高分子材料力学状态共35页

合集下载

高分子材料的力学状态.pptx

高分子材料的力学状态.pptx

运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
第7页/共35页
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
(2)力学特征:形变量很大(流动)
形变不可逆
模量极小
(3)Tf与摩尔平均质量有关
第8页/共35页
2.1 高分子材料的力学状态
材料受力方式的基本类型
F
A0
A
A0
l0
l
F
F Dl
F
简单拉伸示意图
产生的形变-拉伸形变/相对伸长率
简单剪切示意图
剪切应力、剪切应变
第15页/共35页
2.2 高分子材料的力学性能
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
F
扭转
第16页/共35页
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
Strain softening 应变软化 B
B Y
Y
N
D
A A
plastic deformation
塑性形变
Strain hardening 应变硬化
E D A D A
O A
B
y
图2.4 非晶态聚合物的应力-应变曲线(玻璃态)
第19页/共35页
2.2 高分子材料的力学性能
第20页/共35页
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧

材料力学行为课件:第七章 高分子材料的力学行为

材料力学行为课件:第七章 高分子材料的力学行为

内耗的不利方面:加速橡胶制品的老化。
内耗的有利方面:内耗有力于减震作用。
4 高耐磨性 高聚物具有较高的耐磨性。 塑料经常用来制造轴承、轴套、凸轮等摩擦磨损零件。
二 高分子材料物理化学性能特点
1 高绝缘性能 导电能力低、介电常数小、介电损耗小、耐电弧性能好 塑料、橡胶厂用来做电机、电器电子工业的绝缘材料。
3 具有粘弹性特点 粘弹性:高聚物在外力作用下,同时发生高弹性变形和粘性流动, 其变形和时间相关。这种现象称为粘弹性。
高分子材料的粘弹性表现为:蠕变、应力松弛和内耗
内耗:在交变应力作用下,处于高弹态的高分子当变形速率跟不上应力变 化速率,出现应变滞后现象,导致有些能量消耗于材料中分子内摩擦并转 化为热能放出。由于力学滞后使机械能转化为热能的这种现象称为内耗。
第七章 高分子材料的力学行为
高分子材料:又称聚合物,由相对分子量大于5000的 高分子化合物为主要组分的材料。
第一节高分子材料的组织结构
一 高分子材料的概述
1 高分子链的合成
高分子链是由一种或者几种低分子化合物通过 聚合而重复链接成大分子链状结构。
链节:大分子材料中重复结构单元称为链节。 聚合度:链节的重复数目称为“聚合度”。
均聚物:有一种单体合成的高聚物称为均聚物,如聚乙烯、聚氯乙烯等。 共聚物:由两种或者两种以上的单体合成的高聚物称为共聚物。类似金属的合金
3 高分子链的特性
(1)高分子链的形态
按照几何形态,高分子链分为三种类型
线形:各链节以共价键连接成线形 长分子链,直径为几十到几百纳米, 长度可达几百纳米到几微米。
四 高分子链的聚集态和物理状态
(1)高聚物的结合力 高聚物的大分子链中各原子结合以共价键结合,这种共价键成为主价 力;结合强;影响高聚物的强度和熔化温度。 高分子链之间的吸引力为范特瓦尔力和氢键力,成为次价力。

高分子材料的力学性能

高分子材料的力学性能
目录
高分子材料的力学性能
01 高聚物的抗拉强度
02 长期强度
高分子材料的力学性能
抗拉强度:
在规定的温度、湿度和加载速度下,在试样上沿轴 向施加拉力直到试样被拉断为止,断裂前试样所承受的 最大载荷与试样截面之比称为抗拉强度。
宽度b
厚度d
P
t
p bd
p A0
抗拉强度越大,说明材料越不易断裂、越结实
高分子材料的力学性能
高分子材料的力学性能
玻璃纤维是将玻璃材料通过拉丝形成的纤维状的玻璃, 没有固定的熔点。是一种综合性能优异的无机非金属材料, 通常作为复合材料增强基材、电绝缘材料、耐热绝热材料、 光导材料、耐蚀材料和过滤材料等,广泛应用于国民经济各 个领域。
玻璃纤维
高分子材料的力学性能
玻璃纤维对高聚物的增强:
短玻璃纤维可以提高热塑性塑料的强度,还可以用玻璃纤维与其 他织物复合而制成玻璃钢。
玻璃钢的性能优越,其强度高于钢,是以玻璃纤维制成玻璃布,
以不同的角度排列,以环氧树脂、酚醛树脂、呋喃树脂的顺序形成涂 层,经加热、层压、固化而成。
材料
拉伸强度/MPa
未增强
23
聚乙烯
右表为一些热塑性
增强
76
塑料用玻璃纤维增
未增强
58
聚苯乙烯
强后其拉伸强度的
增强
96
变化
未增强
62
聚碳酸酯
增强
140
未增强
在高分子材料中长期强度指一定时间后,高分子材料 不发生断裂时的强度值。
长期
t
谢谢!
高分子材料的力学性能
2、应力和缺陷:
缺陷的存在将使材料受力时内部压力分布不平均, 缺陷附近范围内的应力急剧地增加,远远超过压力平均 值,这种现象称为应力集中,缺陷就是应力集中物,包 括裂缝、空隙、缺口、银纹和杂质等,缺陷成为材料的 薄弱环节,材料的破坏就从这些缺陷处开始而扩展到 整个体系,严重降低材料的强度。

高分子物理----高分子的力学性能

高分子物理----高分子的力学性能

一般刻痕试样的冲击强度小于这一数值为脆性断裂,大
于这一数值时为韧性断裂。但这一指标并不是绝对的,
例如玻璃纤维增强的聚酯塑料,甚至在脆性破坏时也有
很高的冲击强度。
7.1 玻璃态与结晶态聚合物的力学性质
2. 高聚物的理论强度 从分子结构的角度来看,高聚物的断裂要破坏分子 内的化学键,分子间的范德华力与氢键。
7.2 高弹态聚合物的力学性质
加入增塑剂虽然可以降低Tg,但有利条件,因此选
用增塑法来降低Tg必须考虑结晶速度增大和结晶形成的 可能性。
7.2 高弹态聚合物的力学性质
(2)共聚法
共聚法也能降低聚合物的Tg,如:PS的主链上带有体 积庞大的苯基,聚丙烯腈有强极性腈基存在,Tg都在室温 以上,只能作为塑料和纤维使用,如果用丁二烯分别与苯 乙烯和丙烯腈共聚可得丁苯橡胶和丁腈橡胶,使Tg下降。 例如:丁苯30,Tg=-53℃,丁腈26,Tg=-42℃。
7.1 玻璃态与结晶态聚合物的力学性质
(3)当温度升高到Tg以下几十度范围内,如曲线③,过
了屈服点后,应力先降后升,应变增大很多,直到C点断裂,
C点的应力称为断裂应力,对应的应变称为断裂伸长率ε 。
7.1 玻璃态与结晶态聚合物的力学性质
(4)当温度升至Tg以上,试样进入高弹态,在应力不大
时,就可发生高弹形变,如曲线④,无屈服点,而呈现一段
应力称为屈服应力或屈服强度。
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸

高分子物理高分子的力学性能PPT课件

高分子物理高分子的力学性能PPT课件
第28页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
(2) 不相同点: ① 冷拉温度范围不同 a. 玻璃态高聚物拉伸温度区间是:Tb-Tg b. 结晶态高聚物拉伸温度区间是:Tg-Tm
第29页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
② 本质差别 a. 玻璃态高聚物只发生分子链的取向,不发生相变 b. 结晶态高聚物发生结晶的破坏,取向,再结晶。
第26页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
(3)变为细颈的试样重新被均匀拉伸,直到出现断裂 。
第27页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
比较玻璃态高聚物的拉伸与结晶态高聚物的拉伸相同点与区别
(1) 相同点:两种拉伸过程都经历弹性变形,屈 服(“成颈”),发展大形变,应变硬化。断裂前的大 形变在室温时都不能自发恢复,加热后才能恢复原状态。
第17页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
屈服点之后,应力有所下降,在较小的负荷下即可产生形 变,称为应变软化。之后应力几乎不变的情况下应变有很大 程度的增加,最后应力又随应变迅速增加,直到材料断裂。
第18页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
四、几类高聚物的拉伸行为 1. 玻璃态高聚物的拉伸
不易发生相对滑移。随着交联度的增加,往往不易发 生大的形变,强度增大。例如:PE交联后,拉伸强度 可提高一倍,冲击强度可提高3-4倍。
第40页/共72页
7.1 玻璃态与结晶态聚合物的力学性质
(5)分子量 分子量低时,拉伸强度和冲击强度都低,随着分
子量的增加,二者都会提高。但当分子量超过一定的 数值后,拉伸强度的变化就不大了,而冲击强度则继 续增大。

高分子材料的结构、物理状态及性能PPT(30张)

高分子材料的结构、物理状态及性能PPT(30张)
高分子化合物由低分子化合物通过聚合反应获 得。组成高分子化合物的低分子化合物称作单体。
二、高分子化合物的组成
简单的低分子化合物叫单体。由一种或几种简单的低分子 化合物通过共价键重复连接而成的链称为分子链。大分子链 中的重复结构单元叫链节。链节的重复次数即链节数叫聚合 度。例如:聚氯乙烯分子是由n个氯乙烯分子打开双键,彼此 连接起来形成的大分子链。可用下式表示:
(1) 热塑性塑料:加热时软化并熔融,可塑造成形,冷却 后即成型并保持既得形状,而且该过程可反复进行。这类塑料 有聚乙烯、聚丙烯、聚苯乙烯、聚酰胺(尼龙)、聚甲醛、聚碳 酸脂、聚苯醚、聚砜等。这类塑料加工成形简便,具有较高的 机械性能,但耐热性和刚性比较差。
(2) 热固性塑料: 初加热时软化,可塑造成形,但固化后 再加热将不再软化,也不溶于溶剂。这类塑料有酚醛、环氧、氨 基、不饱和聚酯、呋喃和聚硅醚树脂等。它们具有耐热性高, 受压不易变形等优点,但机械性能不好。
不同键接方式对性能 影响很大,头尾键接 强度最高。
三、大分子链的形态
⑴伸直链(又称线型链) 由许多链节组成的长链,通常 是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好, 硬度低,是热塑性材料的典型结构。
⑵带支链 支化型分子链,在主链上带有支链。这类结构 高聚物的性能和加工都接近线型分子链高聚物。
一、高聚物的三态
线型非晶态高聚物在不同温度下表现出三种物理状态: 玻璃态、高弹态和粘流态。在恒定应力下的变形-温度பைடு நூலகம் 线如图所示。Tb为脆化温度,Tg为玻璃化温度,Tf 为粘流 温度,Td为化学分解温度。
玻璃化温度Tg是高聚 物保持玻璃态的最高温度, 可认为是大分子链段开始 运动的最低温度。
一、高聚物的三态
(6)氯纶 难燃、保暖、耐晒、耐磨、弹性好,但是染色性 差,热收缩大,限制了它的应用。

高分子材料的力学性能模拟及分析

高分子材料的力学性能模拟及分析

高分子材料的力学性能模拟及分析高分子材料是一种重要的材料类型,具有许多引人注目的优良性能。

它们具有很高的可塑性和韧性,可以成型为各种复杂形状,且可以在不同温度和湿度下使用。

在这篇文章中,我们将讨论高分子材料的力学性能模拟及其分析方法。

高分子材料的力学性能高分子材料的力学性能是指材料在受力时的反应,包括材料的弹性、塑性、断裂等性质。

这些性能对于材料的使用非常关键,因为它们决定了材料的强度、韧性和耐久性等方面。

在高分子材料中,弹性模量是衡量材料弹性性能的一项关键指标。

弹性模量可以定义为材料在受力时的弹性变形与应力的比值。

高分子材料的弹性模量通常比金属和陶瓷等传统材料低,这是由于高分子材料的链状分子结构和较弱的相互作用力导致的。

除了弹性模量,高分子材料还表现出不同的塑性行为。

塑性行为主要由两个因素决定:分子在受力下的形变和传递形变的机制。

高分子材料通常表现出可塑性行为,这意味着他们可以在受到压力时变形而不会破裂。

分析高分子材料的力学性能分子动力学模拟是一种非常有效的方法,可以用来分析高分子材料的力学性能。

分子动力学模拟是一种计算机模拟技术,可以模拟分子之间相互作用的力学行为。

在分子动力学模拟中,分子被建模为一系列离散的质点,并通过牛顿运动定律来计算分子的位置和速度随时间的变化。

分子动力学模拟可以提供高分子材料的微观结构和力学性能的详细信息。

通过模拟,我们可以了解材料在受力时的分子间相互作用和变形,并且可以预测材料的力学性能,如弹性模量、塑性性质和断裂行为等。

另一种用于分析高分子材料的力学性能的技术是有限元方法。

有限元方法是一种数值分析技术,广泛应用于工程、物理学和其他学科。

有限元方法的基本思想是将大型问题分解为许多小型问题,然后使用计算机程序解决。

在有限元方法中,高分子材料被分解成数百万个小元素,然后通过数值方法来求解每个元素的力学行为。

这些小元素的行为可以被组合成整个材料的力学性能。

总结高分子材料是一种非常重要的材料类型,因为它们具有许多优良的性能。

关于高分子材料的力学性能课件

关于高分子材料的力学性能课件
关于高分子材料的力学性能
银纹与裂纹的区别?
关于高分子材料的力学性能
银纹如何影响强度?
银 纹 的 扩 展
关于高分子材料的力学性能
中间分子 链断裂
扩展
形成裂缝
Thank You !
关于高分子材料的力学性能
硬而脆的材料主要有:低分子量的PS、酚 醛树脂、环氧树脂
关于高分子材料的力学性能
硬而强的材料主要有:硬PVC、PS、 PMMA
所讲的内容
高聚物的应力 强度理论 与应变曲线
关于高分子材料的力学性能
曲线的类型
由于高分子材料种类繁多,实际得到的材料应力-应变曲线具 有多种形状。归纳起来,可分为五类 。
(a)硬而脆型 (b)硬而强型 (c)硬而韧型 (d)软而韧型 (e)软而弱型
关于高高分分子材子料的材力料学性应能力-应变曲线的类型
关于高分子材料的力学性能
原因:
研究表明,材料内部微观结构的不均匀和 缺陷是导致强度下降的主要原因。实际高 分子材料中总是存在这样那样的缺陷,如 表面划痕、杂质、微孔、晶界及微裂缝等, 这些缺陷尺寸很小但危害很大。
这里将着重介绍银纹缺陷对断裂强度 的影响
关于高分子材料的力学性能
银纹的产生
高分子材料在使用与储存过程中或在拉伸作用 下,由于应力及环境的影响,在材料某些薄弱 地方出现应力集中而产生局部的塑性形变与取 向,在其表面或内部出现闪亮的,细长形的 “类裂纹”。
关于高分子材料的力学性能
聚合物的理论强度
从分子水平来看,聚合物之所以具有强度,主 要靠分子内的化学键合力,分子间的范德华力 和氢键。
关于高分子材料的力学性能
内部结构的破坏可归结为以下三种情况:
化学键破坏
分子间滑脱
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档