chap9:密码学基本理论(DES)
《应用密码学》DES

《应用密码学》
背景资料
1973年NBS国家标准局 (NIST国家标准与技术研究所) 算法要求: ①算法公开,安全性依赖于密钥而不是算法 ②算法应能测试和验证 ③不同的4,IBM研制 1976 被定为联邦标准 并命名为DES(Data Encryption Standard) 1981、1987、1993 分别被NIST再次认证
39 38 37 36
35 34 33
7 6 5 4
3 2 1
47 46 45 44
43 42 41
15 14 13 12
11 10 9
55 54 53 52
51 50 49
23 22 21 20
19 18 17
63 62 61 60
59 58 57
31 30 29 28
27 26 25
乘积变换
16次叠代的Feistel网络 需要解决的问题: 1. ƒ函数的构造 2. 把64位主密钥转换为16个48位的子密钥
X ΔX E E(X) ΔA ΔB S盒 ΔC P ΔY Y Ki
△=L Ki △=0 △=L⊕0
概率为1
△=0
f
△=0 △=0
△=L Ki △=Y △=L⊕Y
X=6000 0000 Y=0080 8200 概率为14/64
△=X
f
△=X △=X
△=Y Ki △=Y f △=X
△=X
△=X Ki+1 △=0 △=X
这就是说如果各轮的加密密钥分别是k那么解密密钥就是k161900年elibiham和adishamir提出了差分密码分利用这种方法elibiham和adishamir对des算法进行了选择明文攻击比穷举攻击有效对于des的差分密码分析如果选择明文攻击需47对于des的差分密码分析如果已知明文攻击需x60000000y00808200概率为1464x60000000y00808200概率为1464线性密码分析是mitsurumatsui提出的是一种已知明文攻击如果将明文的一些位密文的一些位进行异或运算然后再对这两个结果异或那么将得到一个位这一位是将密钥的一些位进行异或运算的结果对于des的线性密码分析已知明文攻击数为243x17a26b26c17c18c19c20ki26y3y8y14y25x17y3y8y14y25ki2612516des密钥长度问题56bit密钥有25672亿亿之多技术进步使穷举搜索成为可能1997年1月28日rsa公司发起破译rc4rc5md2md5以及des的活动破译des奖励10000美金
对称加密算法之DES介绍

对称加密算法之DES介绍DES(Data Encryption Standard)是分组对称密码算法。
DES采用了64位的分组长度和56位的密钥长度,它将64位的输入经过一系列变换得到64位的输出。
解密则使用了相同的步骤和相同的密钥。
DES的密钥长度为64位,由于第n*8(n=1,2,…8)是校验位,因此实际参与加密的长度为56位,密钥空间含有2^56个密钥。
DES算法利用多次组合替代算法和换位算法,分散和错乱的相互作用,把明文编制成密码强度很高的密文,它的加密和解密用的是同一算法。
DES算法,是一种乘积密码,其在算法结构上主要采用了置换、代替、模二相加等函数,通过轮函数迭代的方式来进行计算和工作。
DES算法也会使用到数据置换技术,主要有初始置换IP和逆初始置换IP^-1两种类型。
DES算法使用置换运算的目的是将原始明文的所有格式及所有数据全部打乱重排。
而在轮加密函数中,即将数据全部打乱重排,同时在数据格式方面,将原有的32位数据格式,扩展成为48位数据格式,目的是为了满足S盒组对数据长度和数据格式规范的要求。
一组数据信息经过一系列的非线性变换以后,很难从中推导出其计算的过程和使用的非线性组合;但是如果这组数据信息使用的是线性变换,计算就容易的多。
在DES算法中,属于非线性变换的计算过程只有S盒,其余的数据计算和变换都是属于线性变换,所以DES算法安全的关键在于S盒的安全强度。
此外,S盒和置换IP相互配合,形成了很强的抗差分攻击和抗线性攻击能力,其中抗差分攻击能力更强一些。
DES算法是一种分组加密机制,将明文分成N个组,然后对各个组进行加密,形成各自的密文,最后把所有的分组密文进行合并,形成最终的密文。
DES加密是对每个分组进行加密,所以输入的参数为分组明文和密钥,明文分组需要置换和迭代,密钥也需要置换和循环移位。
在初始置换IP中,根据一张8*8的置换表,将64位的明文打乱、打杂,从而提高加密的强度;再经过16次的迭代运算,在这些迭代运算中,要运用到子密钥;每组形成的初始密文,再次经过初始逆置换IP^-1,它是初始置换的逆运算,最后得到分组的最终密文。
DES加密与解密过程原理解析

网络与信息安全作业题目:DES加密与解密过程原理解析姓名:学号:班级:日期:2016年3月30日一、DES简介:DES(Data Encryption Standard)是对称加解密算法的一种,由IBM公司W.Tuchman和C.Meyer在上个世纪70年代开发,该算法使用64位密钥(其中包含8位奇偶校验,实际密钥长度为56位)对以64为单位的块数据加密,产生64位密文数据,然后使用相同的密钥进行解密。
密钥只有通信双方知晓,不对第三方公开。
二、DES算法过程:1.DES的加密过程:第一阶段:初始置换IP。
在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP的作用,对输入分组实施置换。
最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。
表1:置换IP表上表为置换IP表,将输入64位的第58位换到第一位,第50位换到第二位,依此类推,最后一位是原来的第7位。
L0是输出的前32位,R0是后32位。
比如:置换前的输入值为D1D2D3...D64,则经过初始置换后的结果为:L0=D58D50...D8,R0=D57D49 (7)第二阶段:获取函数f和子密钥。
函数f有两个输入:32位的Ri-1和48位Ki,f函数的处理流程如下图所示。
E变换的算法是从Ri-1的32位中选取某些位,构成48位。
即E 将32比特扩展变换为48位,变换规则根据E位选择表,如表2所示。
表2:E位选择表Ki是由密钥产生的48位比特串,具体的算法下面介绍。
将E的选位结果与Ki作异或操作,得到一个48位输出。
分成8组,每组6位,作为8个S盒的输入。
每个S盒输出4位,共32位(如下图)。
S盒的输出作为P变换的输入,P的功能是对输入进行置换,P换位表如表3所示。
表3:P换位表子密钥Ki:假设密钥为K,长度为64位,但是其中第8、16、24、32、40、48、64用作奇偶校验位,实际上密钥长度为56位。
密码学-DES

•
A=R(32 bits)
E
J=K(48 bits)
E(A)为48 bits
B
+
写成8个6比特串
B1 B2
S1 S2
B3
S3
B4
S4 P
B5
S5
B6
S6
B7
S7
B8
S8
C1 C2 C3 C4 C5 C6 C7 C8 32 bits F(A,J)
DES 的F函数
• DES中使用的其它特定函数: 初始置换IP:从置换中看出X的第58个比特是IP(X) 的第一个比特;X的第50个比特是IP(X)的第二个比 特… 逆置换IP-1;扩展函数E;置换函数P。 • 从密钥K计算子密钥: 实际上,K是长度为64的位串,其中56位是密钥, 8位是奇偶校验位(为了检错),在密钥编排的计算中, 这些校验位可略去。 (1). 给定64位的密钥K,放弃奇偶校验位(8,16,…, 64)并根据固定置换PC-1来排列K中剩下的位。我们 写 PC-1(K)=C0D0 其中C0由PC-1(K)的前28位组成;D0由后28位组成。
密码学基础des简介

DES(Data Encryption Standard)是一种对称密钥加密算法,被广泛认为是密码学中最广为使用的加密算法之一。
它由IBM公司于1970年代初开发,并在1977年被美国联邦政府正式采用作为标准。
在密码学中,DES的使用56位的密钥对64位的数据块进行加密和解密操作。
DES加密过程中主要包括初始置换、16轮的Feistel加密、逆初始置换等步骤。
首先,将输入数据块进行初始置换,然后将数据块分成两半,分别为左半部分L0和右半部分R0。
接着,DES算法进行16轮的迭代。
在每一轮迭代中,右半部分R(i-1)经过扩展置换,然后与当前轮次的子密钥进行异或运算。
然后通过S盒置换、P盒置换等操作,得到新的右半部分Ri,并与左半部分Li-1进行异或运算,得到新的左半部分Li。
最后一轮迭代完成后,将左右两部分进行交换,然后进行逆初始置换,即可得到最终的加密结果。
然而,由于DES使用的56位密钥长度相对较短,它已经不能很好地抵抗暴力破解等攻击手段的威胁,因此目前更常用的对称加密算法包括AES(高级加密标准)等。
同时,需要注意的是,由于DES算法已经被认为不再安全,不建议在实际应用中使用。
DES加密算法原理

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S[6]
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
2 右边32位f函数
2.1 E置换
2.2 与轮密钥XOR
2.3 S盒替换
2.4 P置换
2.5 和左边32位XOR
3 左右交换,最终变换final permutation
需要特别注意的是,最后一轮是不需要做左右交换这一部的。
DES( Data Encryption Standard)算法,于1977年得到美国政府的正式许可,是一种用56位密钥来加密64位数据的方法。DES算法以被应用于许多需要安全加密的场合。(如:UNIX的密码算法就是以DES算法为基础的)。下面是关于如何实现DES算法的语言性描述.
S[7]
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 Hale Waihona Puke 4 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
des加密原理
des加密原理DES加密原理。
DES(Data Encryption Standard)是一种对称密钥加密算法,它使用相同的密钥进行加密和解密,是一种广泛应用的加密算法。
DES加密原理是基于Feistel密码结构和置换-置换网络(P-Box、S-Box)的设计,下面将详细介绍DES加密原理。
DES加密算法采用的是分组密码,将明文分成64位一组,密钥长度为56位,经过16轮迭代加密后得到密文。
在每一轮迭代中,明文会被分成左右两部分,然后经过一系列的置换、替换和异或运算,最终得到加密后的结果。
这样的设计使得DES算法具有较高的安全性和可靠性。
Feistel密码结构是DES加密算法的核心,它采用了轮函数的设计,将明文进行多轮的迭代加密,从而增强了加密的复杂度和安全性。
在每一轮迭代中,右半部分的数据会被传递到下一轮,而左半部分则经过一系列的运算后与右半部分进行异或运算,最终得到新的右半部分数据。
这样的设计使得DES算法具有较高的混淆和扩散性质,增强了加密的安全性和抗攻击能力。
P-Box和S-Box是DES算法中的两个重要的置换盒,它们负责对数据进行置换和替换,从而增加了加密的随机性和复杂度。
P-Box负责对数据进行位的置换,S-Box则负责对数据进行字节的替换,这样的设计增强了加密算法的非线性和随机性,使得DES算法更加抗攻击和安全。
DES算法的密钥长度为56位,这意味着DES算法的密钥空间为2^56,即DES算法共有2^56个可能的密钥。
这样的设计使得DES算法具有较高的密钥空间,增加了破解的难度和成本,使得DES算法更加安全可靠。
总的来说,DES加密算法是一种经典的对称密钥加密算法,它采用了Feistel密码结构、P-Box和S-Box的设计,具有较高的安全性和可靠性。
虽然DES算法已经被更加安全的AES算法所取代,但DES算法仍然具有重要的研究和应用价值,对于理解和学习加密算法具有重要意义。
des密码学课程设计
des密码学课程设计一、课程目标知识目标:1. 理解DES密码学的基本概念,掌握加密算法的原理和流程;2. 学会使用DES算法进行加密和解密操作;3. 了解密码学在信息安全领域的重要性和应用。
技能目标:1. 能够运用所学知识,独立完成DES加密和解密的过程;2. 培养学生的逻辑思维能力和问题解决能力,提高他们在实际应用中运用密码学知识的技能;3. 提升学生的团队协作能力,通过小组讨论和实践,共同完成密码学相关任务。
情感态度价值观目标:1. 培养学生对密码学学习的兴趣,激发他们探索信息安全领域的热情;2. 增强学生的信息安全意识,认识到密码学在保护个人和国家安全中的重要性;3. 培养学生严谨、客观、负责的科学态度,使他们能够正确评价密码学在现实生活中的价值。
本课程针对年级学生的特点,注重理论与实践相结合,充分调动学生的积极性、主动性和创造性。
在教学过程中,将目标分解为具体的学习成果,使学生在掌握知识的同时,提高技能和情感态度价值观。
为后续的教学设计和评估提供明确的方向。
二、教学内容本课程教学内容紧密结合课程目标,确保科学性和系统性。
具体包括以下部分:1. 引言:介绍密码学的基本概念、发展历程以及DES算法的产生背景。
- 教材章节:第一章 密码学概述2. DES算法原理:讲解DES算法的加密过程、解密过程以及密钥生成方法。
- 教材章节:第二章 对称加密算法3. DES算法实现:分析DES算法的具体实现步骤,包括初始置换、子密钥生成、轮函数等。
- 教材章节:第三章 DES算法详解4. 应用案例分析:通过实际案例,介绍DES算法在信息安全领域的应用。
- 教材章节:第四章 密码学应用实例5. 实践操作:指导学生使用相关工具进行DES加密和解密操作,巩固所学知识。
- 教材章节:第五章 密码学实验6. 总结与拓展:对DES算法进行总结,引导学生思考其优点与局限性,介绍其他密码学算法。
教学内容按照以上大纲进行安排,注重理论与实践相结合,循序渐进地引导学生掌握密码学知识。
现代密码学-DES的安全性
1
主要内容
• • • • • 穷举攻击分析 Feistel模型分析 Feistel模型分析 S盒的设计标准 DES算法的互补对称性 DES算法的互补对称性 DES算法的加强方案----多重 算法的加强方案----多重DES DES算法的加强方案----多重DES
Ek (m) = Ek (m) = c ' 是否为正确密钥,即检验 利用明密对 (m, c2 ) 检验 k是否为正确密钥 即检验 c2 = c '
是否成立.若成立 则判定 为候选密钥,否则返回 否则返回Step3检 是否成立 若成立,则判定 k 为候选密钥 否则返回 若成立 检 中的下个元. 验K(0)中的下个元
5
Feistel模型分析 一、 Feistel模型分析
Li-1(32位) f Ri-1(32位)
Li(32位)
Ri(32位)
优点: 优点 设计容易: 函数不要求可逆, 1. 设计容易:f 函数不要求可逆,加、解密解算法结 构相同; 构相同; 2.强度高:如果f 函数是随机的,则连续若干圈复 2.强度高: 函数是随机的, 强度高 合形成的函数与随机置换是无法区分的. 合形成的函数与随机置换是无法区分的.
14
三、DES算法的互补对称性 DES算法的互补对称性
定理 DESk (m) = DESk (m) 证明:由于 函数具有性质: 证明:由于DES的F函数具有性质: 的 函数具有性质 从而DES算法的圈函数满足 算法的圈函数满足 从而
(L, R)
F(k, R) = PS(k ⊕ E(R)) = PS(k ⊕ E(R)) = F(k, R)
4
穷举攻击算法的计算复杂性
设密钥在密钥空间K中服从均匀分布 中服从均匀分布, 定理 设密钥在密钥空间 中服从均匀分布,且没有 等效密钥,则穷举攻击平均需要检验完 等效密钥 则穷举攻击平均需要检验完 K + 1 个 2 2 密钥后才找到正确密钥。 密钥后才找到正确密钥。 结论: 结论 算法的穷举攻击平均计算复杂性为2 对DES算法的穷举攻击平均计算复杂性为 55. 算法的穷举攻击平均计算复杂性为
DES加密算法
DES 加密算法DES 全称Data Encryption Standard,即数据加密标准,是一种使用秘钥加密的分组加密算法。
DES 加密算法的入口参数有三个Key 、Data 、Mode 。
其中key 为7个字节共56位,是DES 算法工作的秘钥;Data 为8个字节64位,是被加密或解密的数据的一个分组;Mode 是DES 的工作方式,有两种:加密或解密。
DES 是一个十六轮的Feistel 型密码(1),它的分组长度为64比特(当明文的长度不为64的整数倍时需要做填充,但可能会引起数据扩展(2)),用一个56比特的秘钥来加密一个64比特明文串,获得一个64比特的密文串。
DES 的加密过程可以分为三个部分:初始置换IP ,十六轮的迭代函数,最后的逆置换1-IP 。
其中十六轮的迭代函数是核心;置换IP 及逆置换1-IP 仅仅打乱原文(明文或未完全加密的密文)的坐标顺序,不具有密码学意义。
DES 的加密过程1、对64位分组明文进行初始置换IP 。
将置换后的明文记为000X R L = ,其中0L 表示置换后64位的左侧32位,0R 表示右侧32位。
2、计算16轮的迭代函数。
我们可以根据公式 1i R L -=i()i i i i K L f L ,R 11--⊕=来计算第i 轮的i i R L ,其中⊕表示按位做异或运算,f 是一个函数,i K 是第i 轮的秘钥(i=1,2…16)。
3、对得到的密文做逆置换1-IP 记y=()16161-R L IP 。
步骤2中函数f的定义函数f的示意图(示意图画的很奇怪,找到合适的工具,重新画。
)函数f的具体实施步骤:迭代过程中每一轮的输入是上一轮的输出。
E是一个扩充置换,将32位的A扩充为48位(3)。
在每一轮迭代中A是该轮输入的右侧32位。
J是48位的子秘钥,由子秘钥生成函数生成(见后面内容),每一轮的子秘钥均不相同。
A 经过扩充置换后的E(A)与子秘钥J 经过异或得到8个S 盒(4)B 1B 2B 3B 4B 5B 6B 7B 8的输入,每一个S 盒将六位的输入转换为四位输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DES加密算法一轮迭代的过程 加密算法一轮迭代的过程
加密: Li = Ri–1 Ri = Li–1 ⊕ F(Ri–1, Ki) 解密: Ri–1 = Li Li–1 = Ri ⊕ F(Ri–1, Ki)= Ri ⊕ F(Li , Ki)
单轮变换的详细过程
单轮操作结构
单轮变换的详细过程
函数F
Expansion: 32 -> 48 S-box: 6 -> 4 Permutation: 32 -> 32
DES
背景简介 1973年5月15日,NBS(现在NIST,美国国家标 准技术研究所)开始公开征集标准加密算法,并 公布了它的设计要求:
(1)算法必须提供高度的安全性 (2)算法必须有详细的说明,并易于理解 (3)算法的安全性取决于密钥,不依赖于算法 (4)算法适用于所有用户 (5)算法适用于不同应用场合 (6)算法必须高效、经济 (7)算法必须能被证实有效 (8)算法必须是可出口的
计算机安全
CH9:密码学基本理论 CH9:密码学基本理论
(DES)
内容提要
密码学基本知识 对称密码 非对称密码
密码学的发展历史
第1阶段:1949年以前。 第2阶段:从1949年到1975年。
标志:1949年Shannon发表的《保密系统的 信息理论》。
第3阶段:1976年至今。
标志:1976年Diffie和Hellman发表了《密码 学新方向》。
对称密码算法
DES IDEA AES
DES的基本构件 DES的基本构件
[Shannon49]指出每种现代对称加密算法都符 合两种基本运算方式(基本构件):替换 (substitution)和扩散(diffusion) 。 替换:密文的内容是用不同的位和字节代替 了明文中的位和字节,尽可能使密文和加密密钥 间的统计关系复杂化,以阻止攻击者发现密钥。 扩散:在密文中将这些替换的位和字节转移 到不同的地方,尽可能使明文和密文间的统计关 系复杂化,以阻止攻击者推导出密钥。
对称密码体制
传统密码/私钥密码/单钥密码 发送方和接收方共享一个共同的密钥 所有的传统密码算法都是对称密码 20世纪70年代以前对称密码是唯一类型 至今仍广泛应用
基本术语(五个要素) 基本术语(五个要素)
明文m: plaintext - original message 密文c: ciphertext - coded message 密钥k: key - info used in cipher known only to sender/receiver 加密算法E: encipher (encrypt) - converting plaintext to ciphertext 解密算法D: decipher (decrypt) - recovering ciphertext from plaintext 密码学 – 密码编码学和密码分析学 密码编码学,cryptography 密码分析学,密码破译,cryptanalysis (codebreaking)
密码学的发展大事记
公元前5世纪,古希腊斯巴达出现原始的密码器,用一条 带子缠绕在一根木棍上,沿木棍纵轴方向写好明文,解下 来的带子上就只有杂乱无章的密文字母。解密者只需找到 相同直径的木棍,再把带子缠上去,沿木棍纵轴方向即可 读出有意义的明文。这是最早的换位密码术。 公元前1世纪,著名的恺撒(Caesar)密码被用于高卢战争 中,这是一种简单易行的单字母替代密码。 公元9世纪,阿拉伯的密码学家阿尔金迪(al Kindi也被 称为伊沙克Ishaq (801?~873年),同时还是天文学家、 哲学家、化学家和音乐理论家)提出解密的频度分析方法, 通过分析计算密文字符出现的频率破译密码。
密码学的发展大事记
公元16世纪中期,意大利的数学家卡尔达诺(G. Cardano,1501-1576)发明了卡尔达诺漏格板,覆盖 在密文上,可从漏格中读出明文,这是较早的一种分 置式密码。 公元16世纪晚期,英国的菲利普斯利用频度分析法成 功破解苏格兰女王玛丽的密码信,信中策划暗杀英国 女王伊丽莎白,这次解密将玛丽送上了断头台。 几乎在同一时期,法国外交官维吉尼亚(或译为维琼 内尔) Blaise de Vigenere(1523-1596)提出著名的 维吉尼亚方阵密表和维吉尼亚密码(Vigenere cypher),这是一种多表加密的替代密码,可使阿 尔金迪和菲利普斯的频度分析法失效。
安全要求
加密算法必须足够强 最低要求:已知密文时不能破译该密文或由密文 推导出密钥; 加强形式:已知某些明、密文对,也不能由此破 译出新的密文或发现密钥。 算法是基于密钥的:通信双方必须在某种安全形式 下获得密钥并必须保证密钥的安全( 19世纪, Kerckhoff原则:系统的保密性不依赖于对加密体制 或算法的保密,而依赖于对密钥的保密。)
数据加密标准(DES)
背景简介 1974年8月27日,NBS开始第二次征集,IBM 提交了算法LUCIFER,该算法由IBM的工程 师在1971~1972年研制 1975年3月17日,NBS公开了全部细节 1976年,NBS指派了两个小组进行评价 1976年11月23日,采纳为联邦标准,批准用 于非军事场合的各种政府机构 1977年1月25日,“数据加密标准”FIPS PUB 46发布
密码学的发展大事记
1985年,英国牛津大学物理学家戴维多伊奇(David Deutsch)提出量子计算机的初步设想,这种计算机一 旦造出来,可在30秒钟内完成传统计算机要花上100亿 年才能完成的大数因子分解,从而破解RSA运用这个大 数产生公钥来加密的信息。 同一年,美国的贝内特(Bennet)根据他关于量子密码 术的协议,在实验室第一次实现了量子密码加密信息 的通信。尽管通信距离只有30厘米,但它证明了量子 密码术的实用性。与一次性便笺密码结合,同样利用 量子的神奇物理特性,可产生连量子计算机也无法破 译的绝对安全的密码。
对称密码的简化模型
信源编码 信道编码
对称密码的简化模型
m
加密E k
C =E k( m) 公共信道
解密D m k
秘密信道
数学表示:
c= EK (m) m = DK (c) = DK (EK (m) )
假设加/解密算法是已知的 拥有一个安全通道用于分发密钥 对称密码安全的两个必备条件:
加密算法必须足够强 惟有发送者和接收者知道秘密密钥
DES加密 DES加密
加密算法框架
1 C=DES(m)= IP T16 T15 T2 T1 IP(m) = ( )=
DES加密算法的一般描述 加密算法的一般描述
初始置换
IP(675a6967 5e5a6b5a) = (ffb2194d 004df作结构
密码学的发展大事记
2003,位于日内瓦的id Quantique公司和位于 纽约的MagiQ技术公司,推出了传送量子密钥 的距离超越了贝内特实验中30厘米的商业产品。 日本电气公司在创纪录的150公里传送距离的 演示后,最早将在明年向市场推出产品。IBM、 富士通和东芝等企业也在积极进行研发。目前, 市面上的产品能够将密钥通过光纤传送几十公 里。美国的国家安全局和美联储都在考虑购买 这种产品。MagiQ公司的一套系统价格在7万美 元到10万美元之间。
对称密码分类
按照保密内容 受限制的(restricted)算法:算法的保 密性基于保持算法的秘密; 基于密钥的(key-based)算法:算法的 保密性基于对密钥的保密 按照明文处理方式 分组密码 流密码
对称密码分类
分组密码:此密码体系对加密消息进行分组,每次使用 相同的密钥,对其中的一个分组进行加密。 流密码:此密码体系每次对消息的一个比特(字节或字) 进行操作,并采用了一些反馈机制,所以其密钥在加解密过 程中一般是变化的。 一般说来,采用分组加密时,若使用相同的密钥,相同 的明文总是产生相同的密文;而采用流密码时,使用相同的 密钥对相同的明文进行加密可以产生不同的密文。尽管在需 要即时响应的情况下(例如在套接字上),流密码有一些优 点,但是大多数广泛使用的现代加密算法都是分组密码。
单轮变换的详细过程
函数F
第i 轮输入 第i 轮输出
单轮变换的详细过程
函数F
单轮变换的详细过程
扩展置换E:32bit→48bit
比特→第 比特 第32比特 第1比特 比特 比特→第 比特 第01比特 第2比特 比特 ………… 比特→第 比特 第01比特 第48比特 比特
单轮变换的详细过程
压缩置换(S盒):6bit→4bit , 48bit→32bit
密码学的发展大事记
1975年1月15日,对计算机系统和网络进行加密的DES (Data Encryption Standard,数据加密标准)由美国 国家标准局颁布为国家标准,这是密码术历史上一个具 有里程碑意义的事件。 1976年,当时在美国斯坦福大学的迪菲(Diffie)和赫 尔曼(Hellman)两人提出了公钥密码的新思想(论文"New Direction in Cryptography"),把密钥分为加密的公 钥和解密的私钥,这是密码学的一场革命。 1977年,美国的里维斯特(Ronald Rivest)、沙米尔(Adi Shamir)和阿德尔曼(Len Adleman)提出第一个较完善的 公钥密码体制——RSA体制,这是一种建立在大数因子分 解基础上的算法。
密码学的发展大事记
公元1863,普鲁士少校卡西斯基(Kasiski)首次从关 键词的长度着手将它破解。英国的巴贝奇(Charles Babbage)通过仔细分析编码字母的结构也将维吉尼亚 密码破解。 公元20世纪初,第一次世界大战进行到关键时刻,英 国破译密码的专门机构“40号房间”利用缴获的德国 密码本破译了著名的“齐默尔曼电报”,促使美国放 弃中立参战,改变了战争进程。 大战快结束时,准确地说是1918年,美国数学家吉尔 伯特维那姆发明一次性便笺密码,它是一种理论上 绝对无法破译的加密系统,被誉为密码编码学的圣杯。 但产生和分发大量随机密钥的困难使它的实际应用受 到很大限制,从另一方面来说安全性也更加无法保证。