人教B版高中数学必修四第三章 三角恒等变换

合集下载

高中数学必修四(人教B版)练习:第三章 三角恒等变换3.1.1 Word版含解析

高中数学必修四(人教B版)练习:第三章 三角恒等变换3.1.1 Word版含解析

第三章 3.1 3.1.1一、选择题1.cos75°cos15°-sin435°sin15°的值是( ) A .0 B .12C .32D .-12[答案] A[解析] cos75°cos15°-sin435°sin15° =cos75°cos15°-sin(360°+75°)sin15° =cos75cos15°-sin75°sin15° =cos(75°+15°)=cos90°=0.2.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定为( ) A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形[答案] D[解析] ∵sin A sin B <cos A cos B , ∴cos A cos B -sin A sin B >0, ∴cos(A +B )>0,∵A 、B 、C 为三角形的内角, ∴A +B 为锐角, ∴C 为钝角.3.下列结论中,错误的是( )A .存在这样的α和β的值,使得cos(α+β)=cos αcos β+sin αsin βB .不存在无穷多个α和β的值,使得cos(α+β)=cos αcos β+sin αsin βC .对于任意的α和β,有cos(α+β)=cos αcos β-sin αsin βD .不存在这样的α和β的值,使得cos(α+β)≠cos αcos β-sin αsin β [答案] B[解析] 当α、β的终边都落在x 轴的正半轴上或都落在x 轴的负半轴上时,cos(α+β)=cos αcos β+sin αsin β成立,故选项B 是错误的.4.在锐角△ABC 中,设x =sin A sin B ,y =cos A cos B ,则x 、y 的大小关系是( )A .x ≥yB .x ≤yC .x >yD .x <y[答案] C[解析] y -x =cos(A +B ),在锐角三角形中π2<A +B <π,y -x <0,即x >y .5.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( ) A .sin2x B .cos2y C .-cos2x D .-cos2y [答案] B[解析] 原式=cos[(x +y )-(x -y )]=cos2y .6.△ABC 中,cos A =35,且cos B =513,则cos C 等于( )A .-3365B .3365C .-6365D .6365[答案] B[解析] 由cos A >0,cos B >0知A 、B 都是锐角, ∴sin A =1-⎝⎛⎭⎫352=45,sin B =1-⎝⎛⎭⎫5132=1213,∴cos C =-cos(A +B )=-(cos A cos B -sin A sin B ) =-⎝⎛⎭⎫35×513-45×1213=3365. 二、填空题7.若cos α=15,α∈(0,π2),则cos(α+π3)=________.[答案]1-6210[解析] ∵cos α=15,α∈(0,π2),∴sin α=265.∴cos(α+π3)=cos αcos π3-sin αsin π3=15×12-265×32=1-6210.8.已知cos(π3-α)=18,则cos α+3sin α的值为________.[答案] 14[解析] cos(π3-α)=cos π3cos α+sin π3sin α=12cos α+32sin α =12(cos α+3sin α)=18, ∴cos α+3sin α=14.三、解答题 9.已知cos α=55,sin(α-β)=1010,且α、β∈(0,π2). 求:cos(2α-β)的值. [解析] ∵α、β∈(0,π2),∴α-β∈(-π2,π2),∴sin α=1-cos 2α=255,cos(α-β)=1-sin 2(α-β)=31010,∴cos(2α-β)=cos[α+(α-β)] =cos αcos(α-β)-sin αsin(α-β) =55×31010-255×1010=210. 10. 已知sin α+sin β=310,cos α+cos β=9110,求cos(α-β)的值.[解析] 将sin α+sin β=310,两边平方得,sin 2α+2sin αsin β+sin 2β=9100①,将cos α+cos β=9110两边平方得,cos 2α+2cos αcos β+cos 2β=91100②,①+②得2+2cos(α-β)=1, ∴cos(α-β)=-12.一、选择题 1.cos47°+sin17°sin30°cos17°的值为( )A .-32B .-12C .12D .32[答案] D [解析]cos47°+sin17°sin30°cos17°=cos (30°+17°)+sin17°sin30°cos17°=cos30°cos17°-sin30°sin17°+sin17°sin30°cos17°=cos30°=32. 2.在△ABC 中,若tan A ·tan B >1,则△ABC 一定是( ) A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形[答案] C[解析] ∵sin A ·sin B >cos A ·cos B , ∴cos A ·cos B -sin A ·sin B <0, 即cos(A +B )<0,∵A 、B 、C 为三角形的内角, ∴A +B 为钝角,∴C 为锐角. 又∵tan A ·tan B >1, ∴tan A >0,tan B >0,∴A 、B 均为锐角,故△ABC 为锐角三角形.3.在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x 、y 的大小关系为( )A .x ≤yB .x >yC .x <yD .x ≥y[答案] B[解析] y -x =cos A cos B -sin A sin B =cos(A +B ), ∵△ABC 为锐角三角形, ∴C 为锐角,∵A +B =π-C , ∴A +B 为钝角, ∴cos(A +B )<0,∴y <x .4.函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32] [答案] B[解析] f (x )=sin x -cos(x +π6)=sin x -cos x cos π6+sin x sin π6=32sin x -32cos x =3(32sin x -12cos x ) =3sin(x -π6)∈[-3,3].二、填空题 5.形如⎪⎪⎪⎪⎪⎪ab cd 的式子叫做行列式,其运算法则为⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则行列式⎪⎪⎪⎪⎪⎪cos π3 sin π6sin π3 cos π6的值是________. [答案] 0[解析] ⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴⎪⎪⎪⎪⎪⎪cos π3 sin π6sin π3cos π6=cos π3cos π6-sin π3sin π6=cos(π3+π6)=cos π2=0.6.已知cos(α+β)=13,cos(α-β)=15,则tan α·tan β=________.[答案] -14[解析] ∵cos(α+β)=13,∴cos αcos β-sin αsin β=13,①∵cos(α-β)=15,∴cos αcos β+sin αsin β=15,②由①②得⎩⎨⎧sin αsin β=-115cos αcos β=415,∴tan αtan β=sin αsin βcos αcos β=-14.三、解答题7.已知cos(α-30°)=1517,30°<α<90°,求cos α的值.[解析] ∵30°<α<90°, ∴0°<α-30°<60°. ∵cos(α-30°)=1517,∴sin(α-30°)=1-cos 2(α-30°)=817,∴cos α=cos[(α-30°)+30°]=cos(α-30°)cos30°-sin(α-30°)sin30°=1517×32-817×12=153-834.8.已知向量a =(2cos α,2sin α),b =(3cos β,3sin β),若向量a 与b 的夹角为60°,求cos(α-β)的值.[解析] ∵a·b =6cos αcos β+6sin αsin β=6cos(α-β), ∴|a |=2,|b |=3, 又∵a 与b 的夹角为60°,∴cos60°=a·b |a|·|b|=6cos (α-β)2×3=cos(α-β),∴cos(α-β)=12.9. 已知函数f (x )=2cos(ωx +π6)(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α、β∈[0,π2],f (5α+5π3)=-65,f (5β-5π6)=1617,求cos(α+β)的值.[解析] (1)∵T =10π=2πω,∴ω=15.(2)由(1)得f (x )=2cos(15x +π6),∵-65=f (5α+5π3)=2cos[15(5α+5π3)+π6]=2cos(α+π2)=-2sin α,∴sin α=35,cos α=45.∵1617=f (5β-5π6)=2cos[15(5β-5π6)+π6]=2cos β, ∴cos β=817,sin β=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.。

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

人教B版高中数学必修四《第三章 三角恒等变换 本章小结》_2

人教B版高中数学必修四《第三章 三角恒等变换 本章小结》_2

3.2 简单的三角恒等变换教学目标1.理解并掌握二倍角的正弦、余弦、正切公式.2.会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用. 教学重点、难点教学重点:1.半角公式、积化和差、和差化积公式. 2.三角变换的内容、思路和方法.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换. 教法与学法教学方法:启发诱导,讲练结合. 学习方法:自主探究,合作交流. 教学过程一、创设情境,导入新课我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.二、新课讲授 提出问题:①与有什么关系? ②如何建立cos 与sin 2之间的关系? 是的二倍角.在倍角公式cos2=1-2sin 2中,以代替2,以代替,即得cos =1-2sin 2,所以sin 2=. ①在倍角公式cos2=2cos 2-1中,以代替2,以代替,即得cos =2cos 2-1,所以cos 2=. ②将①②两个等式的左右两边分别相除,即得tan 2=. ③α2αα2aα2ααααα2ααα2α2α2cos 1α-αααα2ααα2α2α2cos 1α+2αααcos 1cos 1+-三、拓展创新,应用提高 例1 试以表示.解:我们可以通过二倍角和来做此题.因为,可以得到; 因为,可以得到. 又因为.例2.求证: (1); (2).证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.;.两式相加得; 即; (2)由(1)得; ① 设,那么.把的值代入①式中得.cos α222sin,cos ,tan 222ααα2cos 2cos12αα=-2cos 12sin 2αα=-2cos 12sin2αα=-21cos sin22αα-=2cos 2cos12αα=-21cos cos 22αα+=222sin 1cos 2tan21cos cos 2ααααα-==+()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦sin sin 2sincos22θϕθϕθϕ+-+=()sin αβ+()sin αβ-()sin sin cos cos sin αβαβαβ+=+()sin sin cos cos sin αβαβαβ-=-()()2sin cos sin sin αβαβαβ=++-()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦()()sin sin 2sin cos αβαβαβ++-=,αβθαβϕ+=-=,22θϕθϕαβ+-==,αβsin sin 2sincos22θϕθϕθϕ+-+=例3 求函数的周期,最大值和最小值. 解:这种形式我们在前面见过,, 所以,所求的周期,最大值为2,最小值为. 例4 如图,已知OPQ 是半径为1,圆心角为的扇形,C 是扇形弧上的动点,ABC D 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABC D 的面积最大?并求出这个最大面积.活动:要求当角α取何值时,矩形ABC D 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到:S =AB ·BC =(cos αsin α)sin α=sin αcos α-sin 2α. 求这种y =a sin 2x +b sin x cos x +c cos 2x 函数的最值,应先降幂,再利用公式化成A sin(ωx +φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABC D 的面积S 最大,可分两步进行: (1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值. 解:在Rt △OBC 中,BC =cos α,BC =sin α,在Rt △OA D 中,=tan60°=, 所以OA =D A =BC =sin α. 所以AB =OB -OA =cos αsin α. 设矩形ABC D 的面积为S ,则sin y x x =+sin y x x =+1sin 2sin 2sin 223y x x x x x π⎛⎫⎛⎫==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭2π2πT ω==2-3π33-33-OADA333333333-S =AB ·BC =(cos αsin α)sin α=sin αcos αsin 2α =sin2α+cos2α-=(sin2α+cos2α)- =sin(2α+)-. 由于0<α<,所以当2α+=,即α=时,S 最大=-=. 因此,当α=时,矩形ABC D 的面积最大,最大面积为.练习1. 已知函数22()(sin cos )2cos f x x x x =++(1)求f(x)的最小正周期和单调递减区间;(2)当⎥⎦⎤⎢⎣⎡∈20,πx 时,求f(x)的最大值和 最小值.四、小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用、换元法、方程思想、等价转化、三角恒等变形的基本手段.五.课后作业 P 142 1、2、3、433-33-21636331232163316π633π6π2π6π3163636π63。

高中数学 第三章 三角恒等变换 3.2 倍角公式和半角公式 3.2.1 倍角公式学案 新人教B版必修4

高中数学 第三章 三角恒等变换 3.2 倍角公式和半角公式 3.2.1 倍角公式学案 新人教B版必修4

3.2.1 倍角公式点、易错点名师点拨(1)T 2α只有当α≠k π+2(k ∈Z )及α≠2+4(k ∈Z )时才成立.(2)对于二倍角公式的“倍”有广义的含义,2α是α的二倍角,同样地,4α是2α的二倍角,α是12α的二倍角,3α是32α的倍角.一般地,(2n m )α是(2n -1m )α的二倍角(n ∈Z ),于是二倍角公式可对应变形为:sin(2n m α)=2sin(2n -1m α)cos(2n -1m α);cos(2n m α)=cos 2(2n -1m α)-sin 2(2n -1m α);tan(2nm α)=n -1m α1-tan 2n -1m α. 【自主测试1】已知tan α=2,则tan 2α等于( )A .4B .45C .-43D .43答案:C【自主测试2】(2012·广东珠海质检)函数f (x )=sin x cos x 是( ) A .周期为2π的偶函数 B .周期为2π的奇函数 C .周期为π的偶函数 D .周期为π的奇函数 答案:D【自主测试3】已知sin α=23,则cos(π-2α)=( )A .-53 B .-19 C .19 D .53解析:cos(π-2α)=-cos 2α=2sin 2α-1=2×⎝ ⎛⎭⎪⎫232-1=-19.答案:B关于升降幂公式的解读 剖析:口诀如下: (1)1加余弦想余弦; (2)1减余弦想正弦; (3)幂升一次角减半; (4)幂降一次角翻番. 图表如下:归纳总结(1)对于公式sin 2α=2sin αcos α,有①cos α=sin 2α2sin α,②sin α=sin 2α2cos α;(2)对于(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α,有(sin α+cos α)2=1+sin 2α,同理有(sin α-cos α)2=1-sin 2α;(3)对于公式tan 2α=2tan α1-tan 2α,有1tan α-tan α=1-tan 2αtan α=2tan 2α; (4)对于等腰三角形,已知底角的三角函数值求顶角的三角函数值正用倍角公式,已知顶角的三角函数值求底角的三角函数值逆用倍角公式.题型一 化简、求值问题【例题1】求值:sin 50°(1+3tan 10°).分析:应通过“切化弦”化为关于弦函数的分式,然后利用“分式通分”技巧求解.解:原式=sin 50°⎝ ⎛⎭⎪⎫1+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=sin 50°×+cos 10°=2sin 40°sin 50°cos 10°=2sin 40°cos 40°cos 10°=sin 80°cos 10°=cos 10°cos 10°=1. 反思问题中含有正弦、正切,采用“切化弦”,变为仅含有正弦、余弦的三角函数式,然后利用两角和公式、倍角公式等变形,将问题化简到底.题型二 给值求值问题【例题2】若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α等于( ) A .-79 B .-13 C .13 D .79解析:观察发现2π3+2α=2⎝ ⎛⎭⎪⎫π3+α,而⎝ ⎛⎭⎪⎫π3+α+⎝ ⎛⎭⎪⎫π6-α=π2,则cos ⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π6-α, 所以cos ⎝ ⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=-79.答案:A反思通过角的形式的变化,生成所求的角或再变形即得所求角,是三角变换的重要方式.求解时应当对所给角有敏锐的感觉,这种感觉的养成要靠平时经验的积累.题型三 给值求角问题【例题3】已知tan α=13,tan β=-17且α,β∈(0,π),求2α-β的值.分析:tan α=13→tan 2α→α-β→确定2α-β的范围→在确定范围中找出角解:∵tan α=13>0,∴α∈⎝ ⎛⎭⎪⎫0,π2,2α∈(0,π),∴tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴2α∈⎝ ⎛⎭⎪⎫0,π2.又∵tan β=-17<0,β∈(0,π),∴β∈⎝ ⎛⎭⎪⎫π2,π,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝ ⎛⎭⎪⎫-171+34×⎝ ⎛⎭⎪⎫-17=1.又∵2α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫π2,π,∴2α-β∈(-π,0),∴2α-β=-3π4.反思在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出角,确定角的范围是关键的一步.题型四 恒等式的证明【例题4】已知tan(α+β)=3tan α.求证:2sin 2β-sin 2α=sin(2α+2β).分析:解答本题可先将条件式切化弦,再设法推出待证式,最后进行解答. 证明:tan(α+β)=3tan α,可变为sin(α+β)cos α=3sin αcos(α+β)⇒sin(α+β)cos α-sin αcos(α+β)=2sin αcos(α+β) ⇒sin[(α+β)-α]=2sin α(cos αcos β-sin αsin β)⇒sin β=2sin αcos αcos β-2sin 2αsin β⇒(1+2sin 2α)sin β=sin 2αcos β.当cos β=0时,上式中因为1+2sin 2α≠0,所以sin β=0,矛盾.所以cos β≠0,上式两边同乘以2cos β,得(1+2sin 2α)sin 2β=sin 2α2cos 2β⇒sin 2β+(1-cos 2α)sin 2β=sin 2α(1+cos 2β) ⇒2sin 2β-sin 2α=sin 2αcos 2β+cos 2αsin 2β= sin(2α+2β),所以等式成立,即得证.反思证明三角恒等式常用的方法是:观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),决定从该等式的哪边证明(也可两边同时化简),当差异不易消除时,可采用转换命题法或分析法等方法作进一步的化简.题型五 三角函数的综合问题【例题5】已知函数f (x )=(1+cot x )sin 2x -2sin ⎝⎛⎭⎪⎫x +π4sin ⎝ ⎛⎭⎪⎫x -π4.(1)若tan α=2,求f (α);(2)若x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的取值范围. 分析:(1)利用两角的和差公式、三角函数基本关系式、倍角公式,将f (x )化成同角的函数形式,然后变成切的形式代入求解;(2)将(1)中的结论用公式将其变形为正弦函数,再研究其性质.解:(1)f (x )=(1+cot x )sin 2x -2sin ⎝ ⎛⎭⎪⎫x +π4 sin ⎝⎛⎭⎪⎫x -π4=sin 2x +sin x cos x +cos 2x=1-cos 2x 2+12sin 2x +cos 2x=12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=45,cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35.所以f (α)=12⎝ ⎛⎭⎪⎫45-35+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎪⎫2x +π4+12.由x ∈⎣⎢⎡⎦⎥⎤π12,π2,得2x +π4∈⎣⎢⎡⎦⎥⎤5π12,5π4, 所以sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1, 从而f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4+12∈⎣⎢⎡⎦⎥⎤0,1+22. 即f (x )的取值范围是⎣⎢⎡⎦⎥⎤0,1+22.题型六 易错辨析【例题6】已知sin α2=45,cos α2=-35,则角α所在的 象限为________.错解:由sin α2=45>0,cos α2=-35<0,可知α2为第二象限的角,即2k π+π2<α2<2k π+π(k ∈Z ),∴4k π+π<α<4k π+2π(k ∈Z ),∴α为第三或第四象限的角.错因分析:仅根据α2的正弦、余弦的正负来判断α2的范围是比较粗浅的,尤其由α2的范围通过不等式的性质得α的范围往往使范围扩大,具体的操作还要求出α的正弦值、余弦值来确定.正解:∵sin α=2sin α2cos α2=2×45×⎝ ⎛⎭⎪⎫-35=-2425<0,cos α=cos 2α2-sin 2α2=⎝ ⎛⎭⎪⎫-352-⎝ ⎛⎭⎪⎫452=-725<0,∴α是第三象限的角.1.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan 2x =( )A .724B .-724C .247D .-247解析:∵x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45, ∴sin x =-35,∴tan x =-34,∴tan 2x =2tan x 1-tan 2x =-247. 答案:D2.(2012·山东曲阜期末)函数y =cos 2x cos π5-2sin x ·cos x sin 6π5的递增区间是( )A .⎝⎛⎭⎪⎫k π+π10,k π+3π5(k ∈Z ) B .⎝⎛⎭⎪⎫k π-3π20,k π+7π20(k ∈Z ) C .⎝⎛⎭⎪⎫2k π+π10,2k π+3π5(k ∈Z ) D .⎝⎛⎭⎪⎫k π-2π5,k π+π10(k ∈Z ) 答案:D3.已知一个等腰三角形的一个底角的正弦值为23,那么这个等腰三角形顶角的正弦值为( )A .259B .-259C .459D .-459答案:C4.cos π12sin π12=________,cos 2π12-sin 2π12=________,tan 15°1-tan 215°=________. 解析:cos π12sin π12=12·2sin π12cos π12=12sin π6=14;cos 2π12-sin 2π12=cos ⎝ ⎛⎭⎪⎫2×π12=cos π6=32;tan 15°1-tan 215°=12·2tan 15°1-tan 215°=12tan(2×15°)=12tan 30°=36. 答案:14 32 365.已知α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫π4-α=513,则cos 2α的值为__________.解析:∵α∈⎝⎛⎭⎪⎫0,π4,∴0<π4-α<π4,∴cos ⎝ ⎛⎭⎪⎫π4-α=1-sin 2⎝ ⎛⎭⎪⎫π4-α=1213,∴cos 2α=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α=2sin ⎝ ⎛⎭⎪⎫π4-α·cos ⎝ ⎛⎭⎪⎫π4-α=2×513×1213=120169. 答案:1201696.已知函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值. 解:(1)因为f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1=4cos x ⎝⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, 所以f (x )的最小正周期为T =2π2=π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.。

高中数学 第三章 三角恒等变换 3.2.1 倍角公式学案 新人教B版必修4

高中数学 第三章 三角恒等变换 3.2.1 倍角公式学案 新人教B版必修4

3.2 倍角公式和半角公式3.2.1 倍角公式[学习目标] 1.会从两角和的正弦、余弦、正切公式导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换,并能灵活地将公式变形运用.[知识链接]1.两角和公式与二倍角公式有联系吗?答 有联系.在S α+β,C α+β,T α+β中,令β=α即可得S 2α,C 2α,T 2α. 2.什么情况下sin 2α=2sin α,tan 2α=2tan α?答 一般情况下,sin 2α≠2sin α,例如sin π3≠2s in π6,只有当α=k π(k ∈Z )时,sin 2α=2sin α才成立.只有当α=k π(k ∈Z )时,tan 2α=2tan α成立. [预习导引] 1.倍角公式(1)S 2α:sin 2α=2sin_αcos_α,sin α2cos α2=12sin α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α. 2.倍角公式常用变形(1)sin 2α2sin α=cos_α,sin 2α2cos α=sin_α; (2)(sin α±cos α)2=1±sin _2α;(3)sin 2α=1-cos 2α2,cos 2α=1+cos 2α2;(4)1-cos α=2sin2α2,1+cos α=2cos2α2.要点一 给角求值问题 例1 求下列各式的值:(1)sin π12cos π12;(2)1-2sin 2750°;(3)2tan 150°1-tan 2150°; (4)1sin 10°-3cos 10°;(5)cos 20°cos 40°cos 80°. 解 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.(3)原式=tan(2×150°)=tan 300° =tan(360°-60°)=-tan 60°=- 3. (4)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4. (5)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.规律方法 此类题型(1)(2)(3)小题直接利用公式或逆用公式较为简单,而(4)小题分式一般先通分,再考虑结合三角函数公式的逆用从而使问题得解.而(5)小题通过观察角度的关系,发现其特征(二倍角形式),逆用正弦二倍角公式,使得问题中可连用正弦二倍角公式,所以在解题过程中要注意观察式子的结构特点及角之间是否存在特殊的倍数关系,灵活运用公式及其变形,从而使问题迎刃而解. 跟踪演练1 求下列各式的值.(1)sin π8sin 3π8;(2)cos 215°-cos 275°;(3)2cos25π12-1;(4)tan 30°1-tan 230°.解 (1)∵sin 3π8=sin(π2-π8)=cos π8,∴sin π8sin 3π8=sin π8cos π8=12·2sin π8cos π8=12sin π4=24. (2)∵cos 275°=cos 2(90°-15°)=sin 215°, ∴cos 215°-cos 275°=cos 215°-sin 215°=cos 30°=32. (3)2cos25π12-1=cos 5π6=-32. (4)tan 30°1-tan 230°=12×2tan 30°1-tan 230°=12tan 60°=32. 要点二 给值求值问题例2 已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x .∵sin ⎝ ⎛⎭⎪⎫π4-x =cos ⎝ ⎛⎭⎪⎫π4+x =513,且0<x <π4,∴π4+x ∈⎝ ⎛⎭⎪⎫π4,π2,∴sin ⎝ ⎛⎭⎪⎫π4+x = 1-cos 2⎝ ⎛⎭⎪⎫π4+x =1213.∴原式=2×1213=2413.规律方法 在解题过程中要注意抓住角的特点解题,同时要注意挖掘题目中的隐含条件:π4+x 与π4-x 存在互余关系.特别要注意利用这些条件来确定某些三角函数值的符号.跟踪演练2 已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎪⎫2α+π4的值.解 ∵π2≤α<3π2,∴3π4≤α+π4<7π4,于是可由cos ⎝ ⎛⎭⎪⎫α+π4=35得到sin ⎝ ⎛⎭⎪⎫α+π4=-45. 即22cos α-22sin α=35,22sin α+22cos α=-45. 两式相加得cos α=-210,两式相减得sin α=-7210. 而cos ⎝ ⎛⎭⎪⎫2α+π4=22(cos 2α-sin 2α),cos 2α=⎝ ⎛⎭⎪⎫-2102-(-7210)2=-2425, sin 2α=2×⎝ ⎛⎭⎪⎫-210×⎝ ⎛⎭⎪⎫-7210=725. 所以cos ⎝ ⎛⎭⎪⎫2α+π4=22⎝ ⎛⎭⎪⎫-2425-725=-31250. 要点三 给值求角问题例3 已知tan α=13,tan β=-17,且α,β∈(0,π),求2α-β的值.解 ∵tan α=13>0,∴α∈⎝ ⎛⎭⎪⎫0,π2,2α∈(0,π),∴tan 2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴2α∈⎝⎛⎭⎪⎫0,π2,又∵tan β=-17<0,β∈(0,π),∴β∈⎝ ⎛⎭⎪⎫π2,π, ∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝ ⎛⎭⎪⎫-171+34×⎝ ⎛⎭⎪⎫-17=1,又∵2α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫π2,π,∴2α-β∈(-π,0),∴2α-β=-34π.规律方法 在给值求角时,一般选择一个适当的三角函数,根据题设确定所求角的范围,然后再求出角.其中确定角的范围是关键的一步.跟踪演练3 已知tan α=17,sin β=1010,且α,β为锐角,求α+2β的值.解 ∵tan α=17<1,且α为锐角,∴0<α<π4,又∵sin β=1010<22,且β为锐角,∴0<β<π4, ∴0<α+2β<3π4.由sin β=1010,β为锐角,得cos β=31010, ∴tan β=13,∴tan(α+β)=tan α+tan β1-tan αtan β=12,∴tan(α+2β)=α+β+tan β1-α+ββ=12+131-12×13=1,故α+2β=π4.1.cos 275°+cos 215°+cos 75°cos 15°的值等于( ) A.62 B.32 C.54 D .1+34答案 C解析 原式=sin 215°+cos 215°+12sin 30°=1+14=54.2.sin4π12-cos 4π12等于( ) A .-12 B .-32 C.12 D.32答案 B 解析 原式=⎝⎛⎭⎪⎫sin 2π12+cos 2π12·⎝ ⎛⎭⎪⎫sin 2π12-cos 2π12 =-⎝⎛⎭⎪⎫cos 2π12-sin 2π12=-cos π6=-32. 3.tan 7.5°1-tan 27.5°=________. 答案 1-32解析 原式=12·2tan 7.5°1-tan 27.5°=12·tan 15° =12tan(60°-45°)=12×3-11+3=1-32. 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________________________________________________________________________. 答案3解析 因为sin 2α=2sin αcos α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,所以cos α=-12,sin α=1-cos 2α=32,所以tan α=-3,则tan 2α=2tan α1-tan 2α=-231--32= 3.1.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是32α的二倍;α2是α4的二倍;α3是α6的二倍;α2n =2·α2n +1(n ∈N +).2.二倍角的余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α,②cos 2α=1+cos 2α2,③1-cos 2α=2sin 2α,④sin 2α=1-cos 2α2.一、基础达标1.若sin α2=33,则cos α等于( )A .-23B .-13 C.13 D.23答案 C解析 cos α=1-2sin2α2=1-2×⎝ ⎛⎭⎪⎫332=13. 2.3-sin 70°2-cos 210°的值是( )A.12B.22 C .2 D.32 答案 C解析 原式=3-sin 70°2-12+=-3-cos 20°=2.3.函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1 D .2π,2 答案 A解析 f (x )=sin x cos x +32cos 2x =12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3.所以最小正周期为π,振幅为1. 故选A.4.若1-tan θ2+tan θ=1,则cos 2θ1+sin 2θ的值为( )A .3B .-3C .-2D .-12答案 A解析 ∵1-tan θ2+tan θ=1,∴tan θ=-12.∴cos 2θ1+sin 2θ=cos 2θ-sin 2θθ+cos θ2=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1-⎝ ⎛⎭⎪⎫-121+⎝ ⎛⎭⎪⎫-12=3. 5.若α∈⎣⎢⎡⎦⎥⎤5π2,7π2,则1+sin α+1-sin α的值为( )A .2cos α2B .-2cos α2C .2sin α2D .-2sin α2答案 D 解析 ∵α∈⎣⎢⎡⎦⎥⎤5π2,7π2,∴α2∈⎣⎢⎡⎦⎥⎤5π4,7π4,∴原式=⎪⎪⎪⎪⎪⎪sin α2+cos α2+⎪⎪⎪⎪⎪⎪sin α2-cos α2=-sin α2-cos α2-sin α2+cos α2=-2sin α2.6.若α∈⎝ ⎛⎭⎪⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于________.答案3解析 由sin 2 α+cos 2α=14得sin 2 α+1-2sin 2 α=1-sin 2 α=cos 2α=14.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=12,∴α=π3,∴tan α=tan π3= 3.7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55.(1)求sin ⎝ ⎛⎭⎪⎫π4+α的值;(2)求cos ⎝⎛⎭⎪⎫5π6-2α的值.解 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-255.故sin ⎝ ⎛⎭⎪⎫π4+α=sin π4cos α+cos π4sin α=22×⎝ ⎛⎭⎪⎫-255+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α =2×55×⎝ ⎛⎭⎪⎫-255=-45, cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35, 所以cos ⎝ ⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=⎝ ⎛⎭⎪⎫-32×35+12×⎝ ⎛⎭⎪⎫-45=-4+3310.二、能力提升8.4cos 50°-tan 40°等于( ) A. 2 B.2+32C. 3 D .22-1 答案 C解析 4cos 50°-tan 40°=4cos 50°-sin 40°cos 40°=4cos 50°cos 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=+--cos 40°=32cos 20°+32sin 20°cos 40°=3cos 40°cos 40°=3,选C.9.函数y =sin 2x +23sin 2x的最小正周期T 为________________________________________________________________________. 答案 π解析 y =sin 2x +23sin 2x =sin 2x +23×1-cos 2x2=sin 2x -3cos 2x + 3 =2sin ⎝ ⎛⎭⎪⎫2x -π3+3, 所以周期T =2π2=π.10.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ=______.答案 3解析 1-cos θ+sin θ1+cos θ+sin θ=2sin 2θ2+2sin θ2cosθ22cos 2θ2+2sin θ2cosθ2=2sin θ2⎝ ⎛⎭⎪⎫sin θ2+cos θ22cos θ2⎝⎛⎭⎪⎫cos θ2+sin θ2=tan θ2=3.11.(1)已知π<α<32π,化简1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α;(2)化简:sin 50°(1+3tan 10°). 解 (1)∵π<α<32π,∴π2<α2<34π,∴1+cos α=2|cos α2|=-2cos α2,1-cos α=2|sin α2|=2sin α2.∴1+sin α1+cos α-1-cos α+1-sin α1+cos α+1-cos α=1+sin α-2α2+sin α2+1-sin α2α2-cos α2=α2+sin α22-2α2+sin α2+α2-cosα222α2-cos α2=-2cos α2.(2)原式=sin 50°cos 10°+3sin 10°cos 10°=+cos 10°=2sin 50°sin 40°cos 10°=2sin 40°cos 40°cos 10°=sin 80°cos 10°=1.12.在平面直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫12,cos 2 θ在角α的终边上,点Q (sin 2θ,-1)在角β的终边上,且OP →·OQ →=-12.(1)求cos 2θ的值; (2)求sin(α+β)的值. 解 (1)因为OP →·OQ →=-12,所以12sin 2 θ-cos 2θ=-12,即12(1-cos 2 θ)-cos 2 θ=-12,所以cos 2θ=23, 所以cos 2θ=2cos 2θ-1=13.(2)因为cos 2 θ=23,所以sin 2 θ=13, 所以点P ⎝ ⎛⎭⎪⎫12,23,点Q ⎝ ⎛⎭⎪⎫13,-1, 又点P ⎝ ⎛⎭⎪⎫12,23在角α的终边上, 所以sin α=45,cos α=35. 同理sin β=-31010,cos β=1010, 所以sin(α+β)=sin αcos β+cos αsin β=45×1010+35×⎝ ⎛⎭⎪⎫-31010=-1010. 三、探究与创新13.已知向量a =⎝⎛⎭⎪⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. 解 (1)f (x )=a ·b =cos x ·3sin x -12cos 2x =32sin 2x -12cos 2x =sin ⎝⎛⎭⎪⎫2x -π6. 最小正周期T =2π2=π. 所以f (x )=sin ⎝⎛⎭⎪⎫2x -π6的最小正周期为π. (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6, 由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤-π6,5π6上的图象知, f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1. 所以,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值分别为1,-12.。

人教B版高中数学必修四《第三章 三角恒等变换 本章小结》_4

人教B版高中数学必修四《第三章 三角恒等变换 本章小结》_4
练习2练习4
小结
巩固知识检查效果
培养归纳与概括能力
巩固知识完善思维结构
突出思维敏捷性和方法的灵活性
巩固知识检查效果
学生总结




例已知函数f(x)=
(1)求函数f(x)的最小正周期和其图像的对称中心
(2)求函数f(x)的单调递增区间
(教师启发诱导,详细分析讲解,学生体会如何变角变名,化异求同)
练习1求y= 的值域。
(教师提出问题、学生自主探究、展示交流)
2.
求函数f(x)的的单调递增区间
(教师提出问题、学生自主探究、展示交流)
•先利用二倍角、升降幂公式化简
•再用辅助角公式将函数转化为y=Asin(ωx+φ)+k或y=Acos(ωx+φ)+k等形式
•若无法转化为y=Asin(ωx+φ)+k或y=Acos(ωx+φ)+k等形式,则考虑转化为某一三角函数的二次函数形式,再用配方法求最值
板书设计:
三角恒等变换高考热点题型总结

练习1练习3
单位:朝阳市二高中
课题:三角恒等变换高考热点题型总结
教学内容
设计意图




三角恒等变换是高中数学的重要内容,是高考必考内容之一。
近几年高考对三角恒等变换的考察要求有所降低,主要考察的高考热点题型是利用三角的和差倍半公式研究函数y=Asin( )的图像和性质。
总结求解过程要遵循“三看”ቤተ መጻሕፍቲ ባይዱ则:
1.看角,通过角之间的差别和联系,对角进行合理的拆分,从而正确的使用公式;
3.
1)求f(x)的对称轴方程
2)当 ,求x的值
(学生讨论,这类题型的解法步骤如何)
学生总结步骤

高中数学第三章三角恒等变换3.2倍角公式和半角公式例题与探究新人教B版必修4(2021学年)

高中数学第三章三角恒等变换3.2倍角公式和半角公式例题与探究新人教B版必修4(2021学年)

高中数学第三章三角恒等变换3.2倍角公式和半角公式例题与探究新人教B版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章三角恒等变换 3.2倍角公式和半角公式例题与探究新人教B版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章三角恒等变换 3.2 倍角公式和半角公式例题与探究新人教B版必修4的全部内容。

3.2 倍角公式和半角公式典题精讲例1 求下列各式的值:(1)c os12πc os 125π; (2)(cos 12π-s in 12π)(c os 12π+sin 12π);(3)21-cos 28π;(4)-32+34cos 215°.思路分析:本题考查倍角公式的变形及应用。

(1)题添加系数2,即可逆用倍角公式;(2)题利用平方差公式之后再逆用倍角公式;(3)中提取系数21后产生倍角公式的形式;(4)则需提取系数32. 解:(1)cos 12πc os125π=cos 12πsin 12π=21×2cos 12πsin 12π=21s in 6π=41; (2)(cos12π—s in 12π)(co s12π+s in 12π)=cos 212π-si n212π=c os 6π=23; (3)21-cos28π=-21(2c os28π-1)=—21co s4π=—42;(4)-32+34cos 215°=32(2cos 215°-1)=32cos 30°=33。

绿色通道:根据式子本身的特征,经过适当变形,进而利用公式,同时制造出特殊角,获得式子的值,在变形中一定要整体考虑式子的特征。

高中数学 第三章 三角恒等变换 3.3 三角函数的积化和

高中数学 第三章 三角恒等变换 3.3 三角函数的积化和

3.3 三角函数的积化和差与和差化积教学分析本节主要包括利用已有的公式进行推导发现.本节的编写意图与特色是教师引导学生发现创造,从而加深理解变换思想,提高学生的推理能力.三角恒等变换所涉及的问题各种各样,内容十分丰富,我们希望能总结出一些有规律性的数学思想、方法和技巧,提高对三角变换的理性认识.科学发现是从问题开始的,没有问题就不可能有深入细致的观察.为了让学生经历一个完整的探索发现过程,教科书从三角函数运算的角度提出了研究课题.这是从数学知识体系的内部发展需要提出问题的方法.用这种方法提出问题可以更好地揭示知识间的内在联系,体会推理论证和逻辑思维在数学发现活动中的作用.从运算的角度提出问题,还可以帮助学生认识到三角变换也是一种运算,丰富对运算的认识,从而把对三角变换的研究纳入整体的数学体系之中.类比对数运算,由两角和与差的正弦公式易推出积化和差公式.在推导了公式sin α+sin β=2sin α+β2cos α-β2以后,可以让学生推导其余的和差化积及积化和差公式.和差化积、积化和差不要求记忆,都在试卷上告诉我们,要注意不应该加大三角变换的难度,不要在三角变换中“深挖洞”.高考在该部分内容上的难度是一降再降.三维目标1.通过类比推导出积化和差与和差化积公式.体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2.通过和差化积公式和积化和差公式的推导,让学生经历数学探索和发现过程,激发学生学好数学的欲望和信心.重点难点教学重点:推导积化和差、和差化积公式.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.课时安排 1课时教学过程导入新课思路1.(复习导入)在前面的几节课中我们学习了两角和与差的三角函数的计算公式,并运用这些公式解决了一些三角函数的化简、求值以及三角恒等式的证明问题,在我们运用三角函数知识解决一些问题的时候,我们也会遇到形如sin α+sin β,sin α-sin β,cos α+cos β,cos α-cos β的形式,那么,我们能否运用角α、β的有关三角函数值表示它们呢?这就是我们本节课所要研究的问题.思路2.(类比导入)我们知道log a m +log a n =log a (mn),那么sin α+sin β等于什么呢? 推进新课 新知探究 提出问题你能从两角和与差的正、余弦公式中发现些什么?积化和差与和差化积公式的特点是什么?活动:考察公式cos(α+β)=cos αcos β-sin αsin β; cos(α-β)=cos αcos β+sin αsin β; sin(α+β)=sin αcos β+cos αsin β; sin(α-β)=sin αcos β-cos αsin β.从公式结构上看,把cos αcos β,sin αsin β,sin αcos β,cos αsin β分别看成未知数解方程组,则容易得到如下结论:cos αcos β=12[cos(α+β)+cos(α-β)];sin αsin β=-12[cos(α+β)-cos(α-β)];sin αcos β=12[sin(α+β)+sin(α-β)];cos αsin β=12[sin(α+β)-sin(α-β)].从上面这四个公式,又可以得出sin(α+β)+sin(α-β)=2sin αcos β; sin(α+β)-sin(α-β)=2cos αsin β; cos(α+β)+cos(α-β)=2cos αcos β; cos(α+β)-cos(α-β)=-2sin αsin β.设α+β=x ,α-β=y ,则α=x +y 2,β=x -y2.这样,上面得出的四个式子可以写成sinx +siny =2sin x +y 2cos x -y2;sinx -siny =2cos x +y 2sin x -y2;cosx +cosy =2cos x +y 2cos x -y2;cosx -cosy =-2sin x +y 2sin x -y2.利用这四个公式和其他三角函数关系式,我们可把某些三角函数的和或差化成积的形式.教师还可引导学生用向量运算证明和差化积公式. 如图1所示.作单位圆,并任作两个向量图1OP →=(cos α,sin α),OQ →=(cos β,sin β).取的中点M ,则M(cos α+β2,sin α+β2).连接PQ ,OM ,设它们相交于点N ,则点N 为线段PQ 的中点且ON⊥PQ.∠xOM 和∠MOQ 分别为α+β2,α-β2.探索三个向量OP →,ON →,OQ →之间的关系,并用两种形式表达点N 的坐标,以此导出和差化积公式cos α+cos β=2cos α+β2cos α-β2;sin α+sin β=2sin α+β2cos α-β2.讨论结果:略应用示例例 1已知sinx -cosx =12,求sin 3x -cos 3x 的值.活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a -b)3=a 3-3a 2b +3ab 2-b 3=a 3-b 3-3ab(a -b),∴a 3-b 3=(a -b)3+3ab(a -b).解完此题后,教师引导学生深挖本例的思想方法,由于sinxcosx 与sinx±cosx 之间的转化,提升学生的运算、化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3x -cos 3x =(sinx-cosx)3+3sinxcosx(sinx -cosx)=1116.此方法往往适用于sin 3x±cos 3x 的化简问题之中.解:由sinx -cosx =12,得(sinx -cosx)2=14,即1-2sinxcosx =14,∴sinxcosx=38.∴sin 3x -cos 3x =(sinx -cosx)(sin 2x +sinxcosx +cos 2x)=12(1+38)=1116.例 2已知cos 4A cos 2B +sin 4A sin 2B =1,求证:cos 4B cos 2A +sin 4Bsin 2A=1.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A 、B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A 、B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2+b 2=1的形式,可利用三角代换.证法一:∵cos 4A cos 2B +sin 4A sin 2B=1,∴cos 4A·sin 2B +sin 4A·cos 2B =sin 2B·cos 2B.∴cos 4A(1-cos 2B)+sin 4A·cos 2B =(1-cos 2B)cos 2B ,即cos 4A -cos 2B(cos 4A -sin 4A)=cos 2B -cos 4B.∴cos 4A -2cos 2Acos 2B +cos 4B =0.∴(cos 2A -cos 2B)2=0.∴cos 2A =cos 2B.∴sin 2A =sin 2B.∴cos 4B cos 2A +sin 4B sin 2A=cos 2B +sin 2B =1. 证法二:令cos 2A cosB =cos α,sin 2A sinB =sin α,则cos 2A =cosBcos α,sin 2A =sinBsin α.两式相加得1=cosBcos α+sinBsin α,即cos(B -α)=1.∴B-α=2k π(k∈Z ),即B =2k π+α(k∈Z ).∴cos α=cosB ,sin α=sinB.∴cos 2A =cosBcos α=cos 2B ,sin 2A =sinBsin α=sin 2B.∴cos 4B cos 2A +sin 4B sin 2A =cos 4B cos 2B +sin 4B sin 2B =cos 2B +sin 2B =1.例3 证明1+sinx cosx =tan(π4+x 2).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x ,三角函数的种类为正弦,余弦,右边是半角x2,三角函数的种类为正切.证法一:从右边入手,切化弦,得tan(π4+x 2)=π4+x 2π4+x 2=sin π4cos x 2+cos π4sin x 2cos π4cos x 2-sin π4sin x 2=cos x 2+sinx 2cos x 2-sinx 2,由左右两边的角之间的关系,想到分子分母同乘以cos x 2+sin x2,得x 2+sin x 22x 2+sin x 2x 2-sin x 2=1+sinxcosx.证法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得 1+sinxcosx=x 2+sin x 22x 2+sin x 2x 2-sin x 2=cos x 2+sin x 2cos x 2-sin x 2.由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos x2,得1+tan x 21-tan x 2=tan π4+tanx 21-tan π4tanx 2=tan(π4+x 2). 变式训练求证:1+sin4θ-cos4θ2tan θ=1+sin4θ+cos4θ1-tan 2θ. 分析:运用比例的基本性质,可以发现原式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=2tan θ1-tan 2θ,此式右边就是tan2θ. 证明:原等式等价于1+sin4θ-cos4θ1+sin4θ+cos4θ=tan2θ.而上式左边=sin4θ+-cos4θsin4θ++cos4θ=2sin2θcos2θ+2sin 22θ2sin2θcos2θ+2cos 22θ=2sin2θθ+sin2θ2cos2θθ+cos2θ=tan2θ=右边.∴上式成立,即原等式得证.课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛:本节学习的数学方法:公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.作业课本本节习题3—3A 组1~4,B 组1~4.设计感想1.本节主要学习了怎样推导积化和差,和差化积公式,在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用.备课资料一、一道给值求角类问题错解点击. 解决给值求角这类问题时,要注意根据问题给出的三角函数值及角的范围,选择适当的三角函数,确定所求角的恰当范围,利用函数值在此范围内的单调性求出所求角.解答此类问题一定要重视角的范围对三角函数值的制约关系,常见的错误为不根据已知条件确定角的范围而盲目求值,造成增解.例题:若sin α=55,sin β=1010,α、β均为锐角,求α+β的值. 错解:∵α为锐角, ∴cos α=1-sin 2α=255.又β为锐角,∴cos β=1-sin 2β=31010.∴sin(α+β)=sin αcos β+cos αsin β=22. ∵α,β均为锐角, ∴0°<α+β<180°. ∴α+β=45°或135°.点评:上述解法欠严密,仅由sin(α+β)=22,0°<α+β<180°而得到α+β=45°或135°是正确的.但题设中sin α=55<12,sin β=1010<12,使得0°<α+β<60°,故上述结论是错误的.事实上,由0°<α+β<180°,应选择求cos(α+β)=22(∵余弦函数在此范围内是单调的),易求得cos(α+β)=22,则α+β=45°,因此,解决给值求角这类问题一般分三步:第一步是确定角所在的范围;第二步是求角的某一个三角函数值(要尽量使所选择的三角函数在所确定的范围内单调);第三步是得到结论,求得所求角的值.二、如何进行三角恒等变式的证明. 三角恒等式证明的基本方法:(1)可从一边开始,证得它等于另一边,一般是由繁到简. (2)可用左右归一法,即证明左右两边都等于同一个式子. (3)可采用切割化弦,将其转化为所熟知的正、余弦. (4)可用分析法,即假定结论成立,经推理论证,找到一个显然成立的式子(或已知条件). (5)可用拼凑法,即针对题设与结论间的差异,有针对性地变形,以消除其差异,简言之,即化异求同.(6)可采用比较法,即“左边右边=1”或“左边-右边=0”.证明三角恒等式的实质是消除等式两边的差异,就是有目的地进行化简,因此,在证明时要注意将上述方法综合起来考虑,要灵活运用公式,消除差异,其思维模式可归纳为三点:(1)发现差异:观察角、函数、运算结构的差异;(2)寻求联系:运用相关公式,找出转化差异的联系; (3)合理转化:选择恰当的公式,实现差异的转化.二、备用习题1.已知tanx =-3,则sin2x =________,cos2x =________. 2.已知tan α=2,则cos2α等于( )A .-13B .±13C .-35D .±353.下列各式化成和差的形式分别是: (1)sin(π3+2x)cos(π3-2x);(2)cos α+β2sin α-β2.4.设α、β≠k π+π2(k∈Z ),且cos2α+sin 2β=0.求证:tan 2α=2tan 2β+1.5.已知△ABC 的三个内角A 、B 、C 满足A +C =2B ,且1cosA +1cosC =-2cosB ,试求cosA -C2的值.6.不查表求值: tan6°tan42°tan66°tan78°. 参考答案:1.-35 -452.C3.(1)34+12sin4x ;(2)12(sin α-sin β). 4.证明:∵cos2α+sin 2β=0, ∴1-tan 2α1+tan 2α+sin 2βsin 2β+cos 2β=0, 即1-tan 2α1+tan 2α+tan 2β1+tan 2β=0. 化简得tan 2α=2tan 2β+1.5.由题设条件,知B =60°,A +C =120°,设A -C2=α,则A =60°+α,C =60°-α.代入1cosA +1cosC =-2cosB ,可得1+α+1-α=-22,即2cos α-3sin α+2cos α+3sin α=-2,可化为4cos 2α+2cos α-3=0, 解得cos α=22或-324(舍去). ∴cos A -C 2=22.6.原式=tan54°tan6°tan66°tan42°tan78°tan54°=-+tan54°=tan18°tan42°tan78°tan54°=-+tan54°=tan54°tan54°=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章三角恒等变换§3.1和角公式3.1.1两角和与差的余弦课时目标1.会用向量的数量积推导两角差的余弦公式.2.能利用两角和与差的余弦公式进行三角函数式的化简和求值.1.两角差的余弦公式:Cα-β:cos(α-β)=________________________________________________________.2.两角和的余弦公式:在两角差的余弦公式中,以-β替代β就得到两角和的余弦公式.即:cos(α+β)=cos[α-(-β)]=________________________________________________=________________________________________________________________________.一、选择题1.cos 15°cos 105°+sin 15°sin 105°等于( )A .-12B .12C .0D .12.化简cos (α+β)cos α+sin (α+β)sin α得( ) A .cos αB .cos βC .cos (2α+β)D .sin (2α+β)3.化简cos (45°-α)cos (α+15°)-sin (45°-α)sin (α+15°)得( ) A .12B .-12C .32D .-32 4.若cos (α-β)=55,cos 2α=1010,并且α、β均为锐角且α<β,则α+β的值为( )A .π6B .π4C .3π4D .5π65.若sin (π+θ)=-35,θ是第二象限角,sin ⎝ ⎛⎭⎪⎫π2+φ=-255,φ是第三象限角,则cos (θ-φ)的值是( )A .-55B .55C .11525D . 56.若sin α+sin β=1-32,cos α+cos β=12, 则cos (α-β)的值为( ) A .12B .-32C .34D .1二、填空题7.若cos (α-β)=13,则(sin α+sin β)2+(cos α+cos β)2=________.8.已知cos (α+β)=13,cos (α-β)=12,则tan αtan β=________.9.已知sin α+sin β+sin γ=0,cos α+cos β+cos γ=0,则cos (α-β)的值是________.10.已知α、β均为锐角,且sin α=55,cos β=1010,则α-β的值为________.三、解答题11.已知tan α=43,cos (α+β)=-1114,α、β均为锐角,求cos β的值.12.已知cos (α-β)=-45,sin (α+β)=-35,π2<α-β<π,3π2<α+β<2π,求β的值.能力提升13.已知cos (α-β2)=-19,sin (α2-β)=23,且π2<α<π,0<β<π2,求cos α+β2的值.14.已知α、β、γ∈⎝⎛⎭⎪⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值.1.给式求值或给值求值问题,即由给出的某些函数关系式(或某些角的三角函数值),求另外一些角的三角函数值,关键在于“变式”或“变角”,使“目标角”换成“已知角”.注意公式的正用、逆用、变形用,有时需运用拆角、拼角等技巧.2.“给值求角”问题,实际上也可转化为“给值求值”问题,求一个角的值,可分以下三步进行:①求角的某一三角函数值;②确定角所在的范围(找一个单调区间);③确定角的值. 确定用所求角的哪种三角函数值,要根据具体题目而定.第三章 三角恒等变换 §3.1 和角公式3.1.1 两角和与差的余弦答案知识梳理1.cos αcos β+sin αsin β 2.cos αcos (-β)+sin α·sin (-β) cos αcos β-sin αsin β 作业设计 1.C 2.B3.A [原式=cos (α-45°)cos (α+15°)+sin (α-45°)sin (α+15°)=cos [(α-45°)-(α+15°)]=cos (-60°)=12.]4.C [sin (α-β)=-255(-π2<α-β<0).sin 2α=31010, ∴cos (α+β)=cos [2α-(α-β)]=cos 2αcos (α-β)+sin 2αsin (α-β)=1010×55+⎝ ⎛⎭⎪⎫31010×⎝ ⎛⎭⎪⎫-255=-22,∵α+β∈(0,π),∴α+β=3π4.]5.B [∵sin (π+θ)=-35,∴sin θ=35,∵θ是第二象限角,∴cos θ=-45.∵sin ⎝ ⎛⎭⎪⎫π2+φ=-255,∴cos φ=-255, ∵φ是第三象限角,∴sin φ=-55.∴cos (θ-φ)=cos θcos φ+sin θsin φ=⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-255+35×⎝ ⎛⎭⎪⎫-55=55.] 6.B [由题意知⎩⎪⎨⎪⎧sin α+sin β=1-32①cos α+cos β=12 ②①2+②2⇒cos (α-β)=-32.] 7.83解析 原式=2+2(sin αsin β+cos αcos β)=2+2cos (α-β)=83.8.15解析 由⎩⎪⎨⎪⎧cos (α+β)=cos αcos β-sin αsin β=13cos (α-β)=cos αcos β+sin αsin β=12,∴⎩⎪⎨⎪⎧sin α sin β=112cos αcos β=512,∴tan αtan β=sin αsin βcos αcos β=15.9.-12解析 由⎩⎪⎨⎪⎧sin α+sin β=-sin γ ①cos α+cos β=-cos γ ②①2+②2⇒2+2(sin αsin β+cos αcos β)=1⇒cos (α-β)=-12.10.-π4解析 ∵α、β∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=255,sin β=31010,∵sin α<sin β,∴α-β∈⎝ ⎛⎭⎪⎫-π2,0.∴cos (α-β)=cos αcos β+sin αsin β =255×1010+55×31010=22,∴α-β=-π4.11.解 ∵α∈⎝ ⎛⎭⎪⎫0,π2,tan α=43,∴sin α=437,cos α=17.∵α+β∈(0,π),cos (α+β)=-1114,∴sin (α+β)=5314.∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α =⎝ ⎛⎭⎪⎫-1114×17+5314×437=12. 12.解 ∵π2<α-β<π,cos (α-β)=-45,∴sin (α-β)=35.∵32π<α+β<2π,sin (α+β)=-35, ∴cos (α+β)=45.∴cos 2β=cos [(α+β)-(α-β)]=cos (α+β)cos (α-β)+sin (α+β)sin (α-β) =45×⎝ ⎛⎭⎪⎫-45+⎝ ⎛⎭⎪⎫-35×35=-1. ∵π2<α-β<π,32π<α+β<2π, ∴π2<2β<3π2,∴2β=π,∴β=π2. 13.解 ∵π2<α<π,∴π4<α2<π2.∵0<β<π2,∴-π2<-β<0,-π4<-β2<0.∴π4<α-β2<π,-π4<α2-β<π2.又cos (α-β2)=-19<0,sin (α2-β)=23>0,∴π2<α-β2<π,0<α2-β<π2. ∴sin (α-β2)=1-cos 2(α-β2)=459.cos (α2-β)=1-sin 2(α2-β)=53.∴cos α+β2=cos [(α-β2)-(α2-β)]=cos (α-β2)cos (α2-β)+sin (α-β2)sin (α2-β)=(-19)×53+459×23=7527.14.解 由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β.平方相加得(sin β-sin α)2+(cos α-cos β)2=1.∴-2cos (β-α)=-1,∴cos (β-α)=12,∴β-α=±π3.∵sin γ=sin β-sin α>0, ∴β>α,∴β-α=π3.。

相关文档
最新文档