05第五章 留数理论

合集下载

第五章留数定理

第五章留数定理

第五章留数定理(38)一、内容摘要1.留数:设()f z 以有限点a 为孤立奇点,则在a 点的某无心领域内可以展成洛朗级数:0()()k k k f z a z z ∞=-∞=-∑,0z a R <-<。

我们称此展式中1z a-的系数1a -为()f z 在a 的留数,记为()0Res z z f z =.2.留数定理:设函数()f z 在回路l 所围区域B 上除有限个孤立奇点外解析,在回路l 上连续,则()()()12Res Res n l f z dz i f z f z π=++⎡⎤⎣⎦⎰ . 3.将留数公式推广到无穷远点:设∞为()f z 的一个孤立奇点,则()f z 在圆环R z <<+∞内解析,设l 为圆环内任一条绕原点的简单正向闭曲线,定义11Res ()()2lf f z dz b i π--∞==-⎰,l -为顺时针方向,取l 为逆时针方向。

对于无穷远点的邻域来说,l -才是该领域边界的正方向。

也即()f z 在∞的留数等于它在∞点的去心邻域R z <<+∞内洛朗展开式中1z -的系数变号。

即其中的围道l -沿顺时针绕原点一周。

在围道l -外, 除∞=z 外别无奇点。

4.留数和定理:设函数()f z 在扩充复平面上除了有限远点(1,2,,)k z k n =⋅⋅⋅以及z =∞以外处处解析,则有1Res ()Res ()0nkk f z f =+∞=∑.5.求留数的一般方法:1)解析点的留数为0,即泰勒展开式与洛朗展开式一样, 无负一次项。

2)直接求Laurent 展开式的负一次项系数。

3)判断极点类型,可去奇点的留数为0,本性奇点用洛朗展开 式中的1,b m -阶极点和一阶极点的留数为。

0101011()lim ()()(1)!m mm z z d resf z b z z f z m dz ---→⎡⎤==-⎣⎦-010()lim()()z z resf z b z z f z -→==-00000100000()()()()lim()()()(),'()0,()0'()'()z z z z p z p z resf z resf z b z z f z z z f z g z p z g z g z -→====--==≠≠6.留数的应用——计算定积分1)形如I =20(cos ,sin )d R πθθθ⎰的含三角函数的积分。

第五章 留数及其应用

第五章  留数及其应用
上式也可写成: f(z)(z-1 z0)mg(z), ( *)
其中 g (z) = c-m+ c-m+1(z-z0) + c-m+2(z-z0)2 +..., 在 |z-z0|<d 内是解析的函数, 且 g (z0) 0 .
反过来, 当任何一个函数 f (z) 能表示为(*)的形式, 且g (z0) 0 时, 则z0是 f (z)的m级极点.
三级零点.
根据这个定义, 我们可以得到以下结论:
设f(z)在z0解析,则z0是f(z)的m级零点的充要条件是: f (n)(z0)=0, (n=0,1,2,...,m-1),f (m)(z0)0 .
因为, 若 f (z)在z0解析, 就必能在z0的邻域展开 为泰勒级数: f(z)=c0+c1(z-z0)+...+cm(z-z0)m+…, 易证 z0是 f (z)的m级零点的充要条件是前m项系数
c0=c1=...=cm-1=0, cm0, 等价于 f (n)(z0)=0, (n=0,1,2,...,m-1), f (m)(z0)0 。
例如 z=1是f (z)=z31的零点, 由于 f ‘(1) = 3z2|z=1=3 0, 从而 知z=1是f (z)的一级零点.
( f z) ( zz0 ) m ( z)
我们可以利用上述极限的不同情形来判别孤立奇点的类型.
4.函数的零点与极点的关系
不恒等于零的解析函数f(z)如能表示成( f z) ( zz0 ) m ( z)
其中 ( z)在z0解析且(z0)0, m为某一正整数, 则z0称为
f(z)的m级零点.
例如当f(z)=z(z-1)3时,z=0与z=1是它的一级与
f(z)=c0+c1(z-z0)+...+cn(z-z0)n +...,0<|z-z0|<d

第五章 留数理论及其应用

第五章   留数理论及其应用

第五章 留数理论及其应用本章的中心问题是留数定理.借助第四章的讨论,我们引入留数概念并计算留数.我们即将看到柯西-古萨基本定理,柯西积分公式都是留数定理的特殊情况.作为留数定理的应用,我们可以把沿闭曲线的积分的计算转化为孤立奇点处的留数计算.对于高等数学中的一些定积分和广义积分,按过去的计算方法可能比较复杂,甚至难以算出结果,而用留数计算的方法则相对简便.因此留数定理在理论和实际应用中都具有重要意义.1. 留数的定义如果f (z )在z 0处解析,那么对于z 0的邻域中的任意一条简单闭曲线C ,都有()d 0Cf z z =⎰.如果z 0是f (z )的孤立奇点,那么对于解析圆环00z z δ<-<内包含z 0的正向简单闭曲线C ,上述积分只与f (z )和z 0有关,而与C 无关,但积分值不一定为零.现在我们来计算这个积分.由第四章定理4.12,f (z )在z 0的邻域内可展开成罗朗级数:()()nnn f z a z z ∞=-∞=-∑,其中101()d ,0,1,2,2π()n n Cf a n iz ξξξ+==±±-⎰特别地,11()d 2πCa f iξξ-=⎰.于是得到1()d 2πCf iaξξ-=⎰.因此a −1这个系数有它特殊的含义.我们把f (z )在z 0处的罗朗级数中(z −z 0)−1项的系数a −1称为f (z )在孤立奇点z 0处的留数,记为Res [f (z ),z 0]=a −1, (5.1) 即 Res[f (z ),z 0]=1()d 2πCf z z i⎰. (5.2)例5.1 求下列积分的值,其中C 为包含z =0的简单正向闭曲线.(1)3cos d Czz z -⎰ (2)12ed z Cz ⎰.解: (1)令f (z )=z −3cos z ,则z =0为f (z )的孤立奇点.又因cos z =2461,.2!4!6!z z z z -+-+<∞故 f (z )= 3311,0,24!6!z z z z z -+-+<<∞所以Res [f (z ),0]= 12-.(2) 令f (z )= 21e z ,则z =0为f (z )的孤立奇点.因为2e 1,,1!2!!nz n ξξξξ=++++<∞以21z ξ=代入上式,得 f (z )=1242111111,0.1!2!!nz z z n z +⋅+⋅+⋅+<<∞所以,Res[f (z ),0]=0.2. 留数定理 考察积分()d Cf z z ⎰,若闭曲线C 内仅含有f (z )的一个孤立奇点,则可利用公式(5.2)来求积分值.但是如果多于一个孤立奇点,则由下述的留数定理,可以把积分的计算转化成f (z )在C 中的各孤立奇点的留数的计算.定理5.1 留数定理设函数f (z )在区域D 内除有有限个孤立奇点z 1,z 2,…,z n 外处处解析,C 是D 内包围这些奇点的一条正向简单闭曲线,那么[]1()d 2πRes (),.nkk Cf z z i f z z ==∑⎰ (5.3)证明:如图 5.1所示,以z k 为圆心,作完全含在C 内且互不相交的正向小圆C k :|z −z k |=k δ,(k =1,2,…,n ),那么由复合闭路上的柯西积分定理,有12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰但[]()d 2πRes (),.1,2,,.kk C f z z i f z z k n ==⎰于是有[]1()d 2πRes (),knkk C f z z i f z z ==∑⎰.一般来说,求函数在其孤立奇点z 0处的留数只须求出它在以z 0为中心的圆环域内罗朗级数中(z −z 0)−1的系数a −1就可以了,但在很多情况下,函数在孤立奇点的罗朗展开式并不易得到,因此有必要讨论在不知道罗朗展开式的情况下计算留数的方法. 3. 留数的计算方法(1) 如果z 0为f (z )的m 级极点,那么[]()(){}010011Res (),lim ()1!m mm z z d f z z z z f z m dz--→=-- (5.4)证明:因为z 0是f (z )的m 级极点,故在z 0的邻域中有f (z )=()01()g z z z m-,图5.1其中g (z )在z 0处解析,且g (z 0) 0≠.于是f (z )= ()0000000()()1()(),!!n n nn m n n g z g z z z z z z z m n n ∞∞-==-=--∑∑ 其中(z −z 0)−1的系数为()10()1!m g z m --.又g (z )=(z −z 0)m f (z ),因而得到:()()(){}011001()1lim ().1!1!m m m z z g z d z z mf z m m dz---→=---从而(5.4})成立.特别地,当m =1时,我们有下面的结果. (2) 若z 0是f (z )的一级极点,那么Res 00[(),0]lim()().z z f z z z f z →=- (5.5)例5.2 求f (z )=252(1)z z z --分别在z =0和z =1的留数.解: 容易看到z =0是f (z )的一级极点,故由(5.5)得Res[f (z ),0] =21052lim ()lim2.(1)z z z z f z z →→-⋅==--而z =1是f (z )的二级极点,由(5.4)得Res[f (z ),1] =(){}22115(52)lim1()lim2.z z d z z z f z dzz→→---== 在某些情况下,下面的命题用起来更方便. (3) 设f (z )=00()()P z Q z ',P (z ),Q (z )在z 0都是解析的.如果P (z 0)0≠,Q (z 0)=0且Q '(z 0)0≠,那么z 0是f (z )的一级极点,因此有Res[f (z ),z 0]=00().()P z Q z ' (5.6)证明: 事实上,因为Q (z 0)=0及Q '(z 0) 0≠,所以z 0为Q (z )的一级零点,由11()()z Q z z z ϕ=-,其中()z ϕ在z 0解析且0()0z ϕ≠,于是 f (z )=1()()z P z z z ϕ-. 因为在z 0解析且00()()0z P z ϕ≠,故z 0为f (z )的一级极点.根据(5.5)式,有0000000000()()Res[(),]lim()()lim()lim()()()()()()lim .()()()z z z z z z z z P z P z f z z z z f z z z z z Q z Q z Q z P z P z Q z Q z Q z z z →→→→=-=-=--=='-例5.3 计算f (z )= e sin zz在z =0处的留数.解: 这时P (z )=e z ,Q (z )=sin z ,于是P (0)=1,Q (0)=0,Q '(0)=1. 由(5.6)式得Res[f (z ),0]=()0(0)P Q '=1. 上述的几种方法,实质上是把留数的计算变成了微分运算,从而带来了方便.但如果z 0是f (z )的本性奇点,我们没有像上面那种简单的留数计算公式,这时只能通过求f (z )的罗朗展开来得到f (z )在z 0的留数.有时候,对于级比较高的极点,或者求导比较复杂的函数,运用上面的公式也十分复杂,选择求罗朗展开或者其它方法可能更好些.例5.4 计算f (z )= 6sin z zz-在z =0处的留数. 解:因为35663sin 111[()]3!5!1111,3!5!z z z z z z z z z z-=--⋅+⋅+=⋅-⋅+所以Res 16sin 1,0.5!z z a z --⎡⎤==-⎢⎥⎣⎦此题若选择微分的方法,运算相对复杂一些,读者可做验算比较.例5.5 计算积分222d (1)(1)Czz zz -+⎰,这里C : |z –取正向.解:令f (z )=222(1)(1)zz z -+,则z 1=i , z 2=–i 为f (z )的两个一级极点,z 3=1,z 4=–1为f (z )两个二级极点.容易看出z 1,z 2,z 3位于C 的内部.由留数定理,31()d 2πRe [(),].kk Cf z z i s f z z ==∑⎰又Res [f (z ),i ]= 221lim()()lim.(1)()8z iz iz z i f z z z i →→-==-+同理Res [f (z ),–i ]=18. Res [f (z ),1] = 22211lim{(1)()}lim (1)(1)z z d d zz f z dz dz z z →→⎧⎫-=⎨⎬++⎩⎭323221311lim.(1)(1)8z z z z z z →---+==++ 于是111π()d 2π().8884Cif z z i =+-=⎰4. 在无穷远点的留数设函数f (z )在圆环域R <|z |<∞内解析,C 为这圆环域内绕原点的任何一条简单闭曲线,那么称f (z )沿C 的负向积分值1()d 2πCf z z i⎰称为f (z )在∞点的留数,记作Res [f (z ),∞]=1()d 2πCf z z i⎰. (5.7)这个积分值与C 无关,且根据公式(4.23)和(4.24)得Res[f (z ),∞]=111()d ()d ,2π2πCC f z z f z z b i i--==-⎰⎰(5.8)即f (z )在∞点的留数等于它在∞点的去心邻域R <|z |<∞内的罗朗展开式中z –1的系数的相反数.由(5.7)式,我们有下述定理.定理5.2 如果函数f (z )在扩充的复平面内只有有限个孤立奇点,那么f (z )在所有奇点(包括∞点)的留数之和为零.证明:取r 充分大,使f (z )的有限个孤立奇点z k (k =1,2,…,n )都在|z |<r 中. 由留数定理,得1()d 2πRes[(),]nk k z rf z z i f z z =<=∑⎰,其中积分取圆周的正项.由(5.8})式,得Res [f (z ),∞]=()d z rf z z <-⎰.于是就有Res[f (z ),∞]+1Res[(),]nkk f z z =∑=0.例5.6 判定z =∞是函数f (z )=223zz +的什么奇点?并求f (z )在∞点的留数. 解:因为 lim ()0,z f z →∞=所以∞点是可去奇点.又f (z )在复平面内仅有3i 和–3i 为一级极点,且Res[f (z ),3i ]= 3lim3z i z i →+ =1,Res [f (z ),–3i ]= 3lim3z i z i→--=1.故由定理5.2Res[f (z ),∞] = – Res [f (z ),3i ] – Res [f (z ), –3i ] = –1–1= –2.§5.2 留数在积分计算上的应用在高等数学中我们知道,有很多函数的原函数不能用初等函数来表达,因此,通过求原函数的办法求定积分或广义积分就受到限制.利用留数理论可以求一些重要的实函数的积分.下面我们分几种类型介绍怎样利用留数求积分的值.1. 形如()d R x x ∞-∞⎰的积分这里R (x )=()()P z Q z 为有理函数,P (x )=x m +a 1x m –1+…+a m , Q (x )=x n +b 1x n –1+…+b n , P (x ), Q (x )为两个既约实多形式,Q (x )没有实零点,且n –m ≥ 2.我们取复函数R (z )=()()P z Q z ,则除Q (z )的有限个零点外,R (z )处处解析.取积分路线如图5.2所示,其中C r 是以原点为中心,r 为半径的上半圆周,令r 足够大,使R (z )在上半平面上的所有极点z k (k =1,2,…,s )都含在曲线C r 和[–r , r ]所围成的区域内.由留数定理,得1()d ()d 2πRes[(),].rrskk rC R x x R z z i f z z =-+=∑⎰⎰当r 充分大时,右端的值与r 无关.又|R (z )|=111111111111.11m m m m n mn mnnn n a z a z a z a z b z b zb z b zzz----------++++++⋅≤⋅+++-++故存在常数M ,当|z |充分大时,有图5.2|R (z )| 2.n mM M zz-≤≤令z =i re θ,于是πππ20()d (e )e d (e )d πd 0()ri i i C R z z R r ri R r r M M r r r rθθθθθθ=≤≤=→→∞⎰⎰⎰⎰因此在(5.9)式中令r →∞得1()d 2πRes[(),].nk k R x x i R z z +∞-∞==∑⎰(5.10)例5.7 计算积分242d 109x x x x x +∞-∞-+++⎰.解:记R (z )= 242109x x x x -+++,则R (z )满足(5.10)式的条件,且R (z )在上半平面内有2个一级极点z 1=i 和z 2=3i .容易得到Res [R (z ),i ]=1i 16--, Res[R (z ),3i ]= 37i48-,因此 2421i 37i 5d 2πi[]π.109164812x x x x x +∞-∞-+---=+=++⎰例5.8 计算积分24d 1x x x +∞+⎰. 解:注意到R (x )=241x x +为偶函数,于是有224401d d .121x x x x x x +∞+∞-∞=++⎰⎰ 又R (z )的分母高于分子两次,在实轴上无奇点,在上半平面上有两个一级极点1)i i +-+,且Res[R (z)i +R (z1)i -+]= 由公式(5.10})有240d 2ππ.12x x x +∞==+⎰ 故得240d π.14x x x +∞=+⎰ 2. 形如()e d (0)ix R x x αα+∞-∞>⎰的积分这里R (x )是实轴上连续的有理函数,而分母的次数n 至少要比分子的次数m 高一次(n –m ≥1).这时有1()e d 2Re [e (),].sixix k k R x x i s R z z ααπ+∞=-∞=∑⎰(5.11)其中z k (k =1,2,…,s)是R (z )在上半平面的孤立奇点.事实上,如同类型1中处理的一样,取如图(5.2)的积分曲线C r ,当r 充分大,使z k (k =1,2,…,s)全落在曲线C r 与[–r , r ]所围成的区域内.于是 又n –m ≥1,故充分大的|z |,有|R (z )| M z≤. 因此sin cos 0πsin 0ππ2sin sin 0()e d (e )e d (e )e d e d 2e d .rizi r i r C i r r r R z z R r r R r r M M παθαθαθθαθαθαθθθθθ-+---=⋅≤⋅≤=⎰⎰⎰⎰⎰当π02θ≤≤时,2sin πθθ≥,所以有 ()2ππ2π()e d 2ed (1e ).2rizr r C M R z z M rθαααθ--≤=-⎰⎰ 于是,当r →∞时,()ed 0rizC R z z α→⎰,故(5.11})式成立.(5.11})还可以变形为1()cos ()sin d 2πRes[()e ,].siz k k R x xdx i R x x x i R z z ααα+∞+∞=-∞-∞+=∑⎰⎰ (5.12)例5.9 求积分2cos d 45xx x x +∞++⎰.解:设R (z )=2145x x ++,则R (z )的分母高于分子二次,实轴上无奇点,上半平面只有一个一级极点z = –2+i ,故2122()ed 2πRes[()e ,2]2πlim [(2)]()e e e2πlim2π.22ixiz izz iiz iz i R x x i R z i i z i R z i i z i i+∞→-+-∞--→-+=-+=--+==++⎰由公式(5.12}),有2cos d 45x x x x +∞-∞++⎰=Re[12e 2π2i i i --]=1πe cos 2.- 在上面两类型的积分中,都要求R (z )在实轴上无孤立奇点,这时我们取积分闭曲线为图5.2的形式.当R (z )在实轴上有奇点时,我们要根据具体情况,对积分曲线稍作改变.下面以例题说明如何计算此类型的积分.例5.10 计算积分sin d xx x+∞⎰的值. 解:取函数f (z )=e izz,并取围道如图5.3所示,在此围道中f (z )是解析的.由柯西积分定理,得e e e e d d d d 0.r Rr Rix iz ix izR C r C x z x z x z x x --+++=⎰⎰⎰⎰ 令x =–t ,则有e e e d d d .r r Rix it ixR R rx t x x t x ----==-⎰⎰⎰ 所以有e e e e d d d 0.R rRix ix iz izr C C x z z x z z --++=⎰⎰⎰ 即sin e e 2d d d 0.R rRiz izr C C x i x z z x z z ++=⎰⎰⎰现在来证明0e e lim d 0lim d π.R riz izR r C C z z i z z →∞→==-⎰⎰和 由于图5.3π2e ππsin 00sin 0e e d d e d π22e d (0,sin )2ππ(1e ),i R iR izR C R R z R z R Rθθθθθθθθθ---≤⋅==≤≤≥=-⎰⎰⎰⎰时所以e lim d 0.RizR C z z→∞=⎰ 又因为1e 11(),2!!iz n nz z i i z z z n zϕ-=+-+++=+ 其中ϕ(z )在z =0解析,且ϕ(0)=i .因此当|z |充分小时,可设|ϕ(z )|≤2.由于e d d ()d ,r r riz C C C z z z z z z ϕ=+⎰⎰⎰ 而πd e d πe r i i C z ir i z r θθθ==-⎰⎰ 和π()d (e)d 2π.Ri C z z r r r θϕϕθ≤≤⎰⎰故有0e lim d π.rizr C z i z →=-⎰ 综上所述,令R →∞,r →0,则有sin πd .2x x x +∞=⎰3. 形如2π(sin ,cos )d R θθθ⎰的积分这里R (x ,y )是两个变量x ,y 的有理函数,比如R (x ,y )= 2222641x y x y -+-.计算这种积分的一种方法是把它化为单位圆周上的积分.事实上,令z =e i θ,那么21111sin (e e )(),222i i z z i i z iz θθθ--=-=-=21111cos (e e )(),222i i z z i i z izθθθ-+=+=+=1d d .z izθ=从而原积分化为沿正向单位圆周的积分,即2π2201111d (cos ,sin )d [,]()d ,22z z z z zR R f z z z iz iz θθθ==+-==⎰⎰⎰其中f (z )=R [2211,22z z z iz +-]1iz⋅为z 的有理函数,且在单位圆周|z |=1上分母不为零,因而可用留数定理来计算.例5.11 计算积分2π4cos 4d θθ⎰. 解:令z =e (02π)i θθ≤≤,则4444cos 4()2z z θ-+=, 42π448441701111(1)cos 4d ()d d 216z z z z z z z iz i z θθ-==++==⎰⎰⎰ 在0z <<1内,被积函数的罗朗展开式为48179117(1)113.161648z z z z z ---+=+++故2π8441701(1)3cos 4d [2πRes[,0]]π.164z i i z θθ+==⎰ 总结上述的方法,我们发现,由于留数是与闭曲线上的复积分相联系的.因此利用留数来计算定积分需要有两个主要的转化过程:1) 将定积分的被积函数转化为复函数;2) 将定积分的区间转化为复积分的闭路曲线. 根据这种思路,我们可以计算更多的积分.比如,Fresnel 积分2cos d x x ∞⎰和2sin d x x ∞⎰.这两个积分在光学的研究中很有作用.取函数f (z )=2eix ,取积分围道如图5.4,因为f (z )在闭围道内解析,由柯西积分定理,有222e d e d e d 0.ix izix OABOABx z z ++=⎰⎰⎰当z 在OA 上时,z =x , 0≤x ≤r ,22e d e d .rix ixOAx x =⎰⎰当z 在AB 上时,z =r e i θ,0θ≤π4≤,此时4sin 2πθθ≥,所以2422πsin 2e e e.r iz rθθ--=≤故π42422ππe d ed (1e )0,().4r iz r ABz r r rθθ--≤⋅=-→→∞⎰⎰ 当z 在BO 上时,z =x 4πe i ,0,x r ≤≤πππ222444e 0e d ee d ee d .i ri i iz ix x BOrz x x -=⋅=-⎰⎰⎰ 令r →∞,于是(5.13})变为224e d 0ee d ,i ix x x x π∞∞-+-⎰⎰ 又2πe d xx ∞-=⎰, 因此22440πe d ee d e .2i i ix x x x ππ∞∞-==⎰⎰ 上式两边分别取实部和虚部,即得221πcos d sin d .x x x x ∞∞==⎰⎰ 小 结留数定义为:011Res[(),]()d 2πCf z z a f z z i-==⎰其中1a -是函数()f z 在0z 点的罗朗展开式的10()z z --的系数,C 是0z 的去心邻域0<0z z -<R 内的包含0z 的任意一条正向简单闭曲线.图5.4留数定理:若函数()f z 在区域D 内除了有限个孤立奇点21,,,n z z z -外处处解析,C是D 内包含这些起点的一条正向简单闭曲线,则有:1()d 2πRes[(),]nji fCf z z i f z z ==∑⎰.留数定理将积分路径内包含有限个孤立奇点的复积分的计算问题转化为对这些奇点的留数的计算. 如何计算留数,我们有下列方法:⑴ 一般方法:设0z 为函数()f z 的孤立奇点(无论是可去奇点、极点或本性奇点),将()f z 在0z 处展开为罗朗级数,并求出系数1a -,则有01Res[(),]f z z a -=.特别是当0z 为本性奇点时,这个方法是比较常用的方法.⑵ 一级极点情形:若0z 为()f z 的一级极点,则有00Res[(),]lim()()z z f z z z z f z →=-⑶ m 级极点情形:若0z 为()f z 的m 级极点,则有010011Res[(),]lim [()()]!m m m z z d f z z z z f z m dz--→=-⑷ 化为零点问题:若()f z =()()P z Q z ,()P z 和()Q z 在0z 点解析,且()P z ≠0,()Q z =0,'()Q z ≠0,则0z 为()f z 的一级极点,且有000()Res[(),]'()P z f z z Q z =当()f z 为函数时,这个方法是常用的方法.⑸ 可去奇点情形,若0z 是函数f (z )的可去奇点时,则有0Res[(),]0f z z =.无穷远点∞处的留数定义为:设()f z 在R ﹤z ﹤∞内解析,C 为该区域内的绕原点的任意一条正向简单闭曲线,则()f z 在孤立奇点∞处的留数为11Res[(),]()d 2πCf z a f z z i-∞==⎰.若()f z 在扩充复平面内只有有限个孤立奇点,则()f z 的所有奇点(包括无穷远点∞)的留数的总和等于零.应用留数定理,可以计算一些实积分,称为围道积分方法.重要介绍是下列三种类型的实积分:⑴()d R x x ∞-∞⎰; ⑵()ed ,0iaxR x x a ∞-∞>⎰;⑶2π(cos ,sin )d R x θθθ⎰.在利用围道积分时,主要做两方面的工作.一是找一个与所求积分的被积函数密切相关的复变函数()F z ;二是找一条合适的闭路曲线C ,使得在这条闭曲线所围成的区域D 内()F z 只有有限个孤立奇点. ()F z 沿着C 的积分与实积分紧密相关,这样就可以应用留数定理计算实积分.重要术语及主题留数 留数定理 扩充复平面 无穷远点的留数 留数计算 留数定理的应用习题五1.求下列函数的留数.⑴ 5e 1()zf z z -=在0z =处; ⑵ 11()e z f z -=在1z =处.2. 利用各种方法计算()f z 在有限孤立奇点处的留数. ⑴ 232()(2)z f z z z +=+; ⑵ 1()sin f z z z=.3. 利用罗朗展开式求函数21(1)sin z z+在∞处的留数. 4.求函数1()()m mz a z b --(,a b m ≠为整数)在所有孤立奇点(包括∞点)处的留数.5. 计算下列积分. ⑴tan πd Cz z ⎰, n 为正整数,C 为z =n 取正向;⑵10d ()(1)(3)Czz i z z +--⎰, C :z =2,取正向. 6. 计算下列积分.⑴ π0cos d 54cos m θθθ-⎰; ⑵2π20cos3d 12cos a a θθθ-+⎰ ,a >1; ⑶ +2222-d ,()()xx a x b ∞∞++⎰a >0,b >0: ⑷ 22220,()x x a ∞+⎰a >0: ⑸+222sin d ,()x xx x b β∞+⎰β>0, b >0: ⑹+22-e d ,ixx x a∞∞+⎰a >0: 7. 计算下列积分.⑴20sin 2d (1)xx x x ∞+⎰; *⑵ 21d 2πza z i zΓ⎰,其中Γ为直线Re x c =,c >0,0<a <1.。

留数定理及其应用

留数定理及其应用

式,故 I = 2πi sin 0 = 0.
例3 I=
e1/z dz.
|z|=1
解 本题的被积函数 f (z) = e1/z 在圆周 |z| = 1 的内部有一个本性奇点 z = 0,它在
z = 0 处的 Laurent 展开式为 f (z) = e1/z = 1 + 1/z + . . . + 1/n!zn + . . .,故 Res f (0) =
n=−∞

cn
=
1 2πi
Γρ
(z
f (z) − a)n+1
dz.
令 n = −1,得
c−1
=
1 2πi
f (z) dz.
Γρ
与式 (1) 比较,即得
Res f (a) = c−1.
(2)
由此可知,可去奇点处的留数为 0. 注 有些书上直接用式 (2) 作为留数的定义,这与式 (1) 的定义显然是等价的.
数的问题.由上节可以看到,计算极点的留数主要涉及微分运算.对于本性奇点,必须作
Laurent 展开来计算其留数.作 Laurent 展开,通常归结为 Taylor 展开,而计算 Taylor 展
开式的系数也是微分运算问题.所以可以说,留数定理把积分运算转化成了比较容易的微分
运算,因此它为积分的计算提供了一项非常有用的技术.
§3 用留数定理计算围线积分
4
推论一(单极点的留数,第一公式) 若 a 是 f (z) 的单极点,则
Res f (a) = [(z − a)f (z)]|z=a.
(5)
推论二(二阶极点的留数) 若 a 是 f (z) 的二阶极点,则
Res f (a) = [(z − a)2f (z)] |z=a.

复变函数5章:留数

复变函数5章:留数
3z + 2 1 3z + 2 = 2 2 z (z + 2) z z + 2
而 3z + 2 在z=0处解析,且不等于0,所以z=0为二级极点 =0处解析 且不等于0 所以z=0为二级极点 处解析,
z+2
§5.1 孤 立 奇 点
二 孤立奇点的分类
2. 极 点 【例】求下列函数的奇点,如果是极点,指出级数 求下列函数的奇点,如果是极点,
f (z) = ∑cn (z − z0 )n , ( 0 < z − z0 < δ )
∞ n=0
则称孤立奇点 则称孤立奇点z0为f(z)的可去奇点 孤立奇点z 【注】令f(z0)=c0,则f(z)在z0处解析
§5.1 孤 立 奇 点
二 孤立奇点的分类
f (z) =
n=−∞
cn (z − z0 )n , ∑
z→z0
或写作 lim f (z) = ∞.
z→z0
§5.1 孤 立 奇 点
二 孤立奇点的分类
2. 极 点 【例】求下列函数的奇点,如果是极点,指出级数 求下列函数的奇点,如果是极点,
3z + 2 (1) f (z) = 2 , z (z + 2)
1 (2) 3 z − z2 − z + 1
解:(1) z=0, -2为函数f(z)的孤立奇点 为函数f 由于
3z + 2 (1) f (z) = 2 , z (z + 2)
1 (2) 3 z − z2 − z + 1
解:(1) z=0, -2为函数f(z)的孤立奇点 为函数f 同理
1 3z + 2 3z + 2 = 2 z (z + 2) z + 2 z 2

05第五章 留数理论

05第五章 留数理论

证明:设圆盘 |z|<ρ包含 b1, b2, …, bn
n
∫ ∑ 留数定理
è
|z|= ρ
f (z)dz
=
2π i
Res f (bk )
k =1
| z |= ρ
∞处留数的定义 è
∫ f (z )dz = − 2π i Res f (∞ ) |z|= ρ
n
∑ Res f (bk ) + Res f (∞) = 0
f ( z )dz
C
k =1 |z−bk |=δ
bn
n
= ∑ 2πi Res f (bk ) (留数定义)
k=1
L
b2 δ
4
2. 孤立奇点 ∞ 处的留数

∑ 洛朗展开 f (z) = Ck zk , r <| z | k = −∞
定义 f(z) 在 z=∞ 处的留数 = z−1 的系数×(–1)
等价定义:
∫ def
Res f (∞) =
−1
f (z)dz (r < ρ)
2π i |z|=ρ
ρ r×0
• 若 f(z) 是偶函数,则 Res f (∞), Res f (0) 有定义时必为零
5
Ø全平面留数之和为零
设函数 f (z) 在整个复平面上只有奇点 b1, b2, …, bn,则 f (z) 在这些点及 ∞ 的留数之和为零
i

(b0 + 4a 4
b1 )
=
2π 2a 3
∫ +∞ 0
x
4
1 +
a4
dx
=Q= 2
2π 4a3
ΓR
b1
b0
-R b2

第五章 留数

第五章 留数

,即
R e s[ f ( z ), z 0 ] c 1
或 R e s [ f ( z ), z 0 ]
2 i
1
f ( z )d z
C
C是此圆环域内围绕 z 0 的任一条正向简单闭曲线.
2、留数的计算
(1) 如果 z 0 为 例如:
f (z)
的可去奇点, 则
R es[ f ( z ), z 0 ] 0 .
1、留数的定义
若z0 是 f (z)的孤立奇点,则 f (z) 在某圆环域
0 z z0
内可以展开为洛朗级数
f (z)

n

cn ( z z0 ) ,
n
上述展开式中负一次幂项的系数 c 1 称为
z0
f (z)

处的留数,记为
R e s f ( z ), z 0
1
f (z) ( z z0 )
n1
dz
( n 0 , 1, 2 , ),
C
c 1
2 i
1
f ( z )d z
C
C是此圆环域内围绕 z 0 的任一条正向简单闭曲线.
1、留数的定义
若z0 是 f (z)的孤立奇点,则 f (z) 在某圆环域
0 z z0
如果 z 0 为 f ( z ) 的 m 级极点, 则
1 lim d
m 1
R es[ f ( z ), z 0 ]
( m 1) ! z z 0 d z
[( z z 0 ) m 1
m
f ( z )].
说明
(1)当 m=1 时,上式即为
R e s [ f ( z ), z 0 ] lim ( z z 0 ) f ( z ).

5-第五章-留数定理

5-第五章-留数定理

因此
z ez
e e1
C
z2
dz 1
2 π i( 2
) 2 πi ch1 2
: 我们也可以用规则III来求留数
| Res[ f (z),1] z ez e ; 2z z1 2
| Res[ f (z),1] z ez e1 . 2z z1 2
这比用规则1要简单些,但要注意应用的条件。
z
例7
环域内绕原点的任何一条简单闭曲线,则积分
1
2π i f (z) d z C
称其为f (z)在点的留数,记作
1
Res[ f (z), ]
f (z)d z
2i C
这里积分路径的方向是顺时针方向,这个方向很自然
地可以看作是围绕无穷远点的正向。
将 f (z)在 R<|z|<+∞内的罗朗展式为
f
(z)
z 4z3
1 4z2
,故z1111C源自z4d 1z

i( 4
4
4
4)
0
Ñ 例 8
计算积分
C
ez z(z 1)2
dz,
C
为正向圆周|z|=2.
[解] z=0为被积函数的一级极点, z=1为二级极点, 而
Res[ f (z),0] lim z0
z
ez z(z 1)2
lim z0
ez (z 1)2
1.
一、 留数的定义
定义 若f (z)在去心邻域 0 z z0 R内解析,
z0是f (z)的孤立奇点,C是 0 z z0内 包R 围z0的
任意一条正向简单闭曲线,定义积分
1
2i
C
f
(z)d
z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin x x ( x4 1) dx
仿前例,先算 Q
x
(
ei x4
x
1)
等价定义:
def
Res f ()
1
f (z)dz (r )
2 i |z|
r 0
• 若 f(z) 是偶函数,则 Res f (), Res f (0) 有定义时必为零
5
➢全平面留数之和为零
设函数 f (z) 在整个复平面上只有奇点 b1, b2, …, bn,则 f (z) 在这些点及 的留数之和为零
R
f ( x)dx f (z)dz 2 i Resf (i)
R
R
极限 Q
极限 i 0
18
(4) 计算留数
Q 2 i Resf (i)
f (z) (z2 1)1
2
i
(z2
1
1)
|z i
***留数定理计算实轴积分的标准步骤***
19
例2:计算积分
1 0 x4 a4 dx
解:
b0
错误解法:选
f
(z)
cos z z2 b2
R
R
f ( x)dx f (z)dz 2 i Resf (bi)
R
R
ΓR
bi
R
cos x
cos z
R→+∞
x2
b2 dx
2 i Res z b i
z2
b2
原因:在上半平面不存在极限 lim [z f (z)] z 不能用大圆弧引理计算 lim f (z)dz R R
ΓR
b1 b0
-R
b2
R
b3
f (z) (z4 a4 )1
1
Q 2
0 x4 a4 dx 2 4a 3
21
• 扇形围线计算
Q
f (x)dx,
f ( x) g( xn ) (n 1)
0
有理函数 g(x) 在正实轴上无奇点
f (r e2 i / n ) f (r)
f (z)dz e2 i/n f ( x)dx
px
dx
P( x) ei p x dx
Q(x)
P(x), Q(x) 是实系数多项式,p>0
z
2
三角函数有理式的积分 R(cos , sin )d 0
0
1
16
1. 全实轴上无奇点的反常积分
大圆弧引理:设在圆弧 Sa,R : z a R e i (1 2 )
上 f(z) 连续, 在扇形 1 Arg (z a) 2 内
Resg(z) lim[z g(z)] 1
z0
z0
10
➢小定理
设 (z), (z) 在 b 点解析,(b) 0, (b) 0,

( z ) Res z b (z)
(z) ( z )
|z b
证明:计算 Q lim [(z b) (z) ]
z b
(z)
Q lim
( z )
(b)
z b [(z) (b)]/( z b) (b)
23
正确解法:欧拉公式 cos x Re ei x
cos x
exp( i x)
x2 b2 dx Re x2 b2 dx
ΓR
计算积分
Q
exp(i x) x2 b2 dx
(1) 选复变函数
f (z)
eiz z2 b2
bi
R
R
在上半平面, Im z 0, | ei z | eImz 1
lim [z f (z)] 0 大圆弧引理成立 z
24
(2) 选围线,应用留数定理; (3) 取极限 R→+∞
R
f ( x)dx f (z)dz 2 i Resf (b i)
R
R
极限 Q
极限 i 0
ΓR
(4) 计算留数
bi
Q 2i Res f (bi)
eiz 2 i (z2 b2 )
c1
在 a 的某去心邻域上被积函数有洛朗展开:
f (z)
(z) (z a)n
p
cp
(z a)p
(k)(a)(z a)kn k0 k!
柯西公式给出了围线环绕单个极点的积分
e1/ zdz ? |z|1
2
§5.1 留数定理
1. 孤立奇点 b≠∞ 处的留数
洛朗展开 f (z) ck (z b)k , 0 | z b | R k
dx 0 x4 a4
1 2
dx x4 a4
半实轴 全实轴
计算积分
Q lim R
R dx R x4 a4
(a 0)
b1
-R
b2
ΓR
b0
R
b3
(1) 选复变函数
1 f (z) z4 a4 ,
lim[z f (z)] 0 z
大圆弧引理成立
奇点 bk a e i(2k)/ 4 (k 0,1,2,3)
0,
n偶
7
➢ 计算极点 b≠∞ 处的留数
1 阶极点或可去奇点 Res f (b) lim [(z b) f (z)]; z b
极点的阶 m Res f (b) lim [(z b)m f (z)](m1)
z b
(m 1)!
证明:(z) (z b)m f (z) 在 b 点解析;
t2
∞是可去奇点 Res f (z) lim [z f () z f (z)]
z
z
证明:z R ei , t R1 ei , ,
f (z) dz f (R ei ) i R eid
|z| R
|t|1/ R
f
(t
1
)
dt t2
f (R ei ) i R eid
13
20
(2) 选围线,应用留数定理; (3) 取极限 R→+∞
R
f (x)dx R
R f (z)dz 2 i [Resf (b0 ) Resf (b1 )]
极限 Q
极限 i 0
(4) 计算留数
Res
z bk
f (z)
1 4bk3
bk 4a 4
Q
2
i
(b0 4a 4
b1 )
2
2a 3
ez lim
1 1
z0 z
z0 z
lim
z0
g(z)
lim
z0
(e
z
z
sin z 1)3
/ /
z3 z3
lim( sin z / z) lim z1
z0
z0
{lim[(ez 1) / z]}3
z0
z2 sin z / z3
lim[z
z0
g(z)]
lim
z0
(e z
1)3
/
z3
1
z=0 是 1 阶极点
Res t 0 (t
2
t 15 t 2 1)2 (t 4
2)3
1
Res t0 t
(t 2
1)2 (2 t 4
1)3
1
(一阶极点)
Q 2 i
15
§5.2 利用留数理论计算实积分
三种常见类型: P(x)
dx,
Q( x)
b1 b2
ΓR
R a1
a2
R
P( x) cos px
Q( x)
sin
(z–b)−1 的系数 c–1 称为 f(z) 在 z=b 处的留数,
记为 Res f (z) 或 Res f (b) z b
等价定义:
def 1
Res f (b)
f (z)dz ( R)
2 i |zb|
ρR b
3
➢留数定理
设函数 f (z) 在围线 L 及其内部区域除有限个奇点
n
b1, b2, …, bn 外解析,则 L f (z)dz 2i Res f (bk ) k 1
za
极点 z=a 的阶 3
Res f (a) lim 1 [(z a)3 f (z)](31) za (3 1)!
lim 1 [z ez ](2) a 2 ea
z a 2!
2
9
z sin z (2) g(z) (1 ez )3
确定极点 z=0 的阶:
洛必达法则
lim sin z
1,
lim (z a) f (z) ,
z
则 lim R
Sa,R f (z) dz i (2 1 )
证明:记 QR
[ f (z) ]dz ,
Sa, R
za
MR
max
z Sa, R
|
f (z)
| za
则 | QR | (2 1 ) R MR
R
MR
R
max
z Sa,R
| f (z) | max z a z Sa,R
证明:作每个奇点的 δ邻域,
边界互不相交和包含。
L
复连通区域的柯西定理
b1
n
f (z)dz
f (z)dz
Cห้องสมุดไป่ตู้
k 1 |z bk |
bn
n
2i Res f (bk ) (留数定义) k 1
b2
4
2. 孤立奇点 ∞ 处的留数
洛朗展开 f (z) Ck zk , r | z | k
定义 f(z) 在 z=∞ 处的留数 = z−1 的系数×(–1)
4. 用留数定理计算围线积分
步骤:① 确定函数在围线内部的奇点及种类; ② 求各奇点的留数; ③ 应用留数定理
例4:Q
dz ?
相关文档
最新文档