初三中考数学限时训练测试.pdf

合集下载

中考数学总复习选择填空30分钟限时训练(1-10)

中考数学总复习选择填空30分钟限时训练(1-10)

中考数学总复习选择填空限时训练目录:中考数学总复习选择填空限时训练(1) 2——4中考数学总复习选择填空限时训练(2) 5——7中考数学总复习选择填空限时训练(3) 8——10中考数学总复习选择填空限时训练(4) 11——13中考数学总复习选择填空限时训练(5) 14——16中考数学总复习选择填空限时训练(6) 17——19中考数学总复习选择填空限时训练(7) 20——22中考数学总复习选择填空限时训练(8) 23——25中考数学总复习选择填空限时训练(9) 26——28中考数学总复习选择填空限时训练(10) 29——31参考答案32——35选择填空限时训练(一)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.-2的相反数是( ) A.12B .-2 C .2 D .-122.如图X 1-1,下面几何体的俯视图是( )图X 1-1图X 1-23.据统计,2015年广州地铁日均客运量约为6590000人次.将6590000用科学记数法表示为( )A .6.59³104B .659³104C .65.9³105D .6.59³1064.已知一组数据0,-1,1,2,3,则这组数据的方差为( ) A .0 B .1 C.2D .25.把不等式组⎩⎪⎨⎪⎧x>-1,x +2≤3的解表示在数轴上,下列选项正确的是( )图X 1-36.在Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( ) A .10 B .3 C .4 D .57.如图X 1-4,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )X 1-4A .4B .6C .8D .108.已知关于x 的方程ax +b =0(a ≠0)的解为x =-2,点(1,3)是抛物线y =ax 2+bx +c (a ≠0)上的一个点,则下列四个点中一定在该抛物线上的是( )A .(2,3)B .(0,3)C .(-1,3)D .(-3,3)9.如图X 1-5,已知A ,B 是反比例函数y =kx(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( )图X 1-5图X 1-610.如图X 1-7,正方形ABCD 的边长为6,点E ,F 分别在AB ,AD 上,若CE =3 5,且∠ECF =45°,则CF 的长为( )X 1-7A .2 10B .3 5C.5310D.1035二、填空题(本题有6小题,每小题4分,共24分)11.请写出一个解为x =1的一元一次方程:______________________.12.如图X 1-8是一个斜体的“土”字,AB ∥CD ,已知∠1=75°,则∠2=________°.X 1-813.为了了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天睡眠时间的众数是________小时,中位数是________小时.14.如图X 1-9,将弧长为6π的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的底面圆半径是________.图X 1-9图X 1-1015.如图X 1-10,已知点B ,D 在反比例函数y =ax (a >0)的图象上,点A ,C 在反比例函数y =bx (b <0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的同侧,AB =4,CD =3,AB 与CD 间的距离为1,则a -b 的值是________.16.如图X 1-11,点A (2,0),以OA 为半径在第一象限内作圆弧AB ,使∠AOB =60°,点C 为弧AB 的中点,D 为半径OA 上一动点(不与点O ,A 重合),点A 关于直线CD 的对称点为E ,若点E 落在半径OA 上,则点E 的坐标为________;若点E 落在半径OB 上,则点E 的坐标为________.图X 1-11 加 加 练17.计算:||3-2+20170-(-13)-1+3tan30°+8.选择填空限时训练(二)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分)1.某小区经过改进用水设施,5年内小区居民累计节水39400吨,将39400用科学记数法表示为( )A .3.9³104B .3.94³104C .39.4³103D .4.0³1042.下列运算正确的是( ) A .(-3)2=-9 B .(-1)2015³1=-1C .-5+3=8 D .-|-2|=23.下列图形中,是轴对称图形但不是中心对称图形的是( ) A .等边三角形 B .平行四边形C .矩形 D .圆 4.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2²3ab 3=-3a 2b 5C.b a -b +a b -a =-1D.a 2-1a ²1a +1=-1 5.在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所对圆心角的大小为( ) A .30° B .45°C .60° D .90°6.用反证法证明命题:在一个三角形中,至少有一个内角不大于60°.证明的第一步是( )A .假设三个内角都不大于60°B .假设三个内角都大于60°C .假设三个内角至多有一个大于60°D .假设三个内角至多有两个大于60° 7.已知点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC 2+BC 2 B .BC 2=AC ²BA C.BC AC =5-12 D.AC BC =5-128.从某市8所学校中抽取共1000名学生进行800米跑达标抽样检测.结果显示该市成绩达标的学生人数超过半数,达标率达到52.5%.如图X 2-1①、②反映的是本次抽样中的具体数据.根据数据信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有( )图X 2-1A .0个B .1个C .2个D .3个9.如图X 2-2,D 是等边三角形ABC 边AB 上的一点,且AD ∶DB =1∶2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE ∶CF =( )X 2-2A.45B.35C.56D.6710.若二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2-4ac >0;②x =x 0是方程ax 2+bx +c =y 0的解;③x 1<x 0<x 2;④a (x 0-x 1)(x 0-x 2)<0.其中正确的结论是( )A .①③④B .①②④C .①②③D .②③ 二、填空题(本题有6小题,每小题4分,共24分)11.一组数据2,3,3,5,7的中位数是________;方差是________. 12.计算:2tan60°+(x -3)0-(12)-1=________.13.二次函数y =x 2+4x +5(-3≤x ≤0)的最大值是________,最小值是________. 14.当1<a <2时,代数式(a -2)2+|1-a |=________.15.如图X 2-3,已知点A 1,A 2,…,A n 均在直线y =x -1上,点B 1,B 2,…,B n 均在双曲线y =-1x 上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若a 1=-1,则a 3=________,a 2015=________.X 2-316.如图X 2-4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连结A ′C ,则A ′C 长度的最小值是________.X 2-4加 加 练17.先化简:(3a +1-a +1)÷a 2-4a +4a +1,并从0,-1,2中选一个合适的数作为a 的值代入求值.选择填空限时训练(三)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.12的相反数是( )A .2 B .-2 C.12D .-122.下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )图X 3-13.羊年除夕当天微信红包收发总量达80.8亿个,其中80.8亿用科学记数法可表示为( )A .8.08³108B .0.808³109C .8.08³109D .0.808³10104.下列运算正确的是( )A .x 2+x =x 3B .2x 2-x 2=1 C .x 2²x =2x 2D .x 6÷x 3=x 35.如图X 3-2,已知直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )X 3-2A .35°B .40°C .55°D .75°6.抛物线y =ax 2+bx +c 向左平移5个单位或向右平移1个单位后都会经过原点,则此抛物线的对称轴与x 轴的交点的横坐标是( )A .2B .-2C .3D .-37.如图X 3-3,AB 是⊙O 的弦,点C 在圆上,且∠OBA =40°,则∠C =( ) A .40° B .50° C .60° D .80°图X 3-3图X 3-48.如图X 3-4,直线y 1=12x +2与双曲线y 2=6x 交于A (2,m )、B (-6,n )两点.则当y 1<y 2时,x 的取值范围是( )A .x >-6或0<x <2B .-6<x <0或x >2C .x <-6或0<x <2D .-6<x <29.如图X 3-5,在平面直角坐标系xOy 中,A (-4,0),B (0,2),连结AB 并延长到C ,连结CO ,若△COB ∽△CAO ,则点C 的坐标为( )X 3-5A .(1,52)B .(43,83)C .(5,2 5) D .(3,2 3)10.如图X 3-6,对正方形纸片ABCD 进行如下操作:图X 3-6(1)过点D 任作一条直线与BC 边相交于点E 1(如图X 3-6①),记∠CDE 1=α1;(2)作∠ADE 1的平分线交AB 边于点E 2(如图X 3-6②),记∠ADE 2=α2;(3)作∠CDE 2的平分线交BC 边于点E 3(如图X 3-6③),记∠CDE 3=α3;按此作法从操作(2)起重复以上步骤,得到α1,α2,…,αn ,现有如下结论:①当α1=10°时,α2=40°;②2α4+α3=90°;③当α5=30°时,△CDE 9≌△ADE 10;④当α1=45°时,BE 2=2AE 2.其中正确的个数为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:x 2-x =________.12.如图X 3-7,数轴上所表示的关于x 的不等式组的解为________.图X 3-713.从长度分别为1、3、5、7的四条线段中任选三条,能构成三角形的概率为________.14.如图X 3-8,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.图X 3-8图X 3-915.如图X 3-9,在△ABC 中,AB =2,BC =4,∠B =45°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,CD 的长为________.16.如图X 3-10,⊙O 是△ABC 的外接圆,BC 是⊙O 的直径,AB =AC ,∠ABC 的平分线交AC 于点D ,交⊙O 于点E ,连结CE .若CE =2,则BD 的长为________.图X 3-10 加 加 练17.(1)计算:12+2-1+⎪⎪⎪⎪⎪⎪-12; (2)化简:(a -3)2+3a (a +2).选择填空限时训练(四)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分)1.给出四个数:-1、0、2、3.14,其中为无理数的是( ) A .-1 B .0 C.2D .3.14 2.下列计算正确的是( )A .x 3+x 4=x 7B .x 3-x 4=x -1C .x 3²x 4=x 7D .x 3÷x 4=x3.如图X 4-1所示的支架是由两个长方体构成的组合体,则它的主视图是( )图X 4-1图X 4-24.如图X 4-3,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A.12B.13C.14D.16图X 4-3图X 4-45.如图X 4-4,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A .130°B .140°C .150°D .160° 6.若a -b =2ab ,则1a -1b 的值为( )A .-2B .-12C.12D .27.若将直尺的0 cm刻度线与半径为5 cm的量角器的0°线对齐,并让量角器沿直尺的边缘无滑动地滚动(如图X4-5),则直尺上的10 cm刻度线对应量角器上的度数约为( )X4-5A.90° B.115°C.125° D.180°8.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:这次测试成绩的中位数和众数分别为( )A.47,49 B.48,49C.47.5,49 D.48,509.如图X4-6,在矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的平分线交AB 于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )图X4-6图X4-710.如图X4-8,已知在平面直角坐标系中,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点,直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E.设直线l1,l2,l3围成的三角形的面积为S1,直线l2,l3,l4围成的三角形的面积为S2,且S2=3S1,则∠BOA的度数为( )X4-8A.15° B.30°C.15°或30° D.15°或75°二、填空题(本题有6小题,每小题4分,共24分) 11.分解因式:a 2-4b 2=________.12.二次根式1-2x 中,x 的取值范围是________.X 4-913.如图X 4-9,把正三角形ABC 的外接圆对折,使点A 落在弧BC 的中点F 上,若BC =6,则折痕在△ABC 内的部分DE 的长为________.14.如图X 4-10,在边长为2的菱形ABCD 中,∠ABC =120°,E ,F 分别为AD ,CD 上的动点,且AE +CF =2,则线段EF 长的最小值是________.X 4-1015.如图X 4-11,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…,若P (m ,2)在第3段抛物线C 3上,则m =________.X 4-1116.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a ,b 中较大的数,如:max {2,4}=4.按照这个规定,方程max {x ,-x }=2x +1x的解为________. 加 加 练17.(1)计算:(-3)2+|-4|³2-1-(2-1)0; (2)化简:x 2-2x +1x 2-1+1x +1.选择填空限时训练(五)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.2016的倒数是( )A .2016B .-2016 C.12016D .-120162.某地区轨道交通3号线于2015年12月23日开工建设,预计2020年全线开通,3号线全长32.83千米,32.83千米用科学记数法表示为( )A .3.283³104米 B .32.83³104米 C .3.283³105米 D .3.283³103米 3.下列运算中,正确的是( )A .2x +3y =5xyB .a 3-a 2=a C .a -(a -b )=-b D .(a -1)(a +2)=a 2+a -2 4.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )图X 5-15.下列说法正确的是( )A .两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B .某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C .学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D .为了解某市学校“阳光体育”活动开展情况,必须采用普查的方法6.小兵制作了一个正方体玩具,其展开图如图X 5-2所示,正方体中与“全”字所在的面正对的面上标的字是( )X 5-2A .文B .明C .城D .国7.如果一个正比例函数的图象经过不同象限的两点A (2,m )、B (n ,3),那么一定有( ) A .m >0,n >0 B .m >0,n <0C .m <0,n <0 D .m <0,n >08.如图X 5-3,在平行四边形ABCD 中,AB =3 cm ,AD =6 cm ,∠ADC 的平分线DE 交BC 于点E ,交AC 于点F ,CG ⊥DE ,垂足为G ,DG =323cm ,则EF 的长为( ) A.3cm B .2 cm C .1 cmD.233cm图X 5-3图X 5-49.如图X 5-4,用四个螺丝将四根不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为( )A .6B .7C .8D .910.已知二次函数y =x 2-2x -3,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为d 1、d 2.设d =d 1+d 2,下列结论中:①d 没有最大值;②d 没有最小值;③-1<x <3时,d 随x 的增大而增大;④满足d =5的点P 有四个.其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共24分) 11.若根式x -1有意义,则x 的取值范围是________.12.如图X 5-5,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=________.图X 5-5图X 5-613.袋子中装有3个红球、5个黄球、2个白球,这些球除颜色外形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是________.14.如图X 5-6,在△ABC 中,∠CAB =60°,AB =4,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.15.如图X 5-7,点A 在双曲线y =kx 第一象限的图象上,AB ⊥y 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.图X5-7图X 5-816.如图X 5-8,点P (t ,0)(t >0)是x 轴正半轴上的一点,AB ︵是以原点为圆心,半径为1的圆的14,且A (-1,0),B (0,1),点M 是AB ︵上的一个动点,连结PM ,作直角三角形MPM 1(M 1在第一象限),并使得∠MPM 1=90°,∠PMM 1=60°,我们称点M 1为点M 的对应点.(1)设点A 和点B 的对应点为A 1和B 1,当t =1时,A 1的坐标为________;B 1的坐标为________.(2)当P 是x 轴正半轴上的任意一点时,点M 从点A 运动至点B ,则M 1的运动路径长为________.加 加 练17.(1)计算:(13)-1-|-2|+16-(3+1)0; (2)化简:ab +c a +b +a 2-c a +b .选择填空限时训练(六)(限时30分钟 满分54分)一、选择题(本题有10小题,每小题3分,共30分)1.下列实数中,是无理数的为( ) A .0 B .-13C.3D .3.142.2016年2月8日凌晨,随着春晚接近尾声,持续了许多天的支付宝“五福”集福活动宣告结束,支付宝官方宣布到活动截止时,有约79万个小伙伴集齐了五福,平分2.15亿现金红包.请将79万用科学记数法表示为( )A .7.9³104B .7.9³105C .79³104D .0.79³1063.下列运算正确的是( )A .(ab )3=a 3b B.-a -b a +b=-1C .a 6÷a 2=a 3 D .(a +b )2=a 2+b 24.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出红色笔芯的概率是( )A.23B.15C.25D.355.函数y =2-x 的自变量的取值范围是( ) A .x ≥0 B .x ≠2 C .x <2 D .x ≤26.如图X 6-1,已知⊙O 的半径为R ,C 、D 是直径AB 的同侧圆周上的两点,弧AC 的度数为100°,BC ︵=2BD ︵,动点P 在线段AB 上,则PC +PD 的最小值为( )A .R B.2R C.3R D.52R图X 6-1图X 6-27.抛物线y =x 2-3x +2与y 轴交点、与x 轴交点、及顶点连结而成的四边形的面积是( )A .1 B.98C .2 D.948.如图X 6-2,已知正方形ABCD 的边长为2,△BPC 是等边三角形,则PD 的长是( )A.7-4 3B .2-3C.3-2 D.8-4 39.如图X 6-3,AB 是半圆O 的直径,半径OC ⊥AB 于点O ,点D 是弧BC 的中点,连结CD 、AD 、OD ,给出以下四个结论:①∠DOB =∠ADC ;②CE =OE ;③△ODE ∽△ADO ;④2CD 2=CE ²A B.其中正确结论的序号是( )A .①③B .②④C .①④D .①②③图X 6-3图X 6-410.如图X 6-4,直线l 1:y =x +1与直线l 2:y =12x +12相交于点P (-1,0).直线l 1与y 轴交于点A.一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线l 2上的点B 1处后,改为垂直于x 轴的方向运动,到达直线l 1上的点A 1处后,再沿平行于x 轴的方向运动,到达直线l 2上的点B 2处后,又改为垂直于x 轴的方向运动,到达直线l 1上的点A 2处后,仍沿平行于x 轴的方向运动,…,按照此规律运动,动点C 依次经过点B 1,A 1,B 2,A 2,B 3,A 3,…,B 2014,A 2014,…,则当动点C 到达点A 2015处时,运动的总路径的长为( )A .20162B .22016-2C .22016+1 D .22015-1二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:x 2-4y 2=________.12.一组数据1,-2,x ,0的平均数是0,那么这组数据的中位数是________. 13.如图X 6-5所示,用一个半径为60 cm ,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为________cm.图X 6-5图X 6-614.如图X 6-6,在Rt △ABC 中,∠C =90°,AD 是∠CAB 的平分线,tan B =12,则CD ∶DB=________.15.如图X 6-7,已知动点A 在反比例函数y =kx(x >0)的图象上,AB ⊥x 轴于点B ,AC⊥y 轴于点C ,延长CA 至点D ,使AD =AC ,延长BA 至点E ,使AE =A B.直线DE 分别交x 轴,y 轴于点M ,N .若S △MON =18,则k 的值为________.图X 6-7图X 6-816.如图X 6-8,在平行四边形ABCD 中,以对角线AC 为直径的⊙O 分别交BC ,CD 于M ,N ,若AB =13,BC =14, CM =9,则MN 的长度为________.加 加 练17.解方程:2x -3=3x .选择填空限时训练(七)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.-2016的绝对值为( ) A .-2016 B .2016C .-12016D.120162.下列运算结果正确的是( )A.(-5)2=-5 B .(x 3)2=x 5C .x 6÷x 3=x 2D .(-14)-2=163.2016年1月21日开建的印尼雅万高铁是中国和印尼合作的重大标志性项目,这条高铁的总长为152 km ,其中“152 km ”用科学记数法可以表示为( )A .0.152³106m B .1.52³105m C .1.52³106m D .152³105m 4.下列调查中,最适宜采用全面调查方式(普查)的是( ) A .对某班学生进行6月5日是“世界环境日”知晓情况的调查 B .对某省中学生视力情况的调查 C .对某市中学生每天学习所用时间的调查 D .对某市初中学生课外阅读量的调查5.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )A .30,27B .30,29C .29,30D .30,286.如图X 7-1,已知量角器的直径(0刻度线)与直角三角板ABC 的斜边重合,点P 是量角器的半圆弧上一动点,连结PC ,当∠PCB =70°时,点P 在量角器上对应的读数(大于0°且小于90°)是( )A .20° B .35° C .40° D .70°图X 7-1图X 7-27.如图X 7-2,已知点A 、B 、C 都在正方形网格的格点上,则sin ∠BAC 的值为( )A.53B.35C.33434D.534348.如图X 7-3,在三角形纸片ABC 中,AB =6,BC =8,AC =4.沿虚线剪下的涂色部分的三角形与△ABC 相似的是( )图X 7-3图X 7-49.如图X 7-5,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m ,3 3),反比例函数y =kx的图象与菱形对角线AO 交于D 点,连结BD ,当BD ⊥x 轴时,k 的值是( )A .6 3B .-6 3C .12 3D .-12 3图X 7-5图X 7-610.如图X 7-6,把两块同样大小的含30°角的三角板的直角重合并按如图X 7-6方式放在一起,已知AB =2,设P 是两块三角板的边DE 和AC 的交点,若三角板CDE 绕点C 沿顺时针方向旋转90°,则点P 所走过的路程一共是( )A .1 B.32C.3-1 D.3+12二、填空题(本题有6小题,每小题4分,共24分) 11.方程x 2-4=0的根是________.12.不等式组⎩⎪⎨⎪⎧2x -4≤x+2,x -3>0的解是________.13.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同,现随机从袋中摸出两个球,颜色是一红一蓝的概率是________.14.如图X 7-7,已知在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为________.图X 7-7 图X 7-815.如图X 7-8,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于________.16.如图X 7-9,点D 在等边三角形ABC 边CB 的延长线上,点E ,F 分别是边BC 和边AB 上的动点,连结EF ,以EF 为边构造等边三角形EFG ,连结DG .若DB =2,则DG 的最小值是________.图X 7-9加 加 练17.先化简,再求值:(1-1x )÷x -1x 2+2x ,其中x 请从-2,-1,1,2中选一个恰当的数.选择填空限时训练(八)(限时30分钟满分54分)一、选择题(本题共10小题,每小题3分,共30分)1.计算(-6)+5的结果是( )A.-11 B.11 C.-1 D.12.函数y=x-2中,自变量x的取值范围是( )A.x≠2 B.x≥2 C.x>2 D.x≥-23.在以下“绿色食品”、“节能减排”、“循环回收”、“质量安全”四个标志中,是轴对称图形的是( )图X8-14.如图X8-2是由4个相同的正方体搭成的几何体,则其俯视图是( )图X8-2图X8-35.一个不透明的布袋中有2个白球,3个黑球,除颜色外其他都相同,从中随机摸出一个球,恰好为黑球的概率是( )A.15B.25C.35D.456.如图X8-4,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于( )A.8 B.10 C.12 D.18图X8-4图X8-57.不等式2(x-1)≥x的解在数轴上表示为( )8.如图X8-6,已知D,E分别是△ABC的边AB,AC上的点,DE∥BC,且BD=3AD,那么AE∶AC等于( )A.2∶3 B.1∶2 C.1∶3 D.1∶4图X8-6图X8-79.如图X8-7,已知正方形ABCD的边长为1,分别以顶点A,B,C,D为圆心,1为半径画弧,四条弧交于点E,F,G,H,则图中阴影部分的外围周长为( )A.13π B.23π C.π D.43π10.把三张大小相同的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图X8-8①、②摆放,阴影部分的面积分别为S1和S2,则S1和S2的大小关系是( )图X8-8A.S1=S2 B.S1<S2 C.S1>S2 D.无法确定二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:ab-2a=________.12.已知一组数据:2,1,-1,0,3,则这组数据的中位数是________.13.在同一平面直角坐标系内,将函数y=2x2-3的图象向右平移2个单位,再向下平移1个单位后得到新图象的顶点坐标是________.14.如图X8-9,将Rt△ABC绕直角顶点A顺时针旋转90°,得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是________.图X8-9图X8-1015.如图X 8-10,在平面直角坐标系中,直线y =kx +b 与x 轴,y 轴分别交于点A (4,0),B (0,2),点C 为线段AB 上任意一点,过点C 作CD ⊥OA 于点D ,延长DC 至点E 使CE =DC ,作EF ⊥y 轴于点F ,则四边形ODEF 的周长为________.16.如图X 8-11,已知AB ,CD 是⊙O 的两条相互垂直的直径,E 为半径OB 上一点,且BE =3OE ,延长CE 交⊙O 于点F ,线段AF 与DO 交于点M ,则DM MC的值是________.图X 8-11加 加 练17.(1)计算:8-2cos45°+(12)-1; (2)化简:a -b a +b +a +3ba +b .选择填空限时训练(九)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.2017的相反数是( )A .2017B .-2017C .12017D .-120172.下列运算正确的是( )A .3a 2-a 2=3 B .(a 2)3=a 5C .a 3²a 6=a 9D .(2a 2)2=4a 23.下列图案中,既是中心对称图形又是轴对称图形的是( )图X 9-14.已知⎩⎪⎨⎪⎧x =1,y =2是关于x ,y 的二元一次方程x -ay =3的一组解,则a 的值为( )A .1B .-1C .2D .-25.今年是猴年,在“猴年马月”和“猴头猴脑”这两个词语的八个汉字中,任选一个汉字是“猴”字的概率是( )A.18B.38C.58D.786.如图X 9-2,某登山运动员从营地A 沿坡角为30°的斜坡AB 到达山顶B ,如果AB =600 m ,那么他实际上升的高度BC 为( )A .300 3mB .1200 mC .300 mD .200 3m图X 9-2图X 9-37.把不等式组⎩⎪⎨⎪⎧2x -4≥0,6-x>3的解表示在数轴上,正确的是( )8.如图X9-4,圆弧形拱桥的桥顶到水面的距离CD为6 m,桥拱半径OC为4 m,则水面宽AB为( )A.3m B.2 3m C.4 3m D.6 3m图X9-4图X9-59.某几何体的三视图如图X9-5所示,其中主视图和左视图都是腰长为13 cm,底长为10 cm的等腰三角形,则这个几何体的侧面积是( )A.60π cm2 B.65π cm2 C.70π cm2 D.75π cm210.如图X9-6,已知顶点坐标为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )X9-6A.b2>4ac B.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1C.ax2+bx+c≥-6D.若点(-2,m),(-5,n)在抛物线上,则m>n二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:a2-1=________.12.如图X9-7,三角板的直角顶点在直线l上,且∠1=55°,则∠2的度数是________.图X9-7图X9-813.若一组数据2,-1,0,2,-1,a的众数为2,则这组数据的平均数为________.14.如图X9-8,在▱ABCD中,已知AD=8 cm,AB=6 cm,DE平分∠ADC交BC边于点E,则BE 等于________.15.如图X 9-9,一次函数y =kx +3的图象分别与x 轴,y 轴交于点N ,M ,与反比例函数y =3x(x >0)的图象交于点A ,若AM ∶MN =2∶3,则k =________.图X 9-9图X 9-1016.如图X 9-10,在平面直角坐标系中,直线y =-34x +3与x 轴交于点A ,与y 轴交于点B.点Q 在直线AB 上,点P 在x 轴上,且∠OQP =90°.(1)当点P 与点A 重合时,点Q 的坐标为________; (2)设点P 的横坐标为a ,则a 的取值范围是________.加 加 练17.计算:sin30°-12+||-2-(13)0.选择填空限时训练(十)(限时30分钟 满分54分)一、选择题(本题共10小题,每小题3分,共30分) 1.2的相反数是( ) A.12B .2 C .-2 D .-122.资料显示,2016年“五²一”全国实现旅游收入约463亿元,用科学记数法表示463亿这个数是( )A .463³108B .4.63³108C .4.63³1010D .0.463³10113.下列电视台图标中,属于中心对称图形的是( )图X 10-1图X 10-24.函数y =12x -3中,自变量x 的取值范围为( )A .x >32B .x ≠32C .x ≠32且x ≠0 D.x <325.如图X 10-2,在▱ABCD 中,AD =6,AB =4,DE 平分∠ADC 交BC 于点E ,则BE 的长是( )A .2B .3C .4D .56.如图X 10-3是一个正方体被截去一角后得到的几何体,它的俯视图是( )图X 10-3图X 10-47.若x >y ,则下列式子中错误的是( )A .x -3>y -3B .x +3>y +3C .-3x >-3y D.x 3>y 38.如图X10-5,直线l1∥l2,以直线l1上的点A为圆心,适当长为半径画弧,分别交直线l1,l2于点B,C,连结AC,B C.若∠ABC=67°,则∠1=( )X10-5A.23° B.46°C.67° D.78°9.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表.从平均价格看,谁买的比较划算( )A.一样划算 B.小菲划算C.小琳划算 D.无法比较10.如图X10-6,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为( )图X10-6图X10-7二、填空题(本题有6小题,每小题4分,共24分)11.因式分解:2a2-4a=________.12.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的底面圆半径为________.13.五一劳动节期间,某服装店开展优惠酬宾活动,广告如图X10-8所示,请你把广告牌补充完整,原价是________元.图X 10-8图X 10-914.如图X 10-9,已知第一象限内的点A 在反比例函数y =1x的图象上,第二象限的点B 在反比例函数y =k x的图象上,且OA ⊥OB ,∠A =30°,则k 的值为________.15.如图X 10-10,在边长相同的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AC ,BD 相交于点P ,则tan ∠APD 的值是________.图X 10-10图X 10-1116.如图X 10-11,一次函数y =-x +1的图象与x 轴、y 轴分别交于点A ,B ,点C 在y 轴的正半轴上,且OC =3.在直线AB 上有一点P ,若满足∠CPB >∠ACB ,则点P 横坐标x 的取值范围是________.加 加 练17.计算:(12)-2-(3-2)0+2sin30°+||-3.参考答案中考数学总复习选择填空限时训练(1)1.C 2.A 3.D 4.D 5.B6.D 7.C 8.D 9.B 10.A 11.x-1=0(答案不唯一) 12.10513.8 8 14.3 15.12 16.(23-2,0) (3-1,3-3)加加练17.解:原式=2-3+1-(-3)+3³33+22=6+2 2.中考数学总复习选择填空限时训练(2)1.B 2.B 3.A 4.C 5.D6.B 7.C 8.C 9.A 10.B11.3 3.2 12.23-1 13.5 114.1 15.122 16.7-1加加练17.解:原式=-a+2a-2,当a=0时,原式=1.中考数学总复习选择填空限时训练(3)1.D 2.C 3.C 4.D 5.B6.A 7.B 8.C 9.B 10.D11.x(x-1) 12.-2≤x<113.1414.7 15.4-2 2 16.2 2加加练17.解:(1)原式=23+12+12=23+1.(2)原式=a2-6a+9+3a2+6a=4a2+9.中考数学总复习选择填空限时训练(4)1.C 2.C 3.D 4.A 5.C6.A 7.B 8.B 9.D 10.D11.(a+2b)(a-2b) 12.x≤1213.4 14. 3 15.7或816.x=1+2或x=-1 加加练17.解:(1)原式=3+4³12-1=3+2-1=4.(2)原式=(x-1)2(x+1)(x-1)+1x+1=x-1x+1+1x+1=xx+1.中考数学总复习选择填空限时训练(5)1.C 2.A 3.D 4.A 5.C6.B 7.C 8.A 9.D 10.B11.x≥1 12.28°13.31014.4 15.16316.(1)A1(1,23) B1(1+3,3) (2)32π加加练17.解:(1)原式=3-2+4-1=4.(2)原式=ab+c+a2-ca+b=a(b+a)a+b=a.中考数学总复习选择填空限时训练(6)1.C 2.B 3.B 4.D 5.D6.C 7.B 8.D 9.C 10.B11.(x+2y)(x-2y) 12.0.513.25 14.5515.4 16.18013加加练解:方程两边同乘x(x-3),得2x=3(x-3),解得x=9.检验:当x=9时,x(x-3)≠0.所以,原方程的解为x=9.中考数学总复习选择填空限时训练(7)1.B 2.D 3.B 4.A 5.B6.C 7.D 8.C 9.D10.A [解析] 在旋转过程中P点先从E点开始向C点运动,当DE⊥AC时P点离C点最近,此时运动的路程为1-32,继续旋转时点P向A点运动,直至到达A点,运动路程为32,所以点P一共走过的路程为1-32+32=1,故选A.11.x=±212.3<x≤613.2314.(4,4) 15.2-116. 3 [解析] 如图,连结BG,过点F作FH∥AC,交BC于H,易证得△FGB≌△FEH,所以∠GBF=∠EHF=60°,所以∠GBD=60°,即G是∠ABD平分线上的一个动点,所以当DG⊥BG时,DG取到最小值,最小值为BD²sin60°=2³32= 3.加加练解:原式=x-1x÷x-1x2+2x=x-1x³x(x+2)x-1=x+2,∵x≠1,-2,∴x可取-1或2.当x=2时,原式=2+2=4.(或当x=-1时,原式=-1+2=1) 中考数学总复习选择填空限时训练(8)1.C 2.B 3.A 4.A 5.C6.C 7.C 8.D 9.B 10.A11.a(b-2) 12.1 13.(2,-4)14.70°15.8 16.1 4加加练解:(1)原式=22-2³22+2=2+2.(2)原式=a-b+a+3ba+b=2a+2ba+b=2(a+b)a+b=2.中考数学总复习选择填空限时训练(9)1.B 2.C 3.B 4.B 5.B6.C 7.A 8.C 9.B 10.D11.(a-1)(a+1) 12.35°13.2314.2 cm 15.10316.(1)(3625,4825) (2)a≥3或a≤-12加加练17.解:原式=12-23+2-1=32-2 3.中考数学总复习选择填空限时训练(10)1.C 2.C 3.D 4.B 5.A6.A 7.C 8.B 9.C 10.B11.2a(a-2) 12.2 13.25014.-1315.2 16.-4<x<2且x≠0加加练17.解:(12)-2-(3-2)0+2sin30°+||-3=4-1+1+3 =7.。

2020年福建省九年级数学中考专题训练(pdf版,无答案)

2020年福建省九年级数学中考专题训练(pdf版,无答案)
系式.(每件销售利润=售价-进价-销售成本)
4.某商店销售 A 型和 B 型两种电脑,其中 A 型电脑每台的利润为 400 元, B 型电脑每台的利润为 500 元.该商店计划再一次性购进两种型号的电脑共 100 台,其中 B 型电脑的进货量不超过 A 型电 脑的 2 倍,设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为 y 元. (1)求 y 关于 x 的函数关系式; (2)该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大,最大利润是多少? (3)实际进货时,厂家对 A 型电脑出厂价下调 a ( 0 a 200 )元,且限定商店最多购进 A 型电
(二)巩固训练
1.直线 y = 1 x 与双曲线 y = k ( k 0 ,x 0 )交于点 A ,将直线 y = 1 x 向上平移 2 个单位长度
2
x
2
后,与 y 轴交于点 C ,与双曲线交于点 B ,若 OA = 3BC ,则 k 的值为____.
2.如图,点 A ,D 在反比例函数 y = m( m 0 )的图象上,点 B ,C 在反比例函数 y = n ( n 0 )
(2)求改变后得到的矩形面积的最大值.
3.某销售商准备采购一批丝绸,经调查,用 10000 元采购 A 型丝绸的件数与用 8000 元采购 B 型丝 绸的件数相等,一件 A 型丝绸进价比一件 B 型丝绸进价多 100 元. (1)求一件 A 型、 B 型丝绸的进价; (2)若销售商购进 A 型、 B 型丝绸共 50 件,其中 A 型的件数不大于 B 型的件数、且不少于 16 件, 设购进 A 丝绸 m 件.已经 A 型的售价是 800 元/件,销售成本为 2n 元/件;B 型的售价为 600 元/件, 销售成本为 n 元/件.如果 50 n 150 ,求销售这批丝绸的最大利润 w (元)与 n (元)的函数关

中考数学选择填空限时训练(一)

中考数学选择填空限时训练(一)

)E Al)( )DL B T C Mx)A. (2 , 3) B5 •把不等式组8已知关于 该抛物线上的是( B10 .如图 X 1 - 7 A. 4 B . 6 C . 8 D . 10(0 , 3) C . ( -1 , 3) D . ( -3, 3)图 X 1- 4匀速运动,终点为 C,过运动路线上任意一点 P 作PMLx 轴于M PNLy 轴于N,设四边形OMP 的面积为S, P 点运动的时间为 于t 的函数图象大致是B图 X 1-6图 X 1- 5( )则AE 的长为(( )图 X 1- 7正方形ABCD 勺边长为6,点E,7.如图X 1-4,在?ABC [中,用直尺和圆规作/ BAD 勺平分线AG 交BC 于点E 若BF = 6, AB= 5A. 10 B . 3 C . 4 D . 5t ,则S 关-io-i B 图 X 1-3A. 0 B . 1 C. .2 D . 2 x> — 1 ,的解表示在数轴上,下列选项正确的是x + 2<36•在Rt △ ABC 中,两直角边的长分别为 6和8,则其斜边上的中线长为 A. 2 ,10 B . 3k9•如图X 1 -5,已知AB 是反比例函数y = x (k >0,x >0)图象上的两点,BC" x 轴,交y 轴于点C 动点P 从坐标原点0出发,沿 x 的方程ax + b = 0(a ^0)的解为x =- 2,点(1 , 3)是抛物线y =ax 2 + bx + c (a ^0)上的一个点,则下列四个点中一定在)6590000人次.将6590000用科学 D . 6.59 X 10 65 C. | ■ 10 D. 10 52. 如图X 1- 1,下面几何体的俯视图是(3. 据统计,2015年广州地铁日均客运量约为 记数法表示为( )A . 6.59 X 104 B . 659 X 1044•已知一组数据0,— 1, 1 , 2, 3,则这组数据的方差为( A.2 B . - 2 C . 2 D . - 1C . 65.9 X 105 F 分另U 在AB AD 上,若CE= 3砺,且/ EC = 45°, _则CF 的长为(选择填空限时训练(一)(限时30分钟 满分54分) -、选择题(本题共10小题,每小题3分,共30分)1 .-2的相反数是()二、填空题(本题有6小题,每小题4分,共24分)11 •请写出一个解为x= 1的一元一次方程: ________12 .如图X1 - 8是一个斜体的“土”字,AB// CD已知/ 1 = 75°,则/2= ____________图X1- 813 •为了了解某毕业班学生的睡眠时间情况,小红随机调查了该班15名同学,结果如下表:每天睡眠时间(单位:小时)77.588.59人数24531则这1514. 如图X1 -9,将弧长为6 n的扇形纸片AOB S成圆锥形纸帽,使扇形的两条半径0A与0B重合(粘连部分忽略不计),则圆锥形纸帽的底面圆半径是 _________ .a b15. 如图X1 -10,已知点B D在反比例函数y=-(a>0)的图象上,点A, C在反比例函数y = -(b<0)的图象上,AB// CD// x轴,ABX —AB= 4, CD= 3, AB与CD间的距离为1,贝U a- b的值是 ______16. _______________________________________________________________________________ 如图X1 - 11,点A(2 , 0),以0A为半径在第一象限内作圆弧AB使/ A0= 60°,点C为弧AB的中点,D为半径0A上一动点(不与点0 A重合),点A关于直线CD的对称点为E若点E落在半径0A上,则点E的坐标为______________________________________________________________ ;若点E落在半径0B上,则点E的坐标为_________ .计算:1| 3-2| + 20170-( -3) -1+ 3tan30 ° +8.CD在—轴的同侧,图X1- 10参考答案1. C 2.A 3.D 4.D 5.B6. D7.C8.D9.B 10.A11.x - 1 = 0(答案不唯一)12.10513. 8 8 14.3 15.1216. (2 3 - 2, 0) (.3 - 1, 3 - 3)加加练解:原式=2- .3+ 1 -( -3) +3X。

杭州市九年级数学中考总复习限时训练24(PDF版)(解直角三角形含答案)

杭州市九年级数学中考总复习限时训练24(PDF版)(解直角三角形含答案)

九年级数学总复习限时训练24 姓名(解直角三角形)1.如图,延长RT△ABC斜边AB到点D,使BD=AB,连接CD,若tan∠BCD=,则tanA=( )A.B.1 C.D.2.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值( )A.都扩大两倍B.都缩小两倍C.不变 D.都扩大四倍3.在△ABC中,∠C=90°,BC:AC=1:2,则cosA=( )A.2 B. C.D.4.若锐角α满足cosα<且tanα<,则α的范围是( )A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°5.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°6.在△ABC中,a、b、c分别为角A、B、C的对边,若∠B=60°,则的值为( )A.B.C.1 D.7.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=,则tanB的值为( )A.B.C.D.8.(规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.据此判断下步列等式成立的共有( )①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinxcosx;④sin(x﹣y)=sinx﹣cosy﹣cosx﹣siny.A.1个B.2个C.3个D.4个9.如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是( )A.2B.2C.3D.3m10.已知α为锐角,则sinα的值不可能为( )A.B.C.D.211.在△ABC中,已知∠A,∠B都是锐角,且sinA=,tanB=1,则∠C的度数为( )A.75°B.105°C.60°D.45°12.在三角形ABC中,∠C为直角,sinA=,则tanB的值为( )A.B.C.D.13.在△ABC中,A,B都是锐角,且sinA=,tanB=,AB=8,则AB边上的高为( )A.4 B.8C.16D.2414.在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为( )A.30°B.45°C.60°D.75°15.在△ABC中,∠B=45°,∠C=60°,BC边上的高AD=3,则BC的长为( )A.3+3B.3+C.2+D.+16.计算sin245°+cos30°•tan60°,其结果是( )A.2 B.1 C.D.17.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A.1,2,3 B.1,1,C.1,1,D.1,2,18.如图,在Rt△ABC中,D是AB的中点,BC=5,AC=12,则sin∠DCA的值为( )A.B.C.D.19.在Rt△ABC中,∠C=90°,cosA=,则tanB等于( )A.B.C.D.220.如图,将宽为1cm的纸条沿BC折叠,使∠CAB=45°,则折叠后重叠部分的面积为( )A.cm2B.cm2C.cm2D.cm221.小明在学习“锐角三角函数”中发现,将如图的含30°(∠BAC)角的直角三角形纸片ABC沿过点A的直线折叠,使点C落在AB上的点D处,这样就可以求出75°角的正切值是( )A.2﹣B.2+C.2.5 D.22.如图,在等腰Rt△ABC中,∠C=90°,∠CBD=30°,则AD:DC=( )A.B.C.﹣l D.﹣l23.如图,在锐角三角形ABC中,AB=10,AC=2,sinB=.(1)求tanC;(2)求线段BC的长.24.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC中∠A=30°,tanB=,AC=,求AB的长”.这时小明去翻看了标准答案,显示AB=10.你能否帮助小明通过计算说明污渍部分的内容是什么?25.如图,在Rt△ABC中,已知∠C=90°,,AC=8,D为线段BC上一点,并且CD=2.(1)求BD的值;(2)求cos∠DAC的值.参考答案1.A.2.C.3.B.4.B.5.C.6.C.7.B8.B.9.C.10.D.11.B.12.C.13.A.14.B.15.B.16.A.17.D.18.B.19.C.20.D.21.B.22.D.23.解:(1)如图,过点A作AD⊥BC于D,在Rt△ABD中,AB=10,sinB==,∴=,∴AD=6,在Rt△ACD中,由勾股定理得CD2=AC2﹣AD2,∴CD2=(2)2﹣62=16,∴CD=4,∴tanC===;(2)在Rt△ABD中,AB=10,AD=6,∴由勾股定理得BD=8,由(1)得CD=4,∴BC=BD+CD=12.24.解:作CH⊥AB于H,Rt△ACH中,CH=AC•sinA,=4×sin30°,=2,AH=AC•cosA,=4×cos30°,=6,∴BH=AB﹣AH=4,∴tanB==,∴污渍部分内容内为.25.(1)在Rt△ABC中,sinB==,∵AC=8,∴AB=10,BC===6,又∵BD=BC﹣CD,CD=2,∴BD=6﹣2=4;(2)在Rt△ACD中,∵AD===2,∴cos∠DAC===.。

中考数学第一轮专题限时训练精选试题及答案

中考数学第一轮专题限时训练精选试题及答案

2015年中考数学一轮复习资料毛坦厂中学叶集分校皖西当代中学二零一四年十月坚持到底,三载拼搏终有回报决胜中考,父母期盼定成现实序言第一轮复习的目的第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、具体要求与做法:(1)认真阅读考纲,搞清课本上每一个概念,公式、法则、性质、公理、定理。

重视教材的基础作用和示范作用。

抓基本概念的准确性;抓公式、定理的熟练和初步应用;抓基本技能的正用、逆用、变用、连用、巧用;能准确理解教材中的概念;能独立证明书中的定理;能熟练求解书中的例题;能说出书中各单元的作业类型;能掌握书中的基本数学思想、方法,做到基础知识系统化,基本方法类型化,解题步骤规范化(2)抓住基本题型,学会对基本题目进行演变,如适当改变题目条件,改变题目问法等。

(3)初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。

这些方法要按要求灵活运用。

因此复习中针对要求,分层训练,避免不必要的丢分,从而形成明晰的知识网络和稳定的知识框架。

研读课标(特别注意课标中可操作性语言,对“了解”“理解”“掌握”“灵活应用”等做出具体界定),以课本为依据,不扩展范围和提高要求.据课本内容将有关的概念、公式、法则、定理及基本运算、基本推理,基本作图,基本技能和方法等形成合理的知识网络结构,通过网络结构,体现知识发生、发展的过程,体现知识的联系,体现知识的应用功能,做到遗漏的知识要补充;模糊的概念要明晰;零散的内容要整合;初浅的理解要深化,要关注基础知识和基本技能的训练,关注“双基”所蕴涵的数学本质及其在具体情况中的合理应用.(4)防范错误。

九年级数学限时练试卷

九年级数学限时练试卷

培优限时训练数学试题(一)一、选择题(本大题共1小题,共3.0分)1.如图,锐角三角形ABC中,BC=6,BC边上的高为4,直线MN交边AB于点M,交AC于点N,且MN∥BC,以MN为边作正方形MNPQ,设其边长为x(x>0),正方形MNPQ与△ABC公共部分的面积为y,则y与x的函数图象大致是()A. B C D二、填空题(本大题共1小题,共3.0分)2.如图,在Rt△ABC中,AB=3,BC=4,点P为AC上一点,过点P作PD⊥BC于点D,将△PCD沿PD折叠,得到△PED,连接AE.若△APE为直角三角形,则PC=______.三、解答题(本大题共3小题,共24.0分)3.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.4.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.探索发现:(1)图1中,的值为______;的值为______.(2)据图2探究:若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请证明(3)问题解决:当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.0),C(0,2)三点,直线y=kx+t经过B、C两点,点D是抛物线上一个动点,过点D作y轴的平行线,与直线BC相交于点E.(1)求直线和抛物线的解析式;(2)当点D在直线BC下方的抛物线上运动,使线段DE的长度最大时,求点D 的坐标;(3)点D在运动过程中,若使O、C、D、E为顶点的四边形为平行四边形时,请直接写出满足条件的所有点D的坐标.答案和解析1.【答案】D【解析】解:作AD⊥BC于D点,交MN于E点,公共部分分为三种情形:①在三角形内;②刚好一边在BC上,此时为正方形;③正方形有一部分在三角形外,此时为矩形.①②情况中0<x≤2.4,公共部分是正方形时的面积,∴y=x2,③是2.4<x<6,公共部分是矩形时如图所示:作AD⊥BC于D点,交MN于E点,设DE=a,∵MN∥BC,∴=,即=,∴ED=4-x,∴y=x(4-x)=-x2+4x,∴y与x的函数图象大致是D,故选:D.根据题意画出符合的两种情况:分别求出函数的解析式,再判断图象即可.本题考查了相似三角形的判定与性质,矩形的对边平行且相等,正方形的对边平行且相等的性质,根据相似三角形的对应高的比等于对应边的比列出比例式是解题的关键.2.【答案】【解析】解:当∠AEP=90°时,设PC=x,在Rt△PDC中,sinC=,cosC=,所以PD=,CD=.∵△PCD沿PD折叠,得到△PED,∴DE=CD=.∴BE=BC-CE=4-=.在△ABE和△EDP中,∠B=∠PDE,∠BAE+∠AEB=90°,∠PED+∠AEB=90°,∴∠BAE=∠PED.∴△ABE∽△EPD.∴,即,解得x=.故答案为.当∠AEP=90°时,设PC=x,根据相似三角形的性质或三角函数用x表示出PD、DC、DE,证明△ABE∽△EPD,列比例式求出x即可.本题主要考查折叠的性质、勾股定理、相似三角形的判定和性质及解直角三角形.3.【答案】解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=-x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=-x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10-a由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△PAD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【解析】(1)将点A,B坐标代入双曲线中即可求出m,n,最后将点A,B坐标代入直线解析式中即可得出结论;(2)根据点A,B坐标和图象即可得出结论;(3)先求出点C,D坐标,进而求出CD,AD,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.4.【答案】【解析】解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°-∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG-DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.(1)先判断出∠AEB=90°,再判断出∠B=30°,进而的粗AE,再用勾股定理求出BE,即可得出结论;(2)先判断出=,进而得出△ACD∽△BCE,即可得出结论;(3)分点D在线段AE上和AE的延长线上,利用含30度角的直角三角形的性质和勾股定理,最后用线段的和差求出AD,即可得出结论.此题是相似形综合题,主要考查了等腰三角形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的判定和性质,构造出直角三角形是解本题的关键.5.【答案】解:(1)把点B(4,0),C(0,2)代入直线y=kx+t,得:,解得,∴y=-x+2;把点A(1,0)、B(4,0),C(0,2)代入y=ax2+bx+c,得:,解得,∴y=x2-x+2;(2)设点D坐标为(m,m2-m+2),E点的坐标为(m,-m+2),∴DE=(-m+2)-(m2-m+2)=-m2+2m=-(m-2)2+2,∴当m=2时,DE的长最大,为2,当m=2时,m2-m+2=-1,∴D(2,-1);(3)①当D在E下方时,如(2)中,DE=-m2+2m,OC=2,OC∥DE,∴当DE=OC时,四边形OCED为平行四边形,则-m2+2m=2,解得m=2,此时D(2,-1);②当D在E上方时,DE=(m2-m+2)-(-m+2)=m2-2m,令m2-2m=2,解得m=2,∴此时D(2+2,3-)或(2-2,3+),综上所述,点D的坐标是(2,-1)或(2+2,3-)或(2-2,3+)时,都可以使O、C、D、E为顶点的四边形为平行四边形.【解析】(1)利用待定系数法求解可得;(2)设点D坐标为(m,m2-m+2),则E点的坐标为(m,-m+2),由DE=(-m+2)-(m2-m+2)=-m2+2m=-(m-2)2+2可得答案;(3)分点D在DE上方和下方两种情况,用m的代数式表示出DE的长度,依据DE=2得出关于m的方程,解之可得.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式,二次函数的性质及平行四边形的判定与性质等知识点.。

(中考冲刺)中考数学考点解答题限时训练

(中考冲刺)中考数学考点解答题限时训练

中考数学考点解答题限时训练1【有理数】1.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.2.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.4.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期一二三四五每股涨跌(元)+2﹣0.5+1.5﹣1.8+0.8根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?5.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526给出一个变换公式:将明文转换成密文,如:4⇒,即R变为L.11⇒,即A变为S.将密文转换成明文,如:21⇒3×(21﹣17)﹣2=10,即X变为P13⇒3×(13﹣8)﹣1=14,即D变为F.(1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.【无理数与实数】6.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣17.计算:2﹣1+tan45°﹣|2﹣|+÷.8.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m+6)0的值.9.设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=,例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2=﹣5,(x2+1)⊕(x﹣1)=(因为x2+1>0)参照上面材料,解答下列问题:(1)2⊕4=,(﹣2)⊕4=;(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.10.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【代数式】11.观察下列各个等式的规律:第一个等式:=1,第二个等式:=2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.12.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.13.先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.14.观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.15.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.【整式】16.先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.17.某同学化简a(a+2b)﹣(a+b)(a﹣b)出现了错误,解答过程如下:原式=a2+2ab﹣(a2﹣b2)(第一步)=a2+2ab﹣a2﹣b2(第二步)=2ab﹣b2(第三步)(1)该同学解答过程从第步开始出错,错误原因是;(2)写出此题正确的解答过程.18.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5356891227 d(x)3a﹣b+c2a﹣b a+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b20.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【因式分解】21.因式分解:mx2﹣my2.22.阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.24.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.25.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【分式】26.先化简,再求值:(1﹣)÷,其中m=2+.27.先化简,再求值:(﹣)÷,请在2,﹣2,0,3当中选一个合适的数代入求值.28.化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.29.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.30.在解题目:“当x=1949时,求代数式的值”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.【二次根式】31.先化简,再求值:,其中.32.已知:x=+1,y=﹣1,求下列各式的值.(1)x2+2xy+y2;(2)x2﹣y2.33.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a =,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?34.先化简,后求值:,其中,.35.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.参照(三)式得=;参照(四)式得=.(2)化简:+++…+.【一元一次方程】36.解方程:﹣=1.37.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?38.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.39.盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?40.如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?中考数学考点解答题限时训练2【二元一次方程组】1.解方程组.2.根据图中的信息,求梅花鹿和长颈鹿现在的高度.3.若关于x、y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.4.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.5.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【一元二次方程】6.已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.7.若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.8.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?9.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.10.已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.【分式方程】11.解方程:=.12.某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?13.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?14.某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?15.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?【不等式(组)】16.解不等式+1>x﹣3.17.如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边18.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.19.小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.20.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【平面直角坐标系】21.某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.22.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.23.已知:如图,矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),∠OAB=60°,以AB为轴对折后,使C点落在D点处,求D点坐标.24.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.25.如图,在直角坐标系中,点A的坐标为(﹣4,0),点C为y轴上一动点,连接AC,过点C作CB⊥AC,交x轴于B.(1)当点B坐标为(1,0)时,求点C的坐标;(2)如果sin A和cos A是关于x的一元二次方程x2+ax+b=0的两个实数根,过原点O作OD⊥AC,垂足为D,且点D的纵坐标为a2,求b的值.【函数基本知识】26.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?27.某校机器人兴趣小组在如图①所示的矩形场地上开展训练.机器人从点A出发,在矩形ABCD边上沿着A→B→C→D的方向匀速移动,到达点D时停止移动.已知机器人的速度为1个单位长度/s,移动至拐角处调整方向需要1s(即在B、C处拐弯时分别用时1s).设机器人所用时间为t(s)时,其所在位置用点P表示,P到对角线BD的距离(即垂线段PQ的长)为d个单位长度,其中d与t的函数图象如图②所示.(1)求AB、BC的长;(2)如图②,点M、N分别在线段EF、GH上,线段MN平行于横轴,M、N的横坐标分别为t1、t2.设机器人用了t1(s)到达点P1处,用了t2(s)到达点P2处(见图①).若CP1+CP2=7,求t1、t2的值.28.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.29.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.30.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E 以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y 与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【一次函数】31.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?32.如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.33.如图,直线y=2x+3与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.34.某企业开展献爱心扶贫活动,将购买的60吨大米运往贫困地区帮扶贫困居民,现有甲、乙两种货车可以租用.已知一辆甲种货车和3辆乙种货车一次可运送29吨大米,2辆甲种货车和3辆乙种货车一次可运送37吨大米.(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨大米?(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用w(元)与租用甲种货车的数量x(辆)之间的函数关系式.(3)在(2)的条件下,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?35.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a=;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.【反比例函数】36.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.37.已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B 的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.38.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.39.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.40.(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.中考数学考点解答题限时训练3【二次函数】1.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.2.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.4.抛物线y=x2﹣x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,+的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.(1)求m的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.。

杭州市九年级数学中考总复习限时训练20(综合训练4pdf版含答案)

杭州市九年级数学中考总复习限时训练20(综合训练4pdf版含答案)

6.萧山区某天 6 个整点时的气温绘制成的统计图如图所示,则这 6 个整点时的中位数是( A. 18.6 B. 15.4 C. 15.8 D. 15.6 7.如图, 在平行四边形 ABCD 中, 对角线 AC, BD 相交成的锐角为 α, 若 AC=a, BD=b, ) 则平行四边形 ABCD 的面积是( A.
九年级数学总复习限时训练 20
1.下列各数中,比-3 小的无理数是( A. ) C.- 3 D.-4 ) D.(2, -2)

2
B.-
2.若函数 y
k 的图像过点(1,-1) ,那么函数图像经过 的点是( .. x
A. (-1,1) B.(1, 1) C.(-1,-1) 3.一个几何体零件如图所示,则它的俯视图是( )
16.有四张卡片(形状,大小,质地都相同) ,分别写上 x,x+1,(x+1)2,2; (1)从中随机抽取一张卡片,求抽中单项式的概率。 (2)从中随机抽取一张卡片,再从剩下的卡片中抽取另一张,写出所有可能的结果(用树状图或列表法 求解) 。 (3)第一次抽取的卡片的整式作为分子,第二次的作为分母,求能组成分式的概率。
9.已知
2x y 1 2m ,且-1<x-y≤1,则 m 的取值范围为( x 2y 3m
1
A. -1<m≤
2 5
B.0<m≤
2 5
C.0≤m<
2 5
D.
2 ≤m<1 5
10.关于 x 的函数,y=kx2-(k+1)x+1(k 为实数),有以下 4 个结论:①存在函数,其图像经过(1,0);②函 数图像与坐标轴总有 3 个不同的交点;③若函数有最大值,则最大值为正数;④当 x>1 时,不是 y 随 x 的 增大而增大就是 y 随 x 的增大而减小;其中正确的是( ) A. ①② B. ①③ C. ③④ D. ①④ 4 . 11.分解因式:m -16= 12.已知 a,b 满足 2a 3b 5 +(a 4b 13) 0 ,则 a+b=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

+
18.先化简,再求值:
x x2 1
(1
1 ) ,其中 x x1
2 1.
19.某商店将成本为每件 60 元的某商品标价 100 元出售,为了促销,该商品经过两次降低后每件售 价为 81 元,若两次降价的百分率相同,求每次降价的百分率;
3
四、 解答题:(每小题 7 分,共 14 分)
20. (6 分 )如图,己知等腰△ ABC的顶角∠ A = 36 °
1
A、
B、
C、
D、
10.二次函数 y=ax2+bx+c 图象如图,下列正确的个数为(

① bc>0; ② 2a﹣3c< 0; ③ 2a+b>0; ④ 当 x>1 时, y 随 x 增大而减小
⑤ ax2+bx+c=0 有两个解 x1, x2,x1> 0,x2<0;
⑥ a+b+c> 0
A.2
B.3
C. 4
年“快的打车 ”账户流水总金额达到 47.3 亿元, 47.3 亿用科学记数法表示为(

A .4.73× 108
B.4.73× 109
C. 4.73×1010
D.4.73×1011
4.由几个大小不同的正方形组成的几何图形如图,则它的俯视图是(

A.
B.
C.
D.
5.在﹣ 2,1,2,1,4,6 中正确的是(
4
8.如图, △ ABC 和△DEF 中, AB=DE 、角∠ B=∠DEF,添加下列哪一个条件无法证明
△ABC ≌△ DEF(

A .AC ∥ DF B.∠ A= ∠D
C. AC=DF D.∠ ACB= ∠F
9.袋子里有 4 个球,标有 2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所
抽取的两个球数字之和大于 6 的概率是( )
(1)作线段 AB 的垂直平分线 MN ,交 AC 于点 D
(用尺规作图,保留作图痕迹,不要求写作法
);
(2)在 (1)的条件下,连结 BD,求∠ DBC的度数。
21、为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。已知抽取的 样本中,男生、女生的人数相同,利用所得数据绘制 如下统计图表: [来
班级
初三数学限时训练测试 **
姓名
(限时 45 分钟,共 86 分)
考号
一、选择题(每小题 3 分,共 30 分)
1. 9 的相反数是(

A 、﹣ 9
B、9
C、±9
D、
2.下列图形中是轴对称图形但不是中心对称图形的是(
A.
B.
C.
) D.
3.支付宝与 “快的打车 ”联合推出优惠, “快的打车 ”一夜之间红遍大江南北. 据统计,2014

A.平均数 3
B. 众数是﹣ 2
C.中位数是 1 D.极差为 8
6.已知函数 y=ax+b 经过( 1,3),( 0,﹣ 2),则 a﹣b=(

A .﹣ 1
B.﹣ 3
C.3
D.7
7.下列方程没有实数根的是(

A .x2+4x=10 B.3x2+8x﹣3=0 C. x2﹣2x+3=0 D.( x﹣ 2)(x﹣3)=12
根据图表提供的信息,回答下列问题: (1)样本中,男生的身高众数在 __________ 组,中位数在 __________ 组; (2)样本中,女生身高在 E 组的人数有 __________ 人;
(3 )已知该校共有男生 400 人,女生 380 人,请估计身高在 160≤ x <170 之间的学生约有多少人?

15.如图,双曲线 y= 经过 Rt△BOC 斜边上的点 A ,且满足 = ,与 BC 交于点 D,
S△BOD =21,求 k= .
16.如图,下列图形是将正三角形按一定规律排列,则第
数有

5 个图形中所有正三角形的个
第 15 题图
第 16 题图
2
三、 解答题:(每小题 6 分,共 18 分)
17. 计算:(﹣ 1) 2017+π0﹣
D.5
第 8 题图
第 10 题图
第 14 题图
ห้องสมุดไป่ตู้
二、填空题(每小题 4 分,共 24 分)
11.分解因式: 2x2﹣ 8=

12、一个正多边形的每个外角为 60°,那么这个正多边形的内角和是
13、不等式组
的解集是

14.如图,在 Rt△ABC 中,∠ C=90°,AD 平分∠ CAB ,AC=6, BC=8,CD=
相关文档
最新文档