2016年12月山东省学业水平考试(会考)数学

合集下载

山东省2016年冬季普通高中学业水平考试数学试题真题

山东省2016年冬季普通高中学业水平考试数学试题真题

山东省2016年冬季普通高中学业水平考试数学试题真题山东省2016年冬季普通高中学业水平考试学生姓名。

考试成绩。

满分:100分。

考试时间:90分钟一、选择题(本大题共20个小题,每小题3分,共60分)1.已知全集 $U=\{a,b,c\}$,集合 $A=\{a\}$,则 $C\cupA=$()A。

$\{a,b\}$。

B。

$\{a,c\}$。

C。

$\{b,c\}$。

D。

$\{a,b,c\}$2.已知 $\sin\theta0$,那么 $\theta$ 的终边在()A。

第一象限。

B。

第二象限。

C。

第三象限。

D。

第四象限3.若实数 $3,a,5$ 成等差数列,则 $a$ 的值是()A。

$2$。

B。

$3$。

C。

$4$。

D。

$15$4.图像不经过第二象限的函数是()A。

$y=2x$。

B。

$y=-x$。

C。

$y=x^2$。

D。

$y=\ln x$5.数列 $1,2,3,\dots,n,\dots$ 的一个通项公式是 $a_n=$()A。

$\dfrac{2n+1}{2}$。

B。

$2n-1$。

C。

$2n+1$。

D。

$2n-3$6.已知点$A(3,4)$,$B(-1,1)$,则线段$AB$ 的长度是()A。

$5$。

B。

$25$。

C。

$29$。

D。

$√29$7.在区间 $[-2,4]$ 内随机取一个实数,则该实数为负数的概率是()A。

$\dfrac{2}{11}$。

B。

$\dfrac{3}{23}$。

C。

$\dfrac{3}{34}$。

D。

$\dfrac{4}{34}$8.过点 $A(1,2)$,且斜率为 $-1$ 的直线方程是()A。

$x+y+2=0$。

B。

$x+y-2=0$。

C。

$x-y+2=0$。

D。

$x-y-2=0$9.不等式 $x(x+1)<0$ 的解集是()A。

$(-1,0)$。

B。

$(-∞,-1)\cup(0,1)$。

C。

$(-1,1)$。

D。

$(-∞,-1)\cup(1,∞)$10.已知圆 $C:x^2+y^2-4x+6y-3=0$,则圆 $C$ 的圆心坐标和半径分别为()A。

12月山东省学业水平考试(会考)数学精编版

12月山东省学业水平考试(会考)数学精编版

山东省2016年12月普通高中学业水平考试数学试题本试卷分第I 卷选择题和第II 卷非选择题两部分,共4页满分100分考试限定用时90分钟答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置考试结束后,将本试卷和答题卡一并交回第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号不涂在答题卡上,只答在试卷上无效一、选择题(本大题共20个小题,每小题3分,共60分) 1.已知全集{}c b a U ,,=,集合{}a A =,则=A C UA. {}b a ,B. {}c a ,C. {}c b ,D. {}c b a ,, 2.已知0sin <θ,0cos >θ,那么θ的终边在A.第一象限B. 第二象限C. 第三象限D.第四象限 3.若实数第3,a ,5成等差数列,则a 的值是A. 2B. 3C. 4D. 15 4.图像不经过第二象限的函数是 A. xy 2= B.x y -= C. 2x y = D. x y ln =5.数列1,32,53,74,95,…的一个通项公式是=n a A.12+n n B. 12-n nC. 32+n nD. 32-n n6.已知点)4,3(A ,)1,1(-B ,则线段AB 的长度是A. 5B. 25C. 29D. 29 7.在区间]4,2[-内随机取一个实数,则该实数为负数的概率是A. 32B. 21C. 31D. 418.过点)2,0(A ,且斜率为1-的直线方程式A. 02=++y xB. 02=-+y xC. 02=+-y xD. 02=--y x 9.不等式0)1(<+x x 的解集是A. {}01|<<-x xB. {}0,1|>-<x x x 或C. {}10|<<x xD. {}1,0|><x x x 或 10.已知圆C :036422=-+-+y x y x ,则圆C 的圆心坐标和半径分别为A. )(3,2-,16B. )(3,2-,16C. )(3,2-,4D. )(3,2-,4 11.在不等式22<+y x 表示的平面区域内的点是A. )(0,0B. )(1,1C. )(2,0D. )(0,212.某工厂生产了A 类产品2000件,B 类产品3000件,用分层抽样法从中抽取50件进行产品质量检验,则应抽取B 类产品的件数为A. 20B. 30C. 40D. 50 13.已知3tan -=α,1tan =β,则)tan(βα-的值为A. 2-B. 21-C. 2D. 2114.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,41sin =A ,则B sin 的值是A.41 B. 21C. 43 D. 4215.已知偶函数)(x f 在区间),0[+∞上的解析式为1)(+=x x f ,下列大小关系正确的是A. )2()1(f f >B. )2()1(->f fC. )2()1(->-f fD. )2()1(f f <- 16.从集合{}2,1中随机选取一个元素a ,{}3,2,1中随机选取一个元素b ,则事件“b a <”的概率是A. 61B. 31C.21 D. 3217.要得到)42sin(π+=x y 的图像,只需将x y 2sin =的图像A. 向左平移8π个单位 B. 向右平移 8π个单位 C. 向左平移4π个单位 D. 向右平移 4π个单位 18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,60=C ,则边c 等于A. 2B. 3C. 2D. 319.从一批产品中随机取出3件,记事件A 为“3件产品全是正品”,事件B 为“3件产品全是次品”,事件C 为“3件产品中至少有1件事次品”,则下列结论正确的是A. A 与C 对立B. A 与C 互斥但不对立C. B 与C 对立D. B 与C 互斥但不对立 20.执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 的值为 A. 1B. 2C. 3D. 4第II 卷(共40分)注意事项:1.第II 卷共8个小题,共40分2.第II 卷所有题目的答案,考生须用0 5毫米黑色签字笔书写在答题卡上规定的区域内,写在试卷上的答案不得分二、填空题(本大题共5个小题,每小题3分,共15分) 21. 2log 2的值为 .22.在各项均为正数的等比数列{}n a 中,971=⋅a a ,则=4a . 23.已知向量)2,1(=a ,)1,(x b =,若⊥,则实数x 的值是 . 24.样本5,8,11的标准差是 .25.已知一个圆锥的母线长为20,母线与轴的夹角为60,则该圆锥的高是 .三、解答题(本大题共3个小题,共25分) 26.(本小题满分8分)如图,在三棱锥BCD A -中,E ,F 分别是棱AB ,AC 的中点. 求证://EF 平面BCD .27.(本小题满分8分)已知函数x x x f 22sin cos )(-=.求: ⑴)12(πf 的值;⑵)(x f 的单调递增区间.28.(本小题满分9分) 已知函数41)(2++=ax x x f )(R a ∈ ⑴当函数)(x f 存在零点时,求a 的取值范围; ⑵讨论函数)(x f 在区间)1,0(内零点的个数.数学试题参考答案及评分标准一、选择题1-5 CDCDB 6-10 ACBAD 11-15 ABDBD 16-20 CABAC 二、填空题 21.2122. 3 23. 2- 24.6 25. 10 三、解答题26.证明:在ABC ∆中,因为E ,F 分别是棱AB ,AC 的中点,所以EF 是ABC ∆的中位线,……………………………………………1分所以BC EF //………………………………………………………………4分又因为⊂/EF 平面BCD ……………………………………………………5分 ⊂BC 平面BCD ……………………………………………………………6分 所以//EF 平面BCD ………………………………………………………8分 27.解:x x x x f 2cos sin cos )(22=-=……………………………………………2分⑴236cos)122cos()12(==⨯=πππf ……………………………………5分 ⑵由πππk x k 222≤≤-,Z k ∈, 得πππk x k ≤≤-2,Z k ∈.………………………………………………7分所以)(x f 的单调递增区间为],2[πππk k -,Z k ∈.……………………8分28.解⑴因为函数)(x f 有零点,所以方程0412=++ax x 有实数根. 所以012≥-=∆a ,解得1-≤a ,或1≥a因此,所求a 的取值范围是1-≤a ,或1≥a .………………………………2分⑵综上,当1->a 时,)(x f 在区间)1,0(内没有零点;当1-=a ,或45-≤a 时,)(x f 在区间)1,0(内有1个零点; 当145-<<-a 时,)(x f 在区间)1,0(内有2个零点.。

最新-山东省学业水平考试数学真题+答案

最新-山东省学业水平考试数学真题+答案

山东省2016年冬季普通高中学业水平考试数学试题第I 卷(共60分)一、选择题(本大题共20个小题,每小题3分,共60分) 1.已知全集{}c b a U ,,=,集合{}a A =,则=A C U ( )A. {}b a ,B. {}c a ,C. {}c b ,D. {}c b a ,, 2.已知0sin <θ,0cos >θ,那么θ的终边在( )A.第一象限B. 第二象限C. 第三象限D.第四象限 3.若实数第3,a ,5成等差数列,则a 的值是( )A. 2B. 3C. 4D. 15 4.图像不经过第二象限的函数是( )A. xy 2= B.x y -= C. 2x y = D. x y ln =5.数列1,32,53,74,95,…的一个通项公式是=n a ( ) A.12+n n B. 12-n nC. 32+n nD. 32-n n 6.已知点)4,3(A ,)1,1(-B ,则线段AB 的长度是( )A. 5B. 25C. 29D. 29 7.在区间]4,2[-内随机取一个实数,则该实数为负数的概率是( )A.32B. 21C. 31D. 41 8.过点)2,0(A ,且斜率为1-的直线方程式( )A.02=++y xB.02=-+y xC.02=+-y xD.02=--y x 9.不等式0)1(<+x x 的解集是( )A.{}01|<<-x xB.{}0,1|>-<x x x 或C. {}10|<<x xD.{}1,0|><x x x 或 10.已知圆C :036422=-+-+y x y x ,则圆C 的圆心坐标和半径分别为( )A. )(3,2-,16B. )(3,2-,16C. )(3,2-,4D. )(3,2-,4 11.在不等式22<+y x 表示的平面区域内的点是( )A. )(0,0B. )(1,1C. )(2,0D. )(0,2 12.某工厂生产了A 类产品2000件,B 类产品3000件,用分层抽样法从中抽取50件进行产品质量检验,则应抽取B 类产品的件数为( )A. 20B. 30C. 40D. 50 13.已知3tan -=α,1tan =β,则)tan(βα-的值为( )A. 2-B. 21-C. 2D. 2114.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,41sin =A ,则B sin 的值是( ) A.41 B. 21C. 43 D. 4215.已知偶函数)(x f 在区间),0[+∞上的解析式为1)(+=x x f ,下列大小关系正确的是( ) A. )2()1(f f > B. )2()1(->f f C. )2()1(->-f f D. )2()1(f f <-16.从集合{}2,1中随机选取一个元素a ,{}3,2,1中随机选取一个元素b ,则事件“b a <”的概率是( ) A.61 B. 31 C. 21 D. 3217.要得到)42sin(π+=x y 的图像,只需将x y 2sin =的图像( )A. 向左平移8π个单位 B.向右平移 8π个单位 C.向左平移4π个单位 D.向右平移 4π个单位 18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,60=C ,则边c 等于( ) A. 2 B. 3 C. 2 D. 319.从一批产品中随机取出3件,记事件A 为“3件产品全是正品”,事件B 为“3件产品全是次品”,事件C 为“3件产品中至少有1件事次品”,则下列结论正确的是( )A.A 与C 对立B.A 与C 互斥但不对立C.B 与C 对立D.B 与C 互斥但不对立20.执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 的值为( ) A. 1 B. 2 C. 3 D. 4二、填空题(本大题共5个小题,每小题3分,共15分) 21. 2log 2的值为 .22.在各项均为正数的等比数列{}n a 中,971=⋅a a , 则=4a .23.已知向量)2,1(=,)1,(x =,若⊥,则实数x 的值是 . 24.样本5,8,11的标准差是 .25.已知一个圆锥的母线长为20,母线与轴的夹角为60,则该圆锥的高是 . 三、解答题(本大题共3个小题,共25分)26.(本小题满分8分)如图,在三棱锥BCD A -中,E ,F 分别是棱AB ,AC 的中点.求证://EF 平面BCD .27.(本小题满分8分)已知函数x x x f 22sin cos )(-=.求:⑵ )12(πf 的值; ⑵)(x f 的单调递增区间.28.(本小题满分9分)已知函数41)(2++=ax x x f )(R a ∈ ⑴当函数)(x f 存在零点时,求a 的取值范围; ⑵讨论函数)(x f 在区间)1,0(内零点的个数.2016冬季学业水平数学试题参考答案1-5:CDCDB 6-10:ACBAD 11-15:ABCBD 16-20: CABAC 21.2122. 3 23. 2- 24.6 25. 10 26.证明:在ABC ∆中,因为E ,F 分别是棱AB ,AC 的中点,所以EF 是ABC ∆的中位线, ……………………………………………1分所以BC EF //………………………………………………………………4分又因为⊂/EF 平面BCD ……………………………………………………5分 ⊂BC 平面BCD ……………………………………………………………6分 所以//EF 平面BCD ………………………………………………………8分 27.解:x x x x f 2cos sin cos )(22=-=……………………………………………2分⑴236cos)122cos()12(==⨯=πππf ……………………………………5分 ⑵由πππk x k 222≤≤-,Z k ∈, 得πππk x k ≤≤-2,Z k ∈.………………………………………………7分所以)(x f 的单调递增区间为],2[πππk k -,Z k ∈.……………………8分28.解⑴因为函数)(x f 有零点,所以方程0412=++ax x 有实数根. 所以012≥-=∆a ,解得1-≤a ,或1≥a因此,所求a 的取值范围是1-≤a ,或1≥a .………………………………2分⑵综上,当1->a 时,)(x f 在区间)1,0(内没有零点;当1-=a ,或45-≤a 时,)(x f 在区间)1,0(内有1个零点; 当145-<<-a 时,)(x f 在区间)1,0(内有2个零点.2017年山东省普通高中学业水平考试数学试题一、选择题(本大题共20个小题,每小题3分,共60分)1.已知集合{}4,2,1=A ,{}84,2,=B ,则=B A ( ) A .{4} B .{2} C .{2,4} D .{1,2,4,8}2.周期为π的函数是( )A .y =sinxB .y =cosxC .y =tan 2xD .y =sin 2x3.在区间()∞+,0上为减函数的是( )A .2x y = B .21x y = C .xy ⎪⎭⎫⎝⎛=21 D .x y ln =4.若角α的终边经过点()2,1-,则=αcos ( ) A .55-B .55C .552-D .5525.把红、黄两张纸牌随机分给甲、乙两个人,每人分得一张,设事件P 为“甲分得黄牌”,设事件Q为“乙分得黄牌”,则( )A .P 是必然事件B .Q 是不可能事件C .P 与Q 是互斥但是不对立事件D .P 与Q 是互斥且对立事件6.在数列{}n a 中,若n n a a 31=+,21=a ,则=4a ( )A .108B .54C .36D .187.采用系统抽样的方法,从编号为1~50的50件产品中随机抽取5件进行检验,则所选取的5件产品的编号可以是( )A .1,2,3,4,5B .2,4,8,16,32C .3,13,23,33,43D .5,10,15,20,25 8.已知()+∞∈,0,y x ,1=+y x ,则xy 的最大值为( )A .1B .21 C .31 D .41 9.在等差数列{}n a 中,若95=a ,则=+64a a ( )A .9B .10C .18D .2010.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,若︒=60A ,︒=30B ,3=a ,则=b ( )A .3B .233 C .32 D .33 11.已知向量()3,2-=,()6,4-=,则与( )A .垂直B .平行且同向C .平行且反向D .不垂直也不平行 12.直线012=+-y ax 与直线012=-+y x 垂直,则=a ( ) A .1 B .-1 C .2 D .-213.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若222c bc b a +-=,则角A 为( ) A .6π B .3π C .32π D .3π或32π 14.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是( )A .35B .40C .45D .5015.已知△ABC 的面积为1,在边AB 上任取一点P ,则△PBC 的面积大于41的概率是( ) A .41 B .21 C .43 D .32 16.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+1142y x y x ,则y x z -=的最小值是( )A .-1B .21-C .0D .1 17.下列结论正确的是( )A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行18.若圆柱的底面半径是1,其侧面展开是一个正方形,则这个圆柱的侧面积是( )A .24πB .23πC .22πD .2π 19.方程x x -=33的根所在区间是( )A .(-1,0)B .(0,1C .(1,2D .(2,3)20.运行如图所示的程序框图,如果输入的x 值是-5,那么输出的结果是( ) A .-5 B .0 C .1 D .2二、填空题(本大题共5个小题,每题3分,共15分) 21.函数)1lg()(-=x x f 的定义域为 .22.已知向量a ,b 2=,a 与b 的夹角θ为32π,若1-=⋅b a ,则= .23.从集合{}3,2=A ,{}3,21,=B 中各任取一个数,则这两个数之和等于4的概率是 .24.已知数列{n a }的前n 项和为n n S n 22+=,则该数列的通项公式=n a .25.已知三棱锥P -ABC 的底面是直角三角形,侧棱⊥PA 底面ABC ,P A =AB =AC =1,D 是BC 的中点,PD 的长度为 .三、解答题(本大题共3个小题,共25分)26.(本小题满分8分)已知函数1cos sin )(+=x x x f .求: (1))4(πf 的值; (2)函数)(x f 的最大值.27.(本小题满分8分)已知n mx x x f ++=22)((m ,n 为常数)是偶函数,且f (1)=4. (1)求)(x f 的解析式;(2)若关于x 的方程kx x f =)(有两个不相等的实数根,求实数k 的取值范围.28.(本小题满分9分)已知直线l :y =kx +b ,(0<b <1)和圆O :122=+y x 相交于A ,B 两点. (1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两条切线的交点坐标;(2)对于任意的实数k ,在y 轴上是否存在一点N ,满足ONB ONA ∠=∠?若存在,请求出此点坐标;若不存在,说明理由.山东省2017年普通高中学业水平考试参考答案1-5: CDCAD 6-10:BCDCA 11-15:CABBC 16-20:BDABC21、()∞+,1 22、1 23、3124、2n+1 25、2626、(1)23;(2)最大值为23. 27、(1)22)(2+=x x f ; (2)4>k 或4-<k . 28、(1)⎪⎭⎫ ⎝⎛b 10,;(2)存在;⎪⎭⎫ ⎝⎛b 10,.。

山东省学业水平考试数学试题(2015-2017会考)附答案

山东省学业水平考试数学试题(2015-2017会考)附答案
y k ( x 1) 2 代入y 2 x 2得2x2 kx k 2 0 k k2 k k2 A( 1, 2k 2), 用 k 换k 得B ( 1, 2k 2) 2 2 2 2 k k k2 A( x1, y1 ), B( x2 , y2 ), 则x1 1 , x1 1, y1 k ( x1 1) 2 2k 2 2 2 2 k AB k k 1 ( 1) 4k 2 2 2 4 (定值) 2 k k k 2k 2 ( 2k 2) 2 2
22.已知 tan 2, 则 tan( ) 的值是___________ 4
23.一个四棱锥的三视图如图所示,其中主(正)视图和左(侧)视图都是边长为 2 的正 三角形,那么该四棱锥的底面积为__________
8
x 2 24.已知实数 x,y 满足约束条件 y 2 , 则目标函数 z x 2 y x y 2 0 的最小值是 ______
9
山东省普通高中学业水平考试数学试题 参考答案
1~5 DABAC 21. 12 22. 6~10 BBDDA 11~15 CAACD 16~20 BCDBC -3 23. 4 24. 2 25.
2

26 f ( x)的定义域是( , 2), 零点是x 2 27. (1) an n, (2) S100 5050 28.解(1) 设直线MA的斜率为k , 则MB的斜率为-k,则直线MA的方程为
1 1 a b
11.设 a, b, c R, 且a b ,则下列不等式正确的是( A. a 2 b 2 B. ac 2 bc 2 C. a c b c D.
13.甲、乙、丙 3 人站成一排,则甲恰好在中间的概率为( A.

山东省2015及12月普通高中学业水平考试(会考)数学试题及答案

山东省2015及12月普通高中学业水平考试(会考)数学试题及答案

山东省2015年12月普通高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

满分100分,考试限定用时90分钟。

答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置。

考试结束后,将本试卷和答题卡一并交回。

第I 卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不涂在答题卡上,只答在试卷上无效。

一、选择题(本大题共20个小题,每小题3分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的) l. 已知集合{}1,2A =,{}2,3B =,则A B =UA. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)的函数是 A.2xy = B.2log y x =C.12y x= D. 2y x =3. 下列函数为偶函数的是 A.sin y x =. B. cos y x =C. tan y x =D. sin 2y x =4. 在空间中,下列结论正确的是A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面5. 已知向量(1,2),(1,1)a b =-=,则a b =g A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =的最大值是 A.14B.12C.3 D. 17. 某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是A. 14B. 13C. 12D. 11 8. 圆心为(3,1),半径为5的圆的标准方程是 A. 22(3)(1)5x y +++= B. 22(3)(1)25x y +++=C.22(3)(1)5x y -+-=D.22(3)(1)25x y -+-= 49. 某校100名学生数学竞赛成绩的频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内的人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列的前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立的是 A.22a b >B. 22ac bc >C. a c b c +>+D.11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 的值是1A. 4-B. 1-C. 1D. 4 13. 甲、乙、丙3人站成一排,则甲恰好站在中间的概率为 A. 13B.12C.23D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>的部分图象如图所示,则ω的值为 A. 1 2 C. 3 D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 的大小关系为 A. b c a << B. b a c << C. c a b << D. c b a <<16. 如图,角α的终边与单位圆交于点M ,M 的纵坐标为45,则cos α=A.35B.35- C.45D.45-17. 甲、乙两队举行足球比赛,甲队获胜的概率为13,则乙队不输的概率为A.56B.34C.23D. 1318. 如图,四面体ABCD 的棱DA ⊥平面ABC ,090ACB ∠=, 则四面体的四个面中直角三角形的个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 的对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C.060D. 03020. 如图所示的程序框图,运行相应的程序,则输出a 的值是2值为 A. 12B. 13C.14D. 15第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。

2016年山东省学业水平考试数学卷

2016年山东省学业水平考试数学卷

山东省2016年冬季普通高中学业水平考试数学试题一、选择题(本大题共20个小题,每小题3分,共60分) 1.已知全集{}c b a U ,,=,集合{}a A =,则=A C UA. {}b a ,B. {}c a ,C. {}c b ,D. {}c b a ,, 2.已知0sin <θ,0cos >θ,那么θ的终边在A.第一象限B. 第二象限C. 第三象限D.第四象限 3.若实数第3,a ,5成等差数列,则a 的值是A. 2B. 3C. 4D. 15 4.图像不经过第二象限的函数是A. xy 2= B.x y -= C. 2x y = D. x y ln = 5.数列1,32,53,74,95,…的一个通项公式是=n a A. 12+n n B. 12-n n C. 32+n n D. 32-n n6.已知点)4,3(A ,)1,1(-B ,则线段AB 的长度是A. 5B. 25C. 29D. 29 7.在区间]4,2[-内随机取一个实数,则该实数为负数的概率是 A.32B. 21C. 31D. 41 8.过点)2,0(A ,且斜率为1-的直线方程式A. 02=++y xB. 02=-+y xC. 02=+-y xD. 02=--y x 9.不等式0)1(<+x x 的解集是A. {}01|<<-x xB. {}0,1|>-<x x x 或C. {}10|<<x xD. {}1,0|><x x x 或 10.已知圆C :036422=-+-+y x y x ,则圆C 的圆心坐标和半径分别为A. )(3,2-,16B. )(3,2-,16C. )(3,2-,4D. )(3,2-,411.在不等式22<+y x 表示的平面区域内的点是A. )(0,0B. )(1,1C. )(2,0D. )(0,212.某工厂生产了A 类产品2000件,B 类产品3000件,用分层抽样法从中抽取50件进行产品质量检验,则应抽取B 类产品的件数为A. 20B. 30C. 40D. 50 13.已知3tan -=α,1tan =β,则)tan(βα-的值为A. 2-B. 21- C. 2 D. 2114.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,41sin =A ,则B sin 的值是A.41 B. 21C. 43 D. 4215.已知偶函数)(x f 在区间),0[+∞上的解析式为1)(+=x x f ,下列大小关系正确的是A. )2()1(f f >B. )2()1(->f fC. )2()1(->-f fD. )2()1(f f <- 16.从集合{}2,1中随机选取一个元素a ,{}3,2,1中随机选取一个元素b ,则事件“b a <”的概率是A.61 B. 31 C. 21 D. 3217.要得到)42sin(π+=x y 的图像,只需将x y 2sin =的图像A. 向左平移8π个单位 B. 向右平移 8π个单位 C. 向左平移 4π个单位 D. 向右平移 4π个单位18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,60=C ,则边c 等于A. 2B. 3C. 2D. 319.从一批产品中随机取出3件,记事件A 为“3件产品全是正品”,事件B 为“3件产品全是次品”,事件C 为“3件产品中至少有1件事次品”,则下列结论正确的是A. A 与C 对立B. A 与C 互斥但不对立C. B 与C 对立D. B 与C 互斥但不对立 20.执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 的值为 A. 1B. 2C. 3二、填空题(本大题共5个小题,每小题3分,共15分) 21. 2log 2的值为 .22.在各项均为正数的等比数列{}n a 中,971=⋅a a ,则=4a . 23.已知向量)2,1(=a ,)1,(x b =,若b a ⊥,则实数x 的值是 . 24.样本5,8,11的标准差是 .25.已知一个圆锥的母线长为20,母线与轴的夹角为60,则该圆锥的高是 . 三、解答题(本大题共3个小题,共25分) 26.(本小题满分8分)如图,在三棱锥BCD A -中,E ,F 分别是棱AB ,AC 的中点. 求证://EF 平面BCD .27.(本小题满分8分)已知函数x x x f 22sin cos )(-=.求: ⑴)12(πf 的值;⑵)(x f 的单调递增区间. 28.(本小题满分9分) 已知函数41)(2++=ax x x f )(R a ∈ ⑴当函数)(x f 存在零点时,求a 的取值范围; ⑵讨论函数)(x f 在区间)1,0(内零点的个数.数学试题参考答案及评分标准一、选择题1-5 CDCDB 6-10 ACBAD 11-15 ABDBD 16-20 CABAC 二、填空题 21.2122. 3 23. 2- 24.6 25. 10 三、解答题26.证明:在ABC ∆中,因为E ,F 分别是棱AB ,AC 的中点,所以EF 是ABC ∆的中位线,……………………………………………1分所以BC EF //………………………………………………………………4分又因为⊂/EF 平面BCD ……………………………………………………5分 ⊂BC 平面BCD ……………………………………………………………6分 所以//EF 平面BCD ………………………………………………………8分 27.解:x x x x f 2cos sin cos )(22=-=……………………………………………2分⑴236cos)122cos()12(==⨯=πππf ……………………………………5分 ⑵由πππk x k 222≤≤-,Z k ∈, 得πππk x k ≤≤-2,Z k ∈.………………………………………………7分所以)(x f 的单调递增区间为],2[πππk k -,Z k ∈.……………………8分28.解⑴因为函数)(x f 有零点, 所以方程0412=++ax x 有实数根. 所以012≥-=∆a ,解得1-≤a ,或1≥a因此,所求a 的取值范围是1-≤a ,或1≥a .………………………………2分⑵综上,当1->a 时,)(x f 在区间)1,0(内没有零点; 当1-=a ,或45-≤a 时,)(x f 在区间)1,0(内有1个零点; 当145-<<-a 时,)(x f 在区间)1,0(内有2个零点.。

学业水平考试2.3

学业水平考试2.3

2016年山东省普通高中学生学业水平考试数学本试卷分为第I 卷和第II 卷两部分,第I 卷为选择题,第II 卷为非选择题,共4页。

全卷共28小题,满分100分。

考试时间为90分钟。

一、选择题(本大题共20小题,每小题3分,满分60分。

每小题4个选项中,只有1个选项符合题目要求。

)1. 如图是一个几何体的三视图,则该几何体为A.圆柱B.圆锥C.圆台D.球 2. 已知集合 },5,1,1{},5,3,1{-==B A则B A 等于A.{1,5}B.{1,3,5}C.{-1,3,5}D. {-1,1,3,5}3. 为研究某校高二年级学生学业水平考试情况,对该校高二年级1000名学生进行编号,号码为0001,0002,0003,...,1000,现从中抽取所有编号末位数字为9的学生的考试成绩进行分析,这种抽样方法是A. 抽签法B. 随机数表法C.系统抽样法D.分层抽样法4. 不等式0)2)(1(>+-x x 的解集为A.{}12>-<x x x 或B. {}12<<-x xC.{}21<<x xD.{}21><x x x 或 5. =1022logA. 5B. 10C.-5D.-106.sin120︒的值为 A.22 B. 23 C. -1 D.-22 7.如图,在正方体ABCD -A 1B 1C 1D 1中,直线BD 与A 1C 1的位置关系是A.平行B.相交C.异面但不垂直D. 异面且垂直 8. 圆014222=+-++y x y x 的半径为A.1B. 2C. 2D. 49. 函数()lg 1y x =-的定义域为A. RB. ()0,+∞C. (),1-∞D.()1,+∞10. 下列函数中,是奇函数的是A. x x y -=3B.132+-=x yC. 12+=x yD. 132+=x y11. 63sin 72cos 63cos 72sin +的值为A. 21-B.21C. 22-D. 22 12. 函数y =x 的图象可能是13. 若A 与B 互为对立事件,且P(A)=0.6,则P(B)=A. 0.2B.0.4C. 0.6D. 0.814. 直线经过点A (3,4),斜率为43-,则其方程为 A. 3x+4y -25=0 B. 3x+4y+25=0 C. 3x -4y+7=0 D.4x+3y -24=015.函数()22f x x x =-的零点个数为 A.0 B.1 C.2 D.316. 点A (1,0)到直线x+y -2=0的距离为A.21B. 22 C. 1 D.2 17. 为了得到函数cos 34y x π⎛⎫=-⎪⎝⎭的图象,只需把函数cos 3y x =的图象上所有点 A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位 18. 在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=A .090B .060C .0120D .0150 19. 已知x ,y 满足约束条件10901x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则53z x y =+的最大值为A .43B .35C .29D .1120. 若0a b >>,则下列不等式成立的是( )A .1122a b <B . 22log log a b <C . 1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D. 22log a b < 二、填空题(本大题共5小题,每小题3分,共15分)21. 已知平面向量(1,)a t =- ,向量(1,1)b = ,若a b ⊥ ,则实数t 的值是22. 函数12sin cos y x x =+的最小正周期为23. 已知函数设函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤2,3x -2,x >2,则=)3(f24. 已知函数y =sin ωx(ω>0)在一个周期内的图像如图所示,则ω的值为25. 已知向量b a ,满足6)()2(-=-∙+b a b a ,且2,1==b a ,则向量a 与b 的夹角为三、解答题(共3小题,共25分)26. (8分) 如图,已知四棱锥P -ABCD 的底面为菱形,对角线AC 与BD 相交于点E ,平面P AC 垂直底面ABCD ,线段PD 的中点为F .(1)求证:EF ∥平面PBC ;(2)求证:BD ⊥PC .27. (8分) 已知数列}{n a 满足)(11*+∈=-N n a a n n ,且33=a .(1)}{n a 的通项公式;(2)}{n a 的前100项的和n S28. (9分)如图,设直线l :y =kx +2(k ∈R )与抛物线C :y =x 2相交于P ,Q 两点,其中Q 点在第一象限.(1)若点M 是线段PQ 的中点,求点M 到x 轴距离的最小值;(2)当k >0时,过点Q 作y 轴的垂线交抛物线C 于点R ,若PQ →·PR →=0,求直线l 的方程.。

青岛市2016年初中学业水平考试数学试题.pdf

青岛市2016年初中学业水平考试数学试题.pdf

根据以上信息,整理分析数据如下: 平均成绩/环 甲 乙 a 7 中位数/环 7 b 众数/环 7 8 方差 1.2 c
(1)写出表格中 a,b,c 的值; (2)分别运用上表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中 一名参赛,你认为应选哪名队员? 20. (本小题满分 8 分) 如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的 3 抛物线可以用 y=ax2+bx(a≠0)表示.已知抛物线上 B,C 两点到地面的距离均为 m,到墙 4 1 3 边 OA 的距离分别为 m, m. 2 2 (1)求该抛物线的函数关系式,并求图案最高点到地面的距离; (2)若该墙的长度为 10m,则最多可以连续绘制几个这样的抛物线型图案? y/m A
探究二:
图①
图②
图③
图④
图⑤
当 n=10,11,12,13,14 时,分别将正方形按下列方式分割:
5×5 5×5 5×5 5×5 5×5 5×6 5×6 6×6 5×5 5×7 5×7 7×7 5×5 5×8 5×8 8×8 5×5 5×9 5×9 9×9n=10 5+5n=11 =5+6
n=12 =5+7
青岛市二○一六年初中学业水平考试
数 学 试 题
(考试时间:120 分钟;满分:120 分)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
本试题分第Ⅰ卷和第Ⅱ卷两部分,共有 24 道题.第Ⅰ卷 1—8 题为选择题,共 24 分;第Ⅱ 卷 9—14 题为填空题,15 题为作图题,16—24 题为解答题,共 96 分.要求所有题目均在答 题卡上作答,在本卷上作答无效.
A
D
O
F
B
E
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省2016年12月普通高中学业水平测试
数学试题
本试卷分第I 卷选择题和第II 卷非选择题两部分,共4页满分100分测试限定用时90分钟答卷前,考生务必将自己的姓名、考籍号、座号填写在试卷和答题卡规定的位置测试结束后,将本试卷和答题卡一并交回
第I 卷(共60分)
注意事项:
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号不涂在答题卡上,只答在试卷上无效
一、选择题(本大题共20个小题,每小题3分,共60分)
1.已知全集{}c b a U ,,=,集合{}a A =,则=A C U
A. {}b a ,
B. {}c a ,
C. {}c b ,
D. {}c b a ,,
2.已知0sin <θ,0cos >θ,那么θ的终边在
A.第一象限
B. 第二象限
C. 第三象限
D.第四象限
3.若实数第3,a ,5成等差数列,则a 的值是
A. 2
B. 3
C. 4
D. 15
4.图像不经过第二象限的函数是
A. x y 2=
B.x y
-= C. 2x y = D. x y ln = 5.数列1,32,53,74,9
5,…的一个通项公式是=n a A. 12+n n B. 12-n n C. 32+n n D. 3
2-n n 6.已知点)4,3(A ,)1,1(-B ,则线段AB 的长度是
A. 5
B. 25
C. 29
D. 29
7.在区间]4,2[-内随机取一个实数,则该实数为负数的概率是 A. 32 B. 21 C. 31 D. 4
1 8.过点)2,0(A ,且斜率为1-的直线方程式
A. 02=++y x
B. 02=-+y x
C. 02=+-y x
D. 02=--y x
9.不等式0)1(<+x x 的解集是
A. {}01|<<-x x
B. {}0,1|>-<x x x 或
C. {}10|<<x x
D. {}1,0|><x x x 或
10.已知圆C :03642
2=-+-+y x y x ,则圆C 的圆心坐标和半径分别为
A. )(3,2-,16
B. )(3,2-,16
C. )
(3,2-,4 D. )(3,2-,4 11.在不等式22<+y x 表示的平面区域内的点是
A. )(0,0
B. )(1,1
C. )(2,0
D. )
(0,2 12.某工厂生产了A 类产品2000件,B 类产品3000件,用分层抽样法从中抽取50件进行产品质量检验,则应抽取B 类产品的件数为
A. 20
B. 30
C. 40
D. 50
13.已知3tan -=α,1tan =β,则)tan(βα-的值为 A. 2- B. 2
1- C. 2 D. 21 14.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b ,41sin =
A ,则
B sin 的值是 A. 41 B. 21 C. 4
3 D. 42 15.已知偶函数)(x f 在区间),0[+∞上的分析式为1)(+=x x f ,下列大小关系正确的是
A. )2()1(f f >
B. )2()1(->f f
C. )2()1(->-f f
D. )2()1(f f <-
16.从集合{}2,1中随机选取一个元素a ,{}3,2,1中随机选取一个元素b ,则事件“b a <”的概率是 A. 61 B. 31 C. 21 D. 3
2 17.要得到)42sin(π
+=x y 的图像,只需将x y 2sin =的图像
A. 向左平移 8π个单位
B. 向右平移 8
π个单位
C. 向左平移 4π个单位
D. 向右平移 4π个单位 18.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若1=a ,2=b , 60=C ,则边c 等于
A. 2
B. 3
C. 2
D. 3
19.从一批产品中随机取出3件,记事件A 为“3件产品全是正品”,事件B 为“3件产品全是次品”,事件C 为“3件产品中至少有1件事次品”,则下列结论正确的是
A. A 和C 对立
B. A 和C 互斥但不对立
C. B 和C 对立
D. B 和C 互斥但不对立
20.执行如图所示的程序框图(其中[]x 表示不超过x 的最大整数),则输出的S 的值

A. 1
B. 2
C. 3
D. 4
第II 卷(共40分)
注意事项:
1.第II 卷共8个小题,共40分
2.第II 卷所有题目的答案,考生须用0 5毫米黑色签字笔书写在答题卡上规定的区域内,写在试卷上的答案不得分
二、填空题(本大题共5个小题,每小题3分,共15分)
21. 2log 2的值为 .
22.在各项均为正数的等比数列{}n a 中,971=⋅a a ,则=4a .
23.已知向量)2,1(=a ,)1,(x b =,若b a ⊥,则实数x 的值是 .
24.样本5,8,11的标准差是 .
25.已知一个圆锥的母线长为20,母线和轴的夹角为
60,则该圆锥的高是 .
三、解答题(本大题共3个小题,共25分)
26.(本小题满分8分)
如图,在三棱锥BCD A -中,E ,F 分别是棱AB ,AC 的中点.
求证://EF 平面BCD .
27.(本小题满分8分)
已知函数x x x f 22sin cos )(-=.求:
⑴)12(πf 的值;
⑵)(x f 的单调递增区间.
28.(本小题满分9分)
已知函数4
1)(2++=ax x x f )(R a ∈ ⑴当函数)(x f 存在零点时,求a 的取值范围;
⑵讨论函数)(x f 在区间)1,0(内零点的个数.
数学试题参考答案及评分标准
一、选择题
1-5 CDCDB 6-10 ACBAD 11-15 ABDBD 16-20 CABAC
二、填空题
21.2
1 22. 3 23. 2- 24.6 25. 10 三、解答题
26.证明:在ABC ∆中,因为E ,F 分别是棱AB ,AC 的中点,
所以EF 是ABC ∆的中位线,……………………………………………1分
所以BC EF //………………………………………………………………4分
又因为⊂/EF 平面BCD ……………………………………………………5分 ⊂BC 平面BCD ……………………………………………………………6分 所以//EF 平面BCD ………………………………………………………8分
27.解:x x x x f 2cos sin cos )(2
2=-=……………………………………………2分
⑴2
36cos )122cos()12(==⨯=π
π
π
f ……………………………………5分 ⑵由πππk x k 222≤≤-,Z k ∈,
得ππ
πk x k ≤≤-2,Z k ∈.………………………………………………7分
所以)(x f 的单调递增区间为],2[πππk k -
,Z k ∈.……………………8分 28.解⑴因为函数)(x f 有零点,
所以方程0412=+
+ax x 有实数根. 所以012≥-=∆a ,解得1-≤a ,或1≥a
因此,所求a 的取值范围是1-≤a ,或1≥a .………………………………2分 ⑵综上,当1->a 时,)(x f 在区间)1,0(内没有零点;
当1-=a ,或4
5-≤a 时,)(x f 在区间)1,0(内有1个零点; 当145-<<-a 时,)(x f 在区间)1,0(内有2个零点.。

相关文档
最新文档