT课件

【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.
高中数学第二章空间向量与立体几何1从平面向量到空间向量ppt课件

→ —→ (2)〈AB,C1A1〉; 解答 〈A→B,C—1→A1〉=π-〈A→B,A—1→C1〉=π-π4=34π.
→ —→ (3)〈AB,A1D1〉.
解答
〈A→B,A—1→D1〉=〈A→B,A→D〉=π2.
引申探求 →→
在本例中,求〈AB1,DA1〉. 解答
如图,衔接B1C,那么B1C∥A1D, →→
梳理
间向量的夹角
(1)文字表达:a,b是空间中两个非零向量,过空间恣意一点O,作
→ OA
=a,O→B=b,那么∠AOB 叫作向量a与向量b的夹角,记作〈a,b〉 .
(2)图形表示:
角度
表示
〈a,b〉=__0_
〈a,b〉是_锐__角__
〈a,b〉是_直__角__ 〈a,b〉是_钝__角__〈a,b〉 Nhomakorabea_π__
第二章 空间向量与立体几何
§1 从平面向量到空间向量
学习目的 1.了解空间向量的概念. 2.了解空间向量的表示法,了解自在向量的概 念. 3.了解空间向量的夹角. 4.了解直线的方向向量与平面的法向量的概念.
内容索引
问题导学 题型探求 当堂训练
问题导学
知识点一 空间向量的概念
思索1
类比平面向量的概念,给出空间向量的概念. 答案 在空间中,把具有大小和方向的量叫作空间向量.
答案 解析
研讨长方体的模型可知,一切顶点两两相连得到的线段中,长度为1 的线段只需4条,故模为1的向量有8个.
12345
5.在直三棱柱ABC-A1B1C1中,以下向量可以作为平面ABC法向量的 是②__③____.(填序号)答案
No Image
12345
规律与方法
在空间中,一个向量成为某直线的方向向量的条件包含两个方面:一是 该向量为非零向量;二是该向量与直线平行或重合.二者缺一不可. 给定空间中恣意一点A和非零向量a,就可以确定独一一条过点A且平行 于向量a的直线.
高中数学必修1复习 PPT课件 图文

x4 x0
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
(4)已知f(幂 2)8 , 函求 数 f(x)函 的数 解析
函数单调性
y
f(x2)
f(x1)
在给定区间上任x取 1, x2,
x1 x2
f(1x)f(2x)
函数f (x)在给定区间
O
x1 x2 x
上为增函数。
注意
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
y
在给定区间上任x取 1, x2,
真数 自变量
函数 y=logax 叫作指数函数
底数(a>0且a≠1) 常数
指数函数与对数函数
y
1
0
x
R
y
y
y
1
1
o
1
x
o
x
0
x
单调性
(0, ) 相同
(0, )
(0, 1)
在R上是增函数 在R上是减函数
R
(1, 0)
在( 0 , + ∞ )上是 在( 0 , + ∞ )上是
增函数
减函数
指数函数与对数函数
x3,2
5 4 3 2 1
0 1 3 -8 -6 -4 -2
2 4 6 810
-1
x=2
-2
-3
-4
-5
二、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例10 (1)已f知 (x)x24x3,求 f(x1)
(2)已f知 (x1)x22x,求 f(x)
x23 x0 (3)已知 f(x) 1 x0,求 f[f(4)]
(3) loaM g nnloaM g (n R ).
几个重要公式
(1)logabllooggccballggba
高中数学ppt课件大全
概率与统计部分解题技巧与方法
概率计算
理解概率的基本概念和 性质,掌握概率的加法 公式、乘法公式和全概 率公式等计算方法。
随机变量及其分布
了解随机变量的概念和 性质,掌握离散型和连 续型随机变量的分布列 或概率密度函数的求解
方法。
统计推断
掌握样本均值、方差和 标准差的计算方法,了 解大数定律和中心极限 定理等统计推断的基本
总结词
空间几何体的面积和体积
详细描述
探讨空间几何体的面积和体积的计算方法,如球体表面 积和体积、长方体的表面积等。
解析几何
总结词:坐标系和方程
01
总结词:直线和圆的位置关系
03
02
详细描述:介绍坐标系的概念和方程的表示 方法,如直线方程、圆方程等。
04
详细描述:研究直线和圆的位置关系,如 相交、相切、相离等。
原理。
THANKS
ቤተ መጻሕፍቲ ባይዱ
02
函数的性质(奇偶 性、单调性、周期
性)
04
无穷小与无穷大
03
极限的概念与性质
导数与微分
01
导数的定义与几何意义
03
微分的概念与计算
02
导数的计算(基本初等函数的导数、复合函数 的导数)
04
导数在研究函数中的应用(单调性、极值、拐点)
不定积分与定积分
01
02
03
04
不定积分的概念与性质
不定积分的计算(直接积分法 、换元积分法、分部积分法)
在此添加您的文本16字
总结词:圆的性质
在此添加您的文本16字
详细描述:研究圆的性质、定理和判定,如圆心角定理、 弦长定理等。
立体几何
高中数学必修二全册课件ppt人教版
解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
高
平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……
事件的关系和运算 课件(2)-人教A版高中数学必修第二册(共28张PPT)
答案 (1)并事件、交事件和集合的并集、交集的意义一样. (2)互斥事件包括对立事件,即对立事件一定是互斥事件,但互斥事件不 一定是对立事件.
探究2 从运算的含义总结事件的关系或运算?
事件的关系或运算
含义
符号表示
包含 并事件(和事件) 交事件(积事件) 互斥(互不相容)
互为对立
A 发生导致 B 发生 A 与 B 至少一个发生
答案 C
2.抽查 10 件产品,记事件 A 为“至少有 2 件次品”,则 A 的对立 事件为( )
A.至多有 2 件次品 B.至多有 1 件次品 C.至多有 2 件正品 D.至少有 2 件正品
答案 B
3.从一批产品中取出三件产品,设 A=“三件产品全不是次品”, B=“三件产品全是次品”,C=“三件产品有次品,但不全是次 品”,则下列结论中错误的是( )
事件 R2 的交事件与事件 R 有什么关系?
解析(1)所有的试验结果如图所示,
用数组 x1, x2 表示可能的结果, x1 是第一次摸到的球的标号, x2 是第二次摸到的球的
标号,则试验的样本空间
1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3
事件 R1 =“第一次摸到红球”,即 x1 1 或 2,于是
次随机摸出 2 个球.设事件 R1 =“第一次摸到红球”, R2 =“第二次
摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”, M=“两个球颜色相同”,N=“两个球颜色不同”.
(1)用集合的形式分别写出试验的样本空间以及上述各事件;
(2)事件 R 与 R1 ,R 与 G,M 与 N 之间各有什么关系? (3)事件 R 与事件 G 的并事件与事件 M 有什么关系?事件 R1 与
探究2 从运算的含义总结事件的关系或运算?
事件的关系或运算
含义
符号表示
包含 并事件(和事件) 交事件(积事件) 互斥(互不相容)
互为对立
A 发生导致 B 发生 A 与 B 至少一个发生
答案 C
2.抽查 10 件产品,记事件 A 为“至少有 2 件次品”,则 A 的对立 事件为( )
A.至多有 2 件次品 B.至多有 1 件次品 C.至多有 2 件正品 D.至少有 2 件正品
答案 B
3.从一批产品中取出三件产品,设 A=“三件产品全不是次品”, B=“三件产品全是次品”,C=“三件产品有次品,但不全是次 品”,则下列结论中错误的是( )
事件 R2 的交事件与事件 R 有什么关系?
解析(1)所有的试验结果如图所示,
用数组 x1, x2 表示可能的结果, x1 是第一次摸到的球的标号, x2 是第二次摸到的球的
标号,则试验的样本空间
1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3
事件 R1 =“第一次摸到红球”,即 x1 1 或 2,于是
次随机摸出 2 个球.设事件 R1 =“第一次摸到红球”, R2 =“第二次
摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”, M=“两个球颜色相同”,N=“两个球颜色不同”.
(1)用集合的形式分别写出试验的样本空间以及上述各事件;
(2)事件 R 与 R1 ,R 与 G,M 与 N 之间各有什么关系? (3)事件 R 与事件 G 的并事件与事件 M 有什么关系?事件 R1 与
(人教B版)高中数学必修四同步ppt课件:第2章全章回顾
的重心,F 为△ABC 的外心,证明:EF⊥CD. 剖析 建立适当的平面直角坐标系,将证明 EF⊥CD 转化
→ → 为证明EF· CD=0.
证明 建立如图的平面直角坐标系,设 A(0,b),B(-a,0), C(a,0), 则
a b → 3a b D-2,2,CD=- 2 ,2.
f1x=-f2x, 即 f1y+f2y=-G, |f1|sinα=|f2|sinβ, ∴ |f1|cosα+|f2|cosβ=|G|.
|G| |f1|= , cos α + sin α cot β 解得 |G| |f |= . 2 cosβ+sinβcotα |G| |G| 故两根绳子的拉力大小为 和 . cosα+sinαcotβ cosβ+sinβcotα
3.通过本章的学习,掌握用向量处理问题的两种方法—— 向量法和坐标法. 4.经历概念的形成过程,解题的思维过程,体验数形结合 思想的指导作用. 5.经历用向量方法解决某些简单的几何问题、物理问题的 过程,体会向量是一种处理几何问题、物理问题等的工具.
数学思想方法
梳理知识 夯实基础
一、构建模型的思维方法 构建模型是中学数学中重要的思想方法之一,运用它可以 迅速地将某些研究对象或实际问题抽象为数学问题,进而使问 题得以解决.平面向量中的不少知识和问题中都蕴含着这一思 想方法,如向量的加、减法可归结为平行四边形或三角形模型.
A.1 C.3
解析
依题意作图,易知△OAB 为等边三角形,所以 |2归思想 转化与化归思想,就是在研究和解决有关数学问题时,采 用某种手段,通过变换,将问题转化为易解决的问题的一种方 法. 例3 在△ABC 中, AB=AC, D 为 AB 的中点, E 为△ACD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奇函数里的定值:如果奇函数y=f(x)的 定义域内有0,则f(0)=0. 上一页 下一页
考点知识精讲
首页
利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义
域是否关于原点对称;
②确定f(-x)与f(x)的关系;
③作出相应结论:
若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;
考点知识精讲
首页
高中数学考点(2)
上一页
下一页
知识 结构
函 数
考点知识精讲
首页
概念 三要素 图象 性质 指数函数
对数函数
大小比较
方程解的个数
应用
不等式的解
实际应用
上一页
下一页
考点知识精讲
首页
函数的概念:
A、B是两个非空的集合,如果按照某种对 应法则f,对于集合A中的每一个元素x, 在集合B中都有唯一的元素y和它对应, 这样的对应叫做从A到B的一个函数。
y = log a x ( a>0 且 a≠1 )
a>1
0<a<1
a>1
0<a<1
图
y
y
y
y
象
1
1
1
o
1
x
o
x
0
x
0
x
定义域 R
定义域 (0, )
性 值域 (0, )
值域 R
定点 (0, 1)
a<0
.
4ac b2
[
, )
4a
R.
4ac b2
(,
]
4a
(, b ]减, [- b ,)增
2a
2a
(, b ]增,[ b ,)减
2a
2a
上一页
下一页
函数的性质:单考调点性知识精定讲义
首页
一般地,设函数 f(x)的定义域为I:
y
y=f(x)
f(x2) f(x1)
o x1
x2 x
如果对于定义域I内某个区间D上的
若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.
上一页
下一页
考点知识精讲
首页
如果函数的定义域不关于原点对称,则
பைடு நூலகம்
此函数既不是奇函数,又不是偶函数。
奇函数关于原点对称的两个区间上的 单调性一致;偶函数则相反。
上一页
下一页
最值:
考点知识精讲
首页
一般地,设函数 y=f(x) 的定义域为I,如果存
在实数M满足: (1)对于任意的x∈I , 都有f(x)≤M ;
(2)存在 x0∈I ,使得f(x0)=M . 那么,称M是函数 y=f(x) 的最大值.
几何意义:
函数 y=f(x) 的最大值是图象最高点的纵坐标.
上一页
下一页
最值:
考点知识精讲
首页
一般地,设函数 y=f(x) 的定义域为I,如果存
函数的三要素:定义域,值域,对应法则
上一页
下一页
考点知识精讲
首页
使函数有意义的x的取值范围。
上一页
下一页
考点知识精讲
首页
求 定
1、分式的分母不为零.
义 2、偶次方根的被开方数大于等于零.
域 3、零次幂的底数不为零.
的 4、对数函数的真数大于零. 主 要 5、指、对数函数的底数大于零且不为1.
依 据
下一页
反比例考函点数知识精讲y k
首页
x
1、定义域 . 2、值域
k>0
k<0
(, 0)(0,+)
(, 0)(0,+)
3、单调性 递减(, 0),(0,+) 递增(, 0),(0,+)
4、图象
上一页
下一页
二次函考数点知y识精a讲x2 bx c 首 页
1、定义域 2、值域 3、单调性
4、图象
a>0
上一页
下一页
一、函数的奇偶考性点知定识义精讲
首页
前提条件:定义域关于原点对称。
1、奇函数 f (-x)= - f (x) 或 f (-x)+f (x) = 0
2、偶函数 f (-x) = f (x) 或f (-x) - f (x) = 0
二、奇函数、偶函数的图象特点
1、奇函数的图象关于原点成中心对称图形。 2、偶函数的图象关于y轴成轴对称图形。
6、实际问题中函数的定义域.
上一页
下一页
考点知识精讲
首页
求函数解析式的方法:
待定系数法
换元法 配凑法
上一页
下一页
考点知识精讲
首页
求值域的一些方法:
1、 图像法
2 、 配方法 3、 观察法 4、 分离常数法 5、 换元法 6、 单调性法
上一页
下一页
考点知识精讲
首页
一个函数的三要素为:定义域、对应关 系和值域。
任意两个自变量的值 x1 、x2 ,当 x1<x2时,都有f(x1)<f(x2),那么 就说函数f(x)在区间D上是增函数.
y
如果对于定义域I内某个区间D上的
y=f(x) f(x1) f(x2)
任意两个自变量的值 x1 、x2 ,当 x1<x2时,都有f(x1)>f(x2),那么 就说函数f(x)在区间D上是减函数.
值域是由对应法则和定义域决定的。
上一页
下一页
考点知识精讲
首页
判断两个函数相等的方法:
1、定义域是否相等
(定义域不同的函数,不是相等的函数)
2、对应法则是否一致
(对应关系不同,两个函数也不同)
上一页
下一页
考点知识精讲
首页
微信公众号 以微课堂高中版
上一页
下一页
考点知识精讲
首页
初中数学考点(5)
上一页
(2) loga
M N
loga
M
loga
N
(3) loga M n n loga M (n R)
4 loga
N
logc logc
N a
5 logam
Nn
n m
loga
N
loga 1 0 loga a 1 a N 上一页 loga N下一页
指数函数与对数函数
函数 y = ax ( a>0 且 a≠1 )
考点知识精讲
首页
指数幂的运算
⑴ ar·as=ar+s (a>0,r,s∈Q); ⑵ (ar)s=ars (a>0,r,s∈Q); ⑶ (ab)r=ar br (a>0,b>0,r∈Q).
(5)
( a )n b
an bn
(b
0,
n
Z)
上一页
下一页
1. 对数的运算性质:
考点知识精讲
首页
如果 a > 0,a 1,M > 0, N > 0 有: ⑴ log( a MN) loga M loga N
在实数M满足:
(1)对于任意的x∈I , 都有f(x)≥M ;
(2)存在 x0∈I ,使得f(x0)=M . 那么,称M是函数 y=f(x) 的最小值.
几何意义:
函数 y=f(x) 的最小值是图象最低点的纵坐标.
上一页
下一页
基考本点知初识等精讲函数
首页
基本初等函数
指数函数
对数函数
幂函数
上一页
下一页
o x1 x2 x
3.(定义法)证明函数单调性的步骤:
上一页
下一页
设值 作差变形 判断差符号 下结论
简单函数的单调考点性知识精讲
首页
1、一次函数 y=kx+b 2、二次函数 y=ax^2+bx+c 3、反比例函数 y=k/x 4、指数函数 y=a^x 5、对数函数 y=logax 6、幂函数 y=x^a