选修4-1 几何证明选讲 综合复习

合集下载

高考数学总复习:选修4-1《几何证明选讲》1

高考数学总复习:选修4-1《几何证明选讲》1

解析
AABE∥ =EEMD∥DC⇒E 为 AD 中点,
M 为 BC 的中点.
又 EF∥BC⇒EF=MC=12 cm,
∴BC=2MC=24 cm.
答案 24 cm
2.(教材习题改编)如图所示,BD、CE 是△ABC的高,BD、CE交于F.写出图中 所有与△ACE相似的三角形____________
5.在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为D.若BC= m,∠B=α,则AD长为________.
解析 由射影定理,得
AB2=BD·BC,AC2=CD·BC, 即m2cos2α=BD·m,m2sin2α=CD·m, 即BD=mcos2α,CD=msin2α. 又∵AD2=BD·DC=m2cos2αsin2α, ∴AD=mcos αsin α. 答案 mcos αsin α
(2)(2013·陕西高考)如图,AB 与 CD 相交 于点 E,过 E 作 BC 的平行线与 AD 的延 长线交于点 P,已知∠A=∠C,PD= 2DA=2,则 PE=________. 解析 ∵PE∥BC,∴∠C=∠PED. 又∠C=∠A,故∠A=∠PED. 又∠P=∠P,故△PED∽△PAE, 则PPAE=PPDE,∴PE2=PA·PD.

成比例
三、相似三角形的判定及性质 1.判定定理
两角 三边 两边
夹角
2.性质定理
相似比 相似比的平方 相似比的平方
四、直角三角形的射影定理
直角三角形斜边上的高是两直角边在斜边上射影的 比例中项 ;两直角边分别是它们在斜边上射影与斜边
的比例中项 .
[基础自测自评]
1.(教材习题改编)如图,AB∥EM∥DC,AE=ED,EF∥BC, EF=12 cm.则BC的长为________.

【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线

【高考精品复习】选修4-1 几何证明选讲 第2讲 圆周角定理与圆的切线

第2讲 圆周角定理与圆的切线【高考会这样考】考查圆的切线定理和性质定理的应用. 【复习指导】本讲复习时,牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法.基础梳理1.圆周角定理(1)圆周角:顶点在圆周上且两边都与圆相交的角. (2)圆周角定理:圆周角的度数等于它所对弧度数的一半. (3)圆周角定理的推论①同弧(或等弧)上的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. ②半圆(或直径)所对的圆周角是90°;90°的圆周角所对的弦是直径. 2.圆的切线(1)直线与圆的位置关系直线与圆交点的个数 直线到圆心的距离d 与圆的半径r 的关系 相交 两个 d <r 相切 一个 d =r 相离无d >r(2)切线的性质及判定①切线的性质定理:圆的切线垂直于经过切点的半径. ②切线的判定定理过半径外端且与这条半径垂直的直线是圆的切线. (3)切线长定理从圆外一点引圆的两条切线长相等. 3.弦切角(1)弦切角:顶点在圆上,一边与圆相切,另一边与圆相交的角.(2)弦切角定理及推论①定理:弦切角的度数等于所夹弧的度数的一半.②推论:同弧(或等弧)上的弦切角相等,同弧(或等弧)上的弦切角与圆周角相等.双基自测1.如图所示,△ABC 中,∠C =90°,AB =10,AC =6,以AC 为直径的圆与斜边交于点P ,则BP 长为________.解析 连接CP .由推论2知∠CP A =90°,即CP ⊥AB ,由射影定理知,AC 2=AP ·AB .∴AP =3.6,∴BP =AB -AP =6.4. 答案 6.42.如图所示,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D是优弧BC 上的点,已知∠BAC =80°, 那么∠BDC =________. 解析 连接OB 、OC ,则OB ⊥AB ,OC ⊥AC ,∴∠BOC =180°-∠BAC =100°,∴∠BDC =12∠BOC =50°. 答案 50°3.(2011·广州测试(一))如图所示,CD 是圆O 的切线,切点为C ,点A 、B 在圆O 上,BC =1,∠BCD =30°,则圆O 的面积为________.解析 连接OC ,OB ,依题意得,∠COB =2∠CAB =2∠BCD =60°,又OB =OC , 因此△BOC 是等边三角形,OB =OC =BC =1,即圆O 的半径为1, 所以圆O 的面积为π×12=π. 答案 π4.(2011·深圳二次调研)如图,直角三角形ABC 中,∠B =90°,AB =4,以BC 为直径的圆交AC 边于点D ,AD =2,则∠C 的大小为________.解析 连接BD ,则有∠ADB =90°.在Rt △ABD 中,AB =4,AD =2,所以∠A =60°;在Rt △ABC 中,∠A =60°,于是有∠C =30°. 答案 30°5.(2011·汕头调研)如图,MN 是圆O 的直径,MN 的延长线与圆O 上过点P 的切线P A 相交于点A ,若∠M =30°,AP =23,则圆O 的直径为________.解析 连接OP ,因为∠M =30°,所以∠AOP =60°,因为P A 切圆O 于P ,所以OP ⊥AP ,在Rt △ADO 中,OP =AP tan ∠AOP =23tan 60°=2,故圆O 的直径为4.答案 4考向一 圆周角的计算与证明【例1】►(2011·中山模拟)如图,AB 为⊙O 的直径,弦AC 、BD 交于点P ,若AB=3,CD =1,则sin ∠APB =________.[审题视点] 连结AD ,BC ,结合正弦定理求解. 解析 连接AD ,BC .因为AB 是圆O 的直径,所以∠ADB =∠ACB =90°.又∠ACD =∠ABD ,所以在△ACD 中,由正弦定理得:CD sin ∠DAC =AD sin ∠ACD =AD sin ∠ABD =AB sin ∠ABD sin ∠ABD =AB =3,又CD =1,所以sin ∠DAC =sin ∠DAP =13,所以cos ∠DAP =23 2.又sin∠APB=sin (90°+∠DAP)=cos∠DAP=23 2.答案23 2解决本题的关键是寻找∠APB与∠DAP的关系以及AD与AB的关系.【训练1】如图,点A,B,C是圆O上的点,且AB=4,∠ACB=30°,则圆O的面积等于________.解析连接AO,OB.因为∠ACB=30°,所以∠AOB=60°,△AOB为等边三角形,故圆O的半径r=OA=AB=4,圆O的面积S=πr2=16π.答案16π考向二弦切角定理及推论的应用【例2】►如图,梯形ABCD内接于⊙O,AD∥BC,过B引⊙O的切线分别交DA、CA的延长线于E、F.已知BC=8,CD=5,AF=6,则EF的长为________.[审题视点] 先证明△EAB∽△ABC,再由AE∥BC及AB=CD等条件转化为线段之间的比例关系,从而求解.解析∵BE切⊙O于B,∴∠ABE=∠ACB.又AD∥BC,∴∠EAB=∠ABC,∴△EAB∽△ABC,∴BEAC=ABBC.又AE∥BC,∴EFAF=BEAC,∴ABBC=EFAF.又AD∥BC,∴AB=CD,∴AB=CD,∴CDBC=EFAF,∴58=EF6,∴EF=308=154.答案15 4(1)圆周角定理及其推论与弦切角定理及其推论多用于推出角的关系,从而证明三角形全等或相似,可求线段或角的大小.(2)涉及圆的切线问题时要注意弦切角的转化;关于圆周上的点,常作直线(或半径)或向弦(弧)两端画圆周角或作弦切角.【训练2】(2010·新课标全国)如图,已知圆上的弧AC=BD,过C点的圆的切线与BA的延长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE×CD.证明(1)因为AC=BD,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB,故BCBE=CDBC,即BC2=BE×CD.高考中几何证明选讲问题(二)从近两年的新课标高考试题可以看出,圆的切线的有关知识是重点考查对象,并且多以填空题的形式出现.【示例】►(2011·天津卷)如图,已知圆中两条弦AB与CD相交于点F,E是AB 延长线上一点,且DF=CF=2,AF∶FB∶BE=4∶2∶1.若CE与圆相切,则线段CE的长为________.。

选考部分(理)_选修4-1_几何证明选讲

选考部分(理)_选修4-1_几何证明选讲

因为OB=OD,所以∠ODB=∠B.
于是∠B=∠C.
因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异
侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E= ∠B.所以∠E=∠C.
返回
2.证明:(1)依题意,得∠AEB=∠ACP=90° , 所以在 Rt△ACP 中,∠P=90° -∠PAB; 在 Rt△ABE 中,∠ABE=90° -∠PAB; 所以∠P=∠ABE. (2)连接 AD、BD,在 Rt△ABD 中,CD2=AC· BC. 由(1)得△BCF∽△PCA, BC CF 所以 PC =AC, 即 AC· BC=CF· PC, 故 CD2=CF· CP.
返回
7.证明:(1)因为 MA 是圆 O 的切线,所以 OA⊥AM, 又因为 AP⊥OM,所以在 Rt△OAM 中,由射影定理知, OA2=OM· OP. (2)因为 BK 是圆 O 的切线, BN⊥OK, 同(1), OB2=ON· 有 OK, ON OM 又 OB=OA,所以 OP· OM=ON· OK,即 OP = OK ,又∠NOP= ∠MOK, 所以△ONP∽△OMK,故∠OKM=∠OPN=90° .
选 考 部 分
选 修 41
考点例题
冲关集训 课时作业
选考部分
选修4-1 几何证明选讲
返回
考点例题
例 1:思路点拨:(1)首先判定四边形 CBED 为平行四边形,从而 可得 CB∥DE;(2)由三角形相似转化为边的比例关系,从而可求 BM 的长度.
解:(1)证明:∵E 是 AB 的中点,∴AB=2EB. ∵AB=2CD,∴CD=EB.又∵AB∥CD, ∴四边形 CBED 是平行四边形.
返回
∴△PAB∽△CAE,∴∠ECA=∠APB=90° , 即 AC⊥EC. 由切割线定理,得 AB2=AP· AD, ∴AB=5,PB=3,PB∶PA=3∶4=EC∶AC, EC 3 ∴AC=4.

4-28几何证明选讲(选修4-1)

4-28几何证明选讲(选修4-1)

高考专题训练二十八 几何证明选讲(选修4-1) 班级________ 姓名_______ 时间:45分钟 分值:100分 总得分_______一、填空题(每小题6分,共30分)1.(2011·陕西)如图,∠B =∠D ,AE ⊥BC ,∠ACD =90°,且AB =6,AC =4,AD =12,则BE =________.解析:由∠B =∠D ,AE ⊥BC ,知△ABE ∽△ADC ,∴AE AC =AB AD ,∴AE =AB AD ·AC =6×412=2,∴BE =AB 2-AE 2=32=4 2.答案:4 22.(2011·湖南)如图,A 、E 是半圆周上的两个三等分点,直线BC =4,AD ⊥BC ,垂足为D ,BE 与AD 相交于点F ,则AF 的长为________.解析:如图所示,∵A 、E 是半圆周上两个三等分点,∴△ABO 和△AOE 均为正三角形.∴AE =BO =12BC =2.∵AD ⊥BC , ∴AD =22-12=3,BD =1.又∠BOA =∠OAE =60°,∴AE ∥BD .∴△BDF ∽△EAF ,∴DF AF =BD AE =12. ∴AF =2FD ,∴3AF =2(FD +AF )=2AD =23,∴AF =233. 答案:2333.(2011·深圳卷)如图,A ,B 是两圆的交点,AC 是小圆的直径,D 和E 分别是CA 和CB 的延长线与大圆的交点,已知AC =4,BE =10,且BC =AD ,则DE =________.解析:连接AB ,设BC =AD =x ,结合图形可得△CAB 与△CED 相似,于是AC EC =CB CD. 即4x +10=x 4+x⇒x =2. 又因为AC 是小圆的直径,所以∠CBA =90°,由于∠CDE =∠CBA ,所以∠CDE =90°.在直角三角形CDE 中,DE =CE 2-CD 2=122-62=6 3.答案:6 34.(2011·佛山卷)如图,过圆外一点P 作⊙O 的割线PBA 与切线PE ,E 为切点,连接AE 、BE ,∠APE 的平分线分别与AE 、BE 相交于点C 、D ,若∠AEB =30°,则∠PCE =________.解析:由切割线性质得:PE 2=PB ·PA ,即PE PA =PB PE, ∴△PBE ∽△PEA ,∴∠PEB =∠PAE ,又△PEA 的内角和为2(∠CPA +∠PAE )+30°=180°,所以∠CPA +∠PAE =75°,即∠PCE =75°.答案:75°5.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD=a ,CD =a 2,点E ,F 分别为线段AB ,AD 的中点,则EF =________.分析:本题考查勾股定理及三角形中位线的性质.解析:连接BD 、DE ,由题意可知DE ⊥AB ,DE =32a ,BC =DE =32a ,∴BD = ⎝ ⎛⎭⎪⎫a 22+⎝ ⎛⎭⎪⎫32a 2=a ,∴EF =12BD =a 2. 答案:a 2二、解答题(每小题10分,共70分) 6.如图,已知△ABC 的两条角平分线AD 和CE 相交于H ,∠B =60°,F 在AC 上,且AE =AF .(1)求证:B ,D ,H ,E 四点共圆;(2)求证:CE 平分∠DEF .证明:(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120°.于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(2)连接BH,则BH为∠ABC的平分线,所以∠HBD=30°.由(1)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°,所以CE平分∠DEF.7.如图所示,⊙O为△ABC的外接圆,且AB=AC,过点A的直线交⊙O于D,交BC的延长线于F,DE是BD的延长线,连接CD.(1)求证:∠EDF=∠CDF;(2)求证:AB2=AF·AD.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵四边形ABCD是⊙O的内接四边形,∴∠CDF=∠ABC.又∠ADB与∠EDF是对顶角,∴∠ADB=∠EDF.又∠ADB=∠ACB,∴∠EDF=∠CDF.(2)由(1)知∠ADB =∠ABC .又∵∠BAD =∠F AB ,∴△ADB ∽△ABF ,∴AB AF =AD AB,∴AB 2=AF ·AD . 8.(2011·辽宁)如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED .(1)证明:CD ∥AB ;(2)延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F 四点共圆.证明:(1)因为EC =ED ,所以∠EDC =∠ECD .因为A ,B ,C ,D 四点在同一圆上,所以∠EDC =∠EBA ,故∠ECD =∠EBA .所以CD ∥AB .(2)由(1)知,AE =BE ,因为EF =EG ,故∠EFD =∠EGC ,从而∠FED =∠GEC .连接AF ,BG ,则△EFA ≌△EGB ,故∠F AE =∠GBE .又CD ∥AB ,∠EDC =∠ECD ,所以∠F AB =∠GBA ,所以∠AFG +∠GBA =180°,故A ,B ,G ,F 四点共圆.9.已知,如图,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交直线AC 于点E ,交AD 于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=GE ·GF .证明:(1)连接CB ,∵∠ACB =90°,AG ⊥FG ,又∵∠EAG =∠BAC ,∴∠ABC =∠AEG .∵∠ADC =180°-∠ABC =180°-∠AEG =∠CEF ,∴∠ADC +∠FDC =∠CEF +∠FDC =180°,∴C ,D ,F ,E 四点共圆.(2)由C ,D ,F ,E 四点共圆,知∠GCE =∠AFE ,∠GEC =∠GDF ,∴△GCE ∽△GFD ,故GC GF =GE GD,即GC ·GD =GE ·GF .∵GH 为圆的切线,GCD 为割线,∴GH 2=GC ·GD ,∴GH 2=GE ·GF .10.(2011·课标)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径. 解:(1)证明:连接DE ,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC ,即AD AC =AE AB.又∠DAE =∠CAB ,从而△ADE ∽△ACB . 因此∠ADE =∠ACB .所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12.故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于∠A =90°,故GH ∥AB ,HF ∥AC .从而HF =AG =5,DF =12(12-2)=5.故C,B,D,E四点所在圆的半径为5 2.11.(2011·哈师大附中、东北师大附中、辽宁省实验中学第一次联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.证明:(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.12.(2011·河南省教学质量调研)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB、FC.(1)求证:FB =FC ;(2)求证:FB 2=FA ·FD ;(3)若AB 是△ABC 外接圆的直径,∠EAC =120°,BC =6 cm ,求AD 的长.解:(1)证明:∵AD 平分∠EAC .∴∠EAD =∠DAC .∵四边形AFBC 内接于圆,∴∠DAC =∠FBC .∵∠EAD =∠F AB =∠FCB ,∴∠FBC =∠FCB ,∴FB =FC .(2)证明:∵∠F AB =∠FCB =∠FBC ,∠AFB =∠BFD ,∴△FBA ∽△FDB ,∴FB FD =FA FB, ∴FB 2=FA ·FD .(3)∵AB 是圆的直径,∴∠ACB =90°.∵∠EAC =120°,∴∠DAC =12∠EAC =60°,∠BAC =60°. ∴∠D =30°.∵BC =6 cm ,∴AC =23cm ,∴AD =2AC =43cm.。

选修4-1 几何证明选讲 复习教案

选修4-1 几何证明选讲 复习教案

选修4-1 几何证明选讲复习教案第一节相似三角形的判定及有关性质考纲下载1.了解平行线截割定理.2.会证明并应用直角三角形射影定理.1.平行线的截割定理 (1)平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰. (2)平行线分线段成比例定理定理:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例. 2.相似三角形的判定定理(1)判定定理1:两角对应相等,两三角形相似.(2)判定定理2:两边对应成比例且夹角相等,两三角形相似. (3)判定定理3:三边对应成比例,两三角形相似.3.相似三角形的性质定理 (1)性质定理:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.(2)推论:相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方.4.直角三角形相似的判定定理(1)判定定理1:如果两个直角三角形有一个锐角对应相等,那么它们相似. (2)判定定理2:如果两个直角三角形的两条直角边对应成比例,那么它们相似. (3)判定定理3:如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.5.直角三角形射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项.考点一平行线截割定理的应用 [例1] (2021・广东高考节选)如图,在平行四边形ABCD中,点E在AB上且EB=2AE,△CDF的面积AC与DE交于点F,求的值.△AEF的面积△CDF的面积?CD?2?AB?2[听前试做] 由CD∥AE,得△CDF∽△AEF,于是===9.△AEF的面积?AE??AE?方法规律平行线截割定理的作用平行线截割定理一方面可以判定线段成比例;另一方面,当不能直接证明要证的比例成立时,常用这个定理将两条线段的比转化为另外两条线段的比.如图所示,在梯形ABCD中,AB∥CD,AB=4,CD=2,E,F分别为AD,BC上的点,且EF=3,EF∥AB,求梯形ABFE与梯形EFCD的面积比.1解:由CD=2,AB=4,EF=3,得EF=(CD+AB),所以EF是梯形ABCD的中位线,211则梯形ABFE与梯形EFCD有相同的高,设为h,则S梯形ABFE∶S梯形EFCD=(3+4)h∶(2+3)h22=7∶5.考点二[例2] (2021・沈阳模拟)如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.相似三角形的判定与性质证明:(1)∠FEB=∠CEB; (2)EF2=AD・BC.[听前试做] (1)由直线CD与⊙O相切,得∠CEB=∠EAB. π由AB为⊙O的直径,得AE⊥EB,从而∠EAB+∠EBF=;2π又EF⊥AB,得∠FEB+∠EBF=,2从而∠FEB=∠EAB. 故∠FEB=∠CEB.(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,所以BC=BF. 类似可证:Rt△ADE≌Rt△AFE,得AD=AF. 又在Rt△AEB中,EF⊥AB,故EF2=AF・BF,所以EF2=AD・BC.方法规律与相似三角形的定理和性质有关的问题的常见类型及解题策略(1)证明线段成比例(或线段之积相等).利用已知条件证明三角形相似,即可得出结论. (2)证明角相等.先确定两个角所在的三角形,然后证明三角形相似,进而得出角相等. (3)求线段长.可转化成(1),再利用已知条件求线段长.(2021・长春模拟)如图所示,在△ABC中,AB=AC,过点A的直线与其外接圆交于点P,交BC的延长线于点D.PCPD(1)求证:=;ACBD(2)若AC=3,求AP・AD的值.证明:(1)因为∠CPD=∠ABC,∠PDC=∠PDC,所以△DPC∽△DBA,所以PCPD=. ABBDPCPD又AB=AC,所以=.ACBD(2)因为∠ABC+∠APC=180°,∠ACB+∠ACD=180°,∠ABC=∠ACB,所以∠ACD =∠APC.APAC又∠CAP=∠DAC,所以△APC∽△ACD,所以=,ACAD所以AP・AD=AC2=9. 考点三[例3] (2021・太原模拟)如图所示,在△ABC中,∠CAB=90°,AD⊥BC于点D,BEDFAE是∠ABC的角平分线,交AD于点F,求证:=. AFEC射影定理及其应用[听前试做] ∵BE是∠ABC的角平分线,∴DFBD=,① AFABAEAB=.② EC BC在Rt△ABC中,由射影定理知,BDABAB2=BD・BC,即=.③ABBCDFAB由①③得=,④AFBCDFAE由②④得=. AFEC方法规律巧用射影定理解题已知条件中含直角三角形,且涉及直角三角形斜边上的高时,应首先考虑射影定理,注意射影定理与斜边的对应法则,根据题目中的结论分析并选择射影定理中的等式,并分清比例中项.如图所示,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F. 求证:AE・AB=AF ・AC.证明:∵AD⊥BC,∴△ADB为直角三角形,又∵DE⊥AB,由射影定理知,AD2=AE・AB. 同理可得AD2=AF・AC,∴AE・AB=AF・AC.―――――――――――[课堂归纳――通法领悟]――――――――――――――――�W2个注意点――运用平行线分线段成比例定理的注意点(1)平行线等分线段定理是平行线分线段成比例定理的特例,在运用平行线分线段成比例定理时要注意平行线的不同位置,以及在三角形与四边形中的灵活应用.(2)证明线段成比例,若已知条件中没有平行线,但有三角形相似的条件(如角相等,有相等的比例式等),常考虑相似三角形的性质构造比例或利用中间比求解.感谢您的阅读,祝您生活愉快。

数学选修4-1《几何证明选讲》知识点总结(精简版)

数学选修4-1《几何证明选讲》知识点总结(精简版)

数学选修4-1《几何证明选讲》知识点总结(精简版)数学选修4-1《几何证明选讲》学问点总结(精简版)高中数学选修4-1学问点总结数学选修4-1《几何证明选讲》学问点总结(精简版)平行线等分线段定理:假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

推理1:经过三角形一边的中点与另一边平行的直线必平分第三边。

推理2:经过梯形一腰的中点,且与底边平行的直线平分另一腰。

平分线分线段成比例定理平分线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

相像三角形的判定:定义:对应角相等,对应边成比例的两个三角形叫做相像三角形。

相像三角形对应边的比值叫做相像比(或相像系数)。

由于从定义动身推断两个三角形是否相像,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,明显比较麻烦。

所以我们曾经给出过如下几个判定两个三角形:相像的简洁方法:(1)两角对应相等,两三角形相像;(2)两边对应成比例且夹角相等,两三角形相像;(3)三边对应成比例,两三角形相像。

预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与三角形相像。

判定定理1:对于任意两个三角形,假如一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相像。

简述为:两角对应相等,两三角形相像。

判定定理2:对于任意两个三角形,假如一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相像。

简述为:两边对应成比例且夹角相等,两三角形相像。

判定定理3:对于任意两个三角形,假如一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相像。

简述为:三边对应成比例,两三角形相像。

高中数学选修4-1学问点总结引理:假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

【高考精品复习】选修4-1 几何证明选讲 第3讲 圆中的比例线段与圆内接四边形

【高考精品复习】选修4-1 几何证明选讲 第3讲 圆中的比例线段与圆内接四边形

第3讲 圆中的比例线段与圆内接四边形【高考会这样考】1.考查相交弦定理,切割线定理的应用. 2.考查圆内接四边形的判定与性质定理. 【复习指导】本讲复习时,紧紧抓住相交弦定理、切割线定理以及圆内接四边形的判定与性质定理,重点以基本知识、基本方法为主,通过典型的题组训练,掌握解决问题的基本技能.基础梳理1.圆中的比例线段 定理名称基本图形条件结论 应用 相交弦定理弦AB 、CD 相交于圆内点P(1)P A ·PB =PC ·PD ; (2)△ACP ∽ △DBP(1)在P A 、PB 、PC 、PD 四线段中知三求一; (2)求弦长及角 切割线定理P A 切⊙O 于A ,PBC 是⊙O 的割线(1)P A 2=PB ·PC ; (2)△P AB ∽△PCA (1)已知P A 、PB 、PC 知二可求一; (2)求解AB 、AC 割线定理P AB 、PCD 是⊙O 的割线 (1)P A ·PB =PC ·PD ;(2)△P AC ∽△PDB(1)求线段P A 、PB 、PC 、PD 及AB 、CD ; (2)应用相似求AC 、BD2.圆内接四边形(1)圆内接四边形性质定理:圆内接四边形的对角互补. (2)圆内接四边形判定定理:①如果四边形的对角互补,则此四边形内接于圆;②若两点在一条线段同侧且对该线段张角相等,则此两点与线段两个端点共圆,特别的,对定线段张角为直角的点共圆.双基自测1.(2011·天津)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.解析∵ABCD为圆内接四边形,∴∠PBC=∠ADP,又∠P=∠P,∴△BCP∽△DAP,∴BCAD=PBPD=13.答案1 32.(2011·广州调研)如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.解析连接BD,由题意知,∠ADB=∠MAB=35°,∠BDC=90°,故∠D=∠ADB+∠BDC=125°.答案125°3.(2011·深圳调研)如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=________.解析如图,连接AE,∵AB是⊙O的直径,∴AE ⊥BE ,又E 是 BD 的中点, ∴∠BAE =∠EAC , 从而E 是BC 的中点, ∴BE =EC =6,AB =AC =18,由CD ·CA =CE ·CB ,得(18-AD )×18=6×12,故AD =14. 答案 144.(2011·广州模拟)如图,过点D 作圆的切线切于B 点,作割线交圆于A ,C 两点,其中BD =3,AD =4,AB =2,则BC =________.解析 ∵∠A =∠DBC ,∠D =∠D , ∴△ABD ∽△BCD ,AD BD =AB BC ,解得BC =32. 答案 325.如图所示,已知⊙O 的两条弦AB 、CD 相交于AB 的中点E ,且AB =4,DE =CE +3,则CD 的长为________.解析 由相交弦定理知, EA ·EB =EC ·ED .(*)又∵E 为AB 中点,AB =4,DE =CE +3, ∴(*)式可化为22=EC (CE +3)=CE 2+3CE , ∴CE =-4(舍去)或CE =1.∴CD =DE +CE =2CE +3=2+3=5. 答案5考向一相交弦定理的应用【例1】►(2011·广东实验中学质检)如图,半径为2的⊙O中,∠AOB=90°,D 为OB的中点,AD的延长线交⊙O于点E,则线段DE的长为________.[审题视点] 由勾股定理求AD,再由相交弦定理求DE.解析延长DO交圆O于另一点F,易知OD=1,则AD=AO2+OD2= 5.由相交弦定理得,AD·DE=BD·DF,即5·DE=1×3,DE=35 5.答案35 5相交弦定理主要用于与圆有关的比例线段的计算与证明,解题时要与相似三角形及圆周角、弦切角等相关知识综合应用.【训练1】(2011·广东)如图,AB、CD是半径为a的圆O的两条弦,它们相交于AB的中点P,PD=2a3,∠OAP=30°,则CP=________.解析依题AP=PB=32a,由PD·CP=AP·PB,得CP=AP2PD=98a.答案98a考向二切割线定理的应用【例2】►如图所示,P A为⊙O的切线,A为切点,PBC是过点O的割线,P A=10,PB=5,∠BAC的平分线与BC和⊙O分别交于点D和E,求AD·AE的值.[审题视点] 由切割线定理知P A2=PB·PC,可得直径BC的长,要求AD·AE,由△ACE∽△ADB,得AD·AE=CA·BA,只要求出CA,BA的长即可.解如图所示,连接CE,∵P A是⊙O的切线,PBC是⊙O的割线,∴P A2=PB·PC.又P A=10,PB=5,∴PC=20,BC=15.∵P A切⊙O于A,∴∠P AB=∠ACP.又∠P为公共角,∴△P AB∽△PCA.∴ABCA=P APC=1020=12.∵BC为⊙O的直径,∴∠CAB=90°.∴AC2+AB2=BC2=225.∴AC=65,AB=3 5. 又∠ABC=∠E,∠CAE=∠EAB,∴△ACE∽△ADB,∴ABAE=ADAC.∴AD·AE=AB·AC=35×65=90.在圆中通过连接圆上的两点、作圆的切线等可以创造使用圆周角定理、圆心角定理、弦切角定理的条件,这是在圆的问题上解决角之间关系的重要技巧.【训练2】如图,⊙O与⊙O′外切于P,两圆公切线AC,分别切⊙O、⊙O′于A、C两点,AB是⊙O的直径,BE是⊙O′的切线,E为切点,连AP、PC、BC.求证:AP·BC=BE·AC.证明由题意可知∠APC=90°,连BP,则∠APB=90°,∴B、P、C在同一直线上,即P点在BC上,由于AB⊥AC,易证Rt△APB∽Rt△CAB.∴ABCB=PBAB,即AB2=BP·BC,又由切割线定理,得BE2=BP·BC,∴AB=BE,又Rt△APB∽Rt△CAB,∴ABCB=APCA,即AP·BC=AB·AC,∴AP·BC=BE·AC.考向三圆内接四边形性质的应用【例3】►(2011·辽宁三校联考)已知四边形PQRS是圆内接四边形,∠PSR=90°,过点Q作PR、PS的垂线,垂足分别为点H、K.(1)求证:Q、H、K、P四点共圆;(2)求证:QT=TS.[审题视点] (1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS.(1)四边形ABCD的对角线交于点P,若P A·PC=PB·PD,则它的四个顶点共圆.(2)四边形ABCD的一组对边AB、DC的延长线交于点P,若P A·PB=PC·PD,则它的四个顶点共圆.以上两个命题的逆命题也成立.该组性质用于处理四边形与圆的关系问题时比较有效.【训练3】如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;(2)GH 2=CE ·GF .证明 (1)如图,连接BC .∵AB 是⊙O 的直径,∴∠ACB =90°. ∵AG ⊥FG ,∴∠AGE =90°. 又∠EAG =∠BAC , ∴∠ABC =∠AEG .又∠FDC =∠ABC , ∴∠FDC =∠AEG . ∴∠FDC +∠CEF =180°. ∴C ,D ,F ,E 四点共圆.(2)∵GH 为⊙O 的切线,GCD 为割线, ∴GH 2=GC ·GD .由C ,D ,F ,E 四点共圆,得∠GCE =∠AFE ,∠GEC =∠GDF . ∴△GCE ∽△GFD . ∴GC GF =GE GD, 即GC ·GD =GE ·GF .∴CH 2=GE ·GF .如何求解高考中几何证明选讲问题从近两年的新课标高考试题可以看出,高考对切割线定理的应用及四点共圆问题重点考查,题型为填空题或解答题.【示例】► (本题满分10分)(2011·新课标全国)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根.(1)证明:C ,B ,D ,E 四点共圆;(2)若∠A =90°,且m =4,n =6,求C ,B ,D ,E 所在圆的半径.第(1)问连DE ,证明△ADE ∽△ACB ,即证∠ADE =∠ACB ,根据对角互补判定四点C ,B ,D ,E 共圆;第(2)问先求AD 、AB 的长,再确定C ,B ,D ,E 四点所在圆的圆心,进一步求半径.[解答示范] (1)连接DE ,根据题意,在△ADE 和△ACB 中,AD ·AB =mn =AE ·AC ,即AD AC =AEAB .又∠DAE =∠CAB , 从而△ADE ∽△ACB .(3分) 因此∠ADE =∠ACB .所以C ,B ,D ,E 四点共圆.(4分)(2)m =4,n =6时,方程x 2-14x +mn =0的两根为x 1=2,x 2=12. 故AD =2,AB =12.(6分)取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .(8分)由于∠A =90°,故GH ∥AB ,HF ∥AC .从而HF =AG =5,DF =12×(12-2)=5. 故C ,B ,D ,E 四点所在圆的半径为5 2.(10分)本题主要考查平面几何证明,四点共圆,三角形相似,一元二次方程根与系数的关系.四点共圆常用的证明方法是求证四边形的一个外角等于与它不相邻的内角,当然也可以求出过其中三点的圆,然后证另一点也在这个圆上,也可以证明以两个点为端点的线段的垂直平分线与以另两个点为端点的线段的垂直平分线相交.【试一试】(2011·辽宁)如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(1)证明:CD∥AB;(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.[尝试解答] (1)因为EC=ED,所以∠EDC=∠ECD.因为A,B,C,D四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA.所以CD∥AB.(2)由(1)知,AE=BE.因为EF=EG,故∠EFD=∠EGC,从而∠FED=∠GEC.连接AF,BG,则△EF A≌△EGB,故∠F AE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠F AB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F四点共圆.。

高考数学一轮复习 几何证明选讲课件 湘教版选修4-1

高考数学一轮复习 几何证明选讲课件 湘教版选修4-1

4.(2013· 西安模拟)如图,在△ABC中,M、N分别是AB、BC的中点, AN、CM交于点O,那么△MON与△AOC面积的比是 .
【解析】∵M、N 分别是 AB、BC 中点,
1 故 MN= AC, 2
S MON MN 2 1 . ∴△MON∽△COA,∴ S MON AC 2 2
(3)相似三角形的性质 性质定理 ①相似三角形对应高的比、对应中 相似比 ; 线的比和对应角平分线的比都等于_______ 相似比 ; ②相似三角形周长的比等于________ 相似比的平方 ; ③相似三角形面积的比等于_______________ ④相似三角形外接圆(或内切圆)的直径比、周长 比等于相似比,外接圆(或内切圆)的面积比等于 相似比的平方 . _______________
【解析】过点 D 作 DG∥AC 且交 BE 于点 G. 因为点 D 为 BC 的中点,所以 EC=2DG. 因为 AE=2CE,所以 从而
【答案】1∶4
5.如图,在△ABC 中,DE∥BC,EF∥CD,若 BC=3,DE =2,DF =1,则 AB 的长为
【解析】 由 DE∥BC, EF∥CD, BC=3,DE=2. 又 DF=1,故 AF=2,∴AD=3. 又 【答案】
9 2
AD 2 9 ,∴AB= . AB 3 2
AE AF DE AC AD BC
选修4-1 几何证明选讲
4-1.1 相似三角形的判定及 有关性质 4-1.2 直线与圆的位置关系
知识点
考纲下载
相似三角形
1.理解相似三角形的定义与性质,了解平行截割定 理. 2.会证明和应用直角三角形射影定理. 会证明和应用以下定理: 1.圆周角定理. 2.圆的切线的判定定理及性质定理. 3.相交弦定理. 4.圆内接四边形的性质定理与判定定理. 5.切割线定理.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档