粘土矿物

合集下载

粘土矿物1

粘土矿物1
一、粘土是一个岩石术语; 粘土是一个岩石术语; 粘土是一个粒度术语。 二、粘土是一个粒度术语。
岩石术语
粘土是粘土矿物的集合体, 粘土是粘土矿物的集合体,在沉积 岩石学中, 岩石学中,粘土指的是疏松的尚未固 结成岩的以粘土矿物为主的沉积物, 结成岩的以粘土矿物为主的沉积物, 经过成岩作用以后就变为“粘土岩” 经过成岩作用以后就变为“粘土岩”, 换句话说: 换句话说:把松散的具有可塑性的称 粘土” 为“粘土”,而把坚硬的无可塑性的 称为“粘土岩” 称为“粘土岩”。粘土岩或粘土中粘 土矿物含量高于50%。与粘土岩相近 土矿物含量高于 。 岩石术语还有泥岩、页岩、 岩石术语还有泥岩、页岩、板岩和泥 板岩。 板岩。
性质独特
粘土矿物是自然界颗粒最细小的一类矿物, 粘土矿物是自然界颗粒最细小的一类矿物,有 晶质和非晶质两类。晶质粘土矿物的基本结构属于 晶质和非晶质两类。 二维系,晶体呈层片状;粘土矿物在比表面、电荷、 二维系,晶体呈层片状;粘土矿物在比表面、电荷、 阳离子交换、吸附有机质、 阳离子交换、吸附有机质、水化膨胀及对环境的敏 感性等方面都具有突出的特性。 感性等方面都具有突出的特性。
10
2
前言[01]__概念 概念 前言
粘土和粘土岩 关于“粘土” 关于“粘土”术语含义 各学科理解不尽相同, 各学科理解不尽相同, 地质学家强调颗粒大小; 地质学家强调颗粒大小; 工程学家强调粘土的可 塑性; 塑性;而陶瓷学家则强 调粘土的烧结性。 调粘土的烧结性。一般 来说, 来说,地质科学中的粘 土具有两方面的含义, 土具有两方面的含义,
粒度术语
粘土指的是粒度分析中最细部分, 粘土指的是粒度分析中最细部分, 也即粘土级部分。 也即粘土级部分。粘土级上限一般采 用2 µm,也常有采用 ,也常有采用5µm或4 µm者, 或 者 甚至也有1 甚至也有 µm或10 µm者。各学科不 或 者 尽一致。 尽一致。

粘土矿物

粘土矿物

东营凹陷沙四上亚段Sr Ba比值分析图 东营凹陷沙四上亚段Sr / Ba比值分析图
沙四上亚段含盐水溶液中, Sr/Ba比值是在 0~8, 甚至最高值可达到12。东北 部永安镇、民丰、广利港一带河流-三角洲水的进入,Ba很快沉积,形成Sr/Ba比 值最低值,大约 0~1。随着离岸距离的增大,Sr含量相对富集在辛镇、郝科1、史 口、利津和牛庄等开阔半咸水湖相,比值大约是在 1~5。最后向南坡和西部的含盐 水Sr/Ba高达到6~8 及其以上,如王家岗、纯化镇等含咸分析图 东营凹陷沙四上亚段Fe/Mn比值分析图
湖盆Fe和Mn性质分异较明显,大致0.005以上至0.007的Fe/Mn高比值是 在Fe+3更多富集于河口或滨岸地带, 而Mn+2更多富集于小于0.005以下的滨 656、郝科1、王587等较深水区的低值响应。
交换性阳离子 n H2O
O2 Si 4+ OHAl3+ (Fe2- 、Fe3+ 、 Mg 2+)
伊利石类构造示意图
蒙托石构造示意图
高呤石: 假六方板状, 高呤石: 假六方板状,书页和蠕虫状
高岭石: 高岭石:
假六方板状,书页和蠕虫状 假六方板状,
蒙脱石
弯片状、棉絮状,遇水膨胀,脱落堵塞 弯片状、棉絮状,遇水膨胀,
蒙托石
伊利石
绿泥石
混层 伊/蒙 绿/蒙
山东济阳坳陷砂岩成岩作用序列表
成岩带 一般埋深 m 主要层位 储层主要沉积相 地温 ℃ 镜煤反射率 % 一般孔隙度 % 平均渗透率 10-3μm 有机质成熟度 粘土环边 早期方解石化 石英次生加大 自生高岭石化 黑云母碳酸盐化 深层溶解次生孔隙出现 阶状石榴石形成 斜长石钠长石化 铁方解石胶结交代作用 铁白云石胶结交代作用 蒙托石带 无序混层带 有序混层带 伊利石带 油气形成 常见敏感性伤害 浅层 <1700 Nm~ Nm~Ed 河流冲洪积 <75 0.35 25~ 25~35 500~ 500~600 未成熟 中层 1700~ 1700~2100 Ed~ Ed~Es2 湖砂坝湖砂坝-三角洲 90 0.45 20~ 20~30 500~ 500~2000 半成熟 深层 超深层 2100~ 2100~3200 >3200 Es2~Es4 Es4~Ek 湖三角洲-浊流湖三角洲-浊流-河流冲洪积 130 >130 0.65 >0.65 5~20 1~10 50~ 50~500 >10 成熟 高成熟

粘土矿物1

粘土矿物1

(2)非膨胀性
在伊利石晶层之间 吸附有钾离子。它受到 相邻两晶层负电荷的吸 附,因而对相邻两晶层 产生了很强的键联效果, 连接力很强,使晶层不 易膨胀。
(3)电荷数量较大
同晶替代较普遍, 主要发生在硅片中, 但部分电荷被K+离子 所中和,阳离子交换 量介于高岭石与蒙脱 石之间。
(4)胶体特性
3、水化云母组
又叫2:1型非 膨胀性矿物或伊利 组矿物。
水化云母组具有以下特征:
(1)2:1型晶层结构
晶层结构与蒙脱石相似, 同样是由两层硅片夹一层 铝片组成,硅片和铝片的 比例为2:1,故又称2:1 型非膨胀性矿物。
伊利石是其代表。分子 式为: K2(Al·Fe·Mg)4 (SiAl)8O20(OH) 4·nH2O。
晶层类型
两种晶片的配合比例不 同,而构成: 1:1型晶层 2:1型晶层 2:1:1型晶层
(1)1:1型单位晶层
由一个硅片和一个铝片构成。 硅片顶端的活性氧与铝片底层 的活性氧通过共用的方式形成单位 晶层。这样1:1型层状铝硅酸盐的 单位晶层有两个不同的层面,一个 是由具有六角形空穴的氧原子层面, 一个是由氢氧构成的层面。
2、单位晶片
从化学上来看,四面体 为 ( SiO4)4-, 八 面 体 为 (AlO6)9-,它们都不是化 合物,在它们形成硅酸盐粘 土矿物之前,四面体和八面 体分别各自聚合。
(1)四面体片(简称硅片)
在水平方向上四面体通过共 用底部氧的方式在平面两维方向上 无限延伸,排列成近似六边形蜂窝 状的四面体片(简称硅片)。
粘土矿物的分类
粘土矿物根据结晶学特征分 为三类:
一、层状硅酸盐粘土矿物, 二、纤维状硅酸盐粘土矿物, 三、非硅酸盐粘土矿物(非 晶质粘土矿物)。

我国粘土矿物的分布规律

我国粘土矿物的分布规律

我国粘土矿物的分布规律一、引言粘土矿物是一种自然界普遍存在的矿物质,具有广泛的应用价值。

我国是世界上资源储量丰富、多样性发展的粘土矿物资源大国。

本文将对我国粘土矿物的分布规律进行探讨,以增加对我国粘土矿物资源特点的理解。

二、我国粘土矿物资源概述我国粘土矿物资源主要包括膨润土、硬质粘土、板岩和沉积性粘土四类。

膨润土是一种常见的粘土矿物,具有良好的膨胀性和吸水性。

硬质粘土是一种坚硬的粘土矿物,常用于制作砖瓦、陶瓷等。

板岩是一种含有粘土矿物的变质岩石,可用于建筑和雕刻。

沉积性粘土是一种自然形成的粘土矿物,广泛应用于土壤改良、固废处理等领域。

三、我国粘土矿物的地理分布3.1 膨润土的分布膨润土主要分布在我国西南地区,包括四川、云南、贵州、湖南等省份。

其中,四川省膨润土资源储量最为丰富,占全国总储量的70%以上。

云南和贵州的膨润土资源也十分丰富,是我国重要的膨润土生产基地。

3.2 硬质粘土的分布硬质粘土主要分布在我国北方地区,如河北、山东、陕西、内蒙古等省份。

其中,河北省的硬质粘土资源储量最为丰富,占全国总储量的50%以上。

山东省和陕西省也是我国硬质粘土资源重要的产地。

3.3 板岩的分布板岩主要分布在我国华北地区和西南地区。

华北地区的板岩资源丰富,如河北、山西、河南等省份。

西南地区的板岩资源也相当丰富,包括四川、云南、贵州等省份。

3.4 沉积性粘土的分布沉积性粘土广泛分布于我国各地的平原、盆地和海域。

其中,长江流域、珠江流域、淮河流域和黑龙江流域等地的沉积性粘土资源较为丰富。

此外,海南岛周边海域的沉积性粘土也储量巨大。

四、我国粘土矿物的开发利用我国粘土矿物资源的开发利用主要集中在陶瓷工业、建材工业和环境工程领域。

由于粘土矿物具有良好的黏结性和模塑性,广泛用于陶瓷制品(如瓷器、砖瓦)、建筑材料(如砖坯、水泥)和环境材料(如固废处理、土壤改良)等生产中。

4.1 陶瓷工业我国陶瓷工业是世界上最大的陶瓷生产国,膨润土是陶瓷生产的重要原料。

粘土矿物名词解释

粘土矿物名词解释

粘土矿物名词解释粘土矿物是一种由生物或物理作用形成的细小粒子与杂质的混合物,是地壳上最常见的一类物质。

粘土矿物具有重要的地质意义,它们反映了地壳中微粒和硅质晶体之间的结构和性质,这也使许多人注意到这类物质。

下面我们就粘土矿物名词解释来做一些简单的介绍。

首先,要了解粘土矿物,必须了解粘土矿物组成。

一般来说,粘土矿物是由不同形状的沉积矿物组成的,通常包含石英、集晶石、铝石英、硅质晶体和钙石等,它们的分类根据石英、集晶石、硅质晶体或钙石的存在情况而定。

例如,如果石英含量少于30%,则称该粘土矿物为高硅质粘土。

其次,要了解粘土矿物的性能特征,先来看看粘土矿物的物理性质。

粘土矿物的物理特性主要有颗粒细度、硬度、孔隙度和密度等。

例如,粘土矿物颗粒细度可以通过石英、集晶石、硅质晶体或钙石的大小来确定,而硬度则可以用相邻两粒砂粒间的摩擦力来确定,而孔隙度则可以用渗透水的速率来判断,而密度则可以用比重法来确定。

最后,要了解粘土矿物的化学性能,也就是有关其组成元素和原位测量方法的知识。

其中,也包括石英、集晶石、硅质晶体或钙石的X射线衍射分析,以及石英、硅质晶体或钙石的核磁共振波谱分析等。

其结果可以帮助我们更好地了解粘土矿物的构造和性质,从而为地质学方面的研究提供一定的帮助。

粘土矿物的“解释”只是初步的介绍,它还有更多的性质和用途等,这里就不一一展开了,有兴趣的读者可以自行深入研究。

虽然粘土矿物在各领域的应用还不是非常广泛,但它的研究和应用还是相当有价值的,因此未来将会更多的发掘和利用粘土矿物在各个领域的潜力,从而给人类带来更多的福利。

三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。

三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。

1、试比较三种主要黏土矿物(高岭石、水云母、蒙脱石)的性质。

(1) 高岭石(1:1型铝硅酸盐矿物)由一个硅氧片和一个水铝片,通过共用硅氧顶端的氧原子连接起来的片状晶格构造。

每个晶层的一面是OH离子组(水铝片上的),另一面是O离子(硅氧片上的),因而叠加时晶层间可形成氢键,使各晶层之间紧密相连从而形成大颗粒,晶粒多呈六角形片状。

其分子结构外形特征为OHOHOH .......OH顶层─────────────底层─────────────OOO ........O许多晶片相互重叠形成高岭矿物特点:晶层与晶层间距离稳定,连接紧密,内部空隙小,电荷量少,单位个体小,分散度低。

多出现于酸性土壤。

如高岭石类。

高岭石的性质特点:晶格内的水铝片和硅氧片很少发生同晶替代,因此无永久性电荷。

但水铝片上的--OH在一定条件下解离出氢离子,使高岭石带负电。

晶片与晶片之间形成氢键而结合牢固,水分子及其他离子难以进入层间,并且形成较大的颗粒。

因此其吸湿性、粘结性和可塑性较弱,富含高岭石的土壤保肥性差。

(2)蒙脱石类(2:1型铝硅酸盐矿物)由两片硅氧片和一片水铝片结合成的一个晶片(层)单元,再相互叠加而成的。

每个晶层的两面均由O离子组(硅氧片上的),因而叠加时晶层间不能形成氢键,而是通过“氧桥”联结,这种联结力弱,晶层易碎裂,其晶粒比高岭石小。

特点:胀缩性大,吸湿性强,易在两边硅氧片中以Al3+代Si4+,有时可在硅铝片中,一般以Mg2+代Al3+→带负电→吸附负离子。

如蒙脱石,这类矿物多出现于北方土壤。

如东北、华北的栗钙土、黑钙土和褐土等。

(3)水云母类(2:1型粘土矿物)结构与蒙脱石相类似,只是同晶替代产生的负电荷主要被钾离子中和,而少量被钙镁离子中和.特点:a、永久性电荷数量少于蒙脱石。

b、层与层之间由钾离子中和,使得各层相互紧密结合。

形成的颗粒相对比蒙脱石粗而比高岭石细。

其粘结性、可塑、胀缩性居中。

c、钾离子被固定在硅氧片的六角形网孔中,当晶层破裂时,可将被固定的钾重新释放出来,供植物利用。

油田应用化学第二章 粘土矿物

油田应用化学第二章  粘土矿物

☞ K+的大小刚好嵌入硅氧四面体
片构成的六方网格内切圆空穴中, 周围有12个氧与它配伍,起到连接 作用,水分子不易进入晶层;
D、CEC 介于高岭石与蒙脱石之间(200-400mmol/kg)
☞伊利石由于晶格取代作用产生的负电荷由K+来平衡,由
于伊利石取代位置主要在Si-O四面体中,产生的负电荷离晶
3、晶片的结合(基本结构层)
晶层:四面体晶片与八面体晶片以适当的方式结合,构成晶层
(1)1:1型晶层:由一个硅氧四面体晶片与一个铝 氧八面体 晶片构成(5层原子面)。 层面上是OH Al-O晶片 Si-O晶片 层面是O
上一内容
下一内容
回主目录
返回
(2)2:1型晶层:由两个硅氧四面体晶片与一个铝氧八面体 晶片构成(7层原子面)。
返回
第四节 粘土的吸附性及凝聚性
二、粘土的凝聚性 1、定义:在一定条件下,粘土矿物颗粒在水中发生联结的性质。
2、粘土颗粒间作用力
静电斥力(扩散双电层) 斥力 水化膜斥力(水分子在粒子周围定向排列)
引力:范德华引力 3、粘土的联结方式
上一内容 下一内容 回主目录
返回
(1)边边联结 (2)边面联结
油田应用化学-----第二章
第二章 粘土矿物
上一内容
下一内容
回主目录
返回
前言
(1)粘土主要由粘土矿物(含水的铝硅酸盐)组成。
粘土
(2) 在水中有分散性 、带电性、离子交换以及水化性。
粘土 与钻 井的 关系
(1)粘土为钻井液的重要组成成分之一。 (2)钻井过程中井眼的稳定性与地层粘土含量和类型密切相关。 (3)油气层粘土含量和类型与钻井过程中油气层损害密切相关。

粘土矿物的分布规律

粘土矿物的分布规律

粘土矿物的分布规律
粘土矿物是由氧化铝、硅酸盐等元素组成的细粒土壤。

它们广泛分布在全球各大洲的岩石、土壤中,数量非常丰富。

在地球表层的矿物中,粘土矿物分布较广,常见的粘土矿物有伊利石、蒙脱石、高岭石、滑石等。

其中,伊利石分布较广,主要分布在美洲、亚洲和欧洲;蒙脱石分布广泛,主要存在于洋陆交界带、火山喷发区和深海沉积物中;高岭石主要分布在寒冷气候的区域,如北极地区和高山地带;滑石分布较窄,主要存在于特定的岩石中。

此外,粘土矿物的分布还受到不同地质条件和气候环境的影响。

例如,河流冲积平原、抬升山地的隆起带、海洋深度大于2000米的海底平原等地形地貌常常伴随着大量的粘土矿物的存在。

总的来说,粘土矿物是一类分布广泛、数量丰富的矿物,在地球表层的各类土壤和岩石中都可发现其踪迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)结晶水 这种水是粘土矿物晶体构造 的一部分,只有温度高于300℃ 以上时,结晶受到破坏,这部分水才能释放出来。
(2)吸附水 由于分子间引力和静电引力,具有极性的水分子可以吸附到 带电的粘土表面上,在粘土颗粒周围形成一层水化膜,这部 分水随粘土颗粒一起运动,所以也称为束缚水。
(3)自由水
这部分水存在于粘土颗粒的孔穴或孔道中,不受粘土的 束缚,可以自由地运动。
B、几乎不存在晶格取代,负电量少
C、晶层间引力以氢键为主,引力强,晶层间距C=7.2Å
Si-O
O
Al-O
OH
问题:高岭石属非膨胀性粘土矿物,为什么?
答:高岭石上下相临的层面,一面为OH面,另一 面为O面,而O与OH很容易形成氢键,层间引力较 强,晶层间连接紧密,水分子不易进入晶层。
D、C.E.C低(3-15 mmol/100g土) 在三种常见的粘土矿物中,高岭石的C.E.C最低。 原因在于高岭石几乎不存在晶格取代,所以带负 电荷很少,周围吸附的阳离子数目少,可发生交 换的阳离子数目就更少了,所以C.E.C小。
E、造浆率低 高岭石晶层间以氢键为主,引力较强,晶层间连
接紧密,水分子不易进入晶层间,水化作用仅限于 外表面,故水化分散能力差,造浆率低。
⑵蒙脱石
①蒙脱石晶体结构示意图
Si-O Al-O Si-O
Si-O Al-O Si-O
②蒙脱石特点
A、2:1型粘土矿物 B、存在晶格取代:取代位置主要在AL-O八面体中,即 AL3+被Mg2+、Fe2+和Zn2+等取代,产生的负电荷由等量的Na+ 或Ca2+来平衡。 C、晶层间引力以分子间力为主:引力弱,晶层间距 C=9.6Å- 40Å。
二、几种主要粘土矿物的晶体构造
1、基本概念 (1)晶格取代:在粘土矿物晶体中,一部分阳离子被另外
阳离子所置换,产生过剩电荷的现象。
Si-O四面体:Al3+取代Si4+ Al-O八面体: Mg2+、Fe2+取代Al3+
粘土带 负 电荷
例1:蒙脱石在不发生晶格取代时,其理想结构式为: Al4Si8O10 (OH)4.nH2O
蒙脱石的实际结构式为: (1/2Ca,Na)x(MgxAl4-x)(Si8O20)(OH)4.nH2O
例2:伊利石在不发生晶格取代时,其理想结构式为: Al4(Si8O20)(OH)4
伊利石的实际结构式为: (K)xAl4(Si8-xAlx)O20(OH)20
(2)阳离子交换容量(C.E.C)
定义:分散介质PH=7时,100g粘土所能交换下来的阳离 子的毫摩尔数(以一价阳离子毫摩尔数表示)。
可交换性阳离子越多,说明粘土所带的负电荷越多,因此, 常用阳离子交换容量来表示粘土所带负电荷的多少。
1、三种常见粘土矿物的C.E.C
矿物名称
高岭石 蒙脱石 伊利石
C.E.C
3-15 70-130 20-40
思考题:为什么伊利石单位晶胞所带负电荷比蒙脱石多, 而C.E.C却比蒙脱石小?
2、粘土矿物带电量影响因素
矿 物 名 称
高 岭 石 蒙 脱 石 伊 利 石
单 位 晶 胞 所 带 电 荷 数 个 0
0 .2 5 -0 .6 0 .6 -1
2、可变负电荷
定义:随介质的pH值改变而改变的粘±所带负电荷的数量。
产生原因: (1)解离:在粘土晶体端面上连接的OH基中的H在碱性或 中性条件下解离,因而使粘土带上可变负电荷
三、粘土水化膨胀作用的机理 各种粘土都会吸水膨胀,只是不同的粘土矿物水化膨胀的 程度不同而已。粘 土水化膨胀受三种力制约:表面水化 力、渗透水化力和毛细管作用。
(1)表面水化
①定义:由粘土晶体表面直接吸附水分子和通过所吸附的 可交换性阳离子间接吸附水分子而导致的水化。 ②表面水化机理
直接水化:粘土表面通过氢键吸附水分子 间接水化:通过所吸附的可交换性阳离子间接吸附水分子
(2)渗透水化
①定义:由于晶层间阳离子浓度大于溶液内部 的阳离子 浓度,因而发生水的浓差扩散,使水进入晶层,增加晶层 间距, 使粘土膨胀。 ②作用机理:浓差扩散
三、影响粘土水化膨胀的因素
(1)粘土晶体的部位 粘土晶体的部位不同,水化膜的厚度也不相同。粘土晶体所 带的负电荷大部分都集中在层面上,于是吸附的阳离子也多。 表面水化和渗透水化都较强,水化膜厚;在粘土晶体的端面 上带电量较少,吸附的阳离子也少,故水化膜薄。
产生原因:粘土中裸露在边缘上的铝氧八面体在酸性条 件下从介质中解离出OH-所致。 ﹥Al-OH H+ ﹥Al+ + OH-
粘土晶体的净电荷数:粘土的正电荷与负电荷的代数和。由于 粘土的负电荷一般多于正电荷,因此,粘土一般都带负电荷。
二、粘土带电量及影响因素
如上所述,在粘土形成过程中,粘土一般带负电荷。为了 保持电中性,粘土必然从周围环境中吸附等量的阳离子。当 粘土放在水中时,这些阳离子可以被水中的其它阳离子所交 换,故称为可交换性阳离子。
原因在于蒙脱石存在晶格取代,所以带负电荷较多,周围吸附的阳 离子数目较多,可发生交换的阳离子数目多,所以C.E.C大。
E、造浆率高 ◆蒙脱石晶层间引力以分子间力为主,层间引力较弱,水分子 易进入晶层,引起蒙脱石水化膨胀。 ◆蒙脱石负电荷多,吸附阳离子数量多,水化阳离子给粘土带来 厚的水化膜,使蒙脱石水化膨胀。
2、铝氧八面体与铝氧八面体晶片
铝氧八面体:六个顶点为氢氧原 子团,铝、铁或镁原子居于八面 体中央(如右上图所示)。 铝氧八面体晶片:多个铝氧八面 体通过共用的O或OH连接而成的 AL-O八面体网络。
3、晶片的结合 四面体晶片与八面体晶片以适当的方式结合,构成晶层 1:1型晶层:由一个硅氧四面体晶片与一个铝氧八面体晶片构成。
变负电荷 , C.E.C 。 ② 解离:在粘土晶体端面上连接的OH基中的H在碱性条件下
解离,因而使粘土的可变负电荷增多。 ﹥Al-OH OH- ﹥Al-O- + H2O
常见粘土矿物带电性区别
矿物名称
带电原因 (主)
高岭石
解离
电荷分布 边缘
单位晶胞
C.E.C
电荷数 mmol/1000g
(个)

很小
30-150
(2)粘土矿物类型
粘土力,水易进入晶层,水化膨胀性好;高岭石 晶层间作用力为氢键,水不易进入晶层,水化膨胀性差, 分散度也低,是非膨胀性矿物;伊利石由于晶层间作用力 为静电引力及晶层间K+的特殊作用也是非膨胀性矿物。
(3) 粘土吸附的交换性阳离子不同,其水化程度有很大差别
第二节 粘土的电性
一、粘土矿物电荷种类及产生原因
1、永久负电荷 定义:粘土在自然界形成时发生晶格取代作用所产生的负电荷。 说明:这种负电荷的数量取决于晶格取带作用的多少,而 不受pH值的影响。因此,这种电荷被称为永久负电荷。
由于不同粘土矿物晶格取代情况不同,永久负电荷 数量有很大差异,结果见下表:
O OH
Si-O Al-O
2:1型晶层:由两个硅氧四面体晶片与一个铝氧八面体晶 片构成,八面体片夹在四面体中间。
氧原子 氧原子
Si-O Al-O
Si-O
4、晶体:单元晶层面面堆叠在一起形成晶体
晶层间距C:一个晶层到相临晶层的垂直距离。
层间域:相邻晶层之间的空间 层间物:层间域中的物质
C
单位构造:晶层+层间域
钙蒙脱石水化后其晶层间距最大为17×10-1nm,而钠蒙脱石水化后其 晶层间距可达 17 × 10 -1~40 × 10 -1nm 。所以为了提高膨润土的水 化性能,一般都需使钙蒙脱石转变为钠蒙脱石。
第四节 粘土胶体化学基础
一、基本概念
1、相:物理性质和化学性质都完全相同的均匀部分。 2、多相体系:由两个或两个以上的相组成的体系。 3. 相界面:相与相之间的接触面称为相界面。 4.分散相:在多相分散体系中,被分散的物质。 5.分散介质:在多相分散体系中,包围分散相的另一相。
问题:蒙脱石属膨胀型粘土矿物,为什么?
◆蒙脱石上下相临的层面皆为O面,晶层间引力以分子 间力为主,层间引力较弱,水分子易进入晶层。
◆蒙脱石由于晶格取代产生较多的负电荷,在它周围必 然会吸附等电量的阳离子,水化阳离子给粘土带来厚的水化 膜,使蒙脱石膨胀。
D、C.E.C 大(70-130 mmol/100g土)
说明:C.E.C可用来表示粘土在水中带电性的多少,它与 粘土的水化分散、吸附等性质密切相关。
(3)造浆率
定义:一吨干粘土所能配制粘度为 15mPa.s的钻 井液 的体积数,m3/T。
说明:造浆率
粘土的水化分散能力
2、几种常见粘土矿物的晶体构造
(1)高岭石 ①高岭石晶体结构示意图
②高岭石特点
A、1:1型粘土矿物
﹥Al-OH OH- ﹥Al-O- + H2O (2)吸附:粘土晶体的端面上吸附了某些阴离子,如:OH-、 SiO3等,或吸附了有机阴离子聚电解质,如:PHP等。
3、正电荷
很多研究结果证明,当粘土介质的pH值低于9时,粘 土晶体端面上带正电荷。兹逊(P.A.Thiessen)用电 子显微镜照相观察到高岭石边角上吸附了负电性金溶 胶,由此证明了粘土端面上带有正电荷。
Si-O
K+
Si-O
强,晶层间距C=10Å。
Al-O Si-O
问题:伊利石属非膨胀型粘土矿物, 为什么?
☞由于伊利石取代位置主要在Si-O四面体中,产 生的负电荷离晶层表面近,与吸附的K+产生很强 的静电力,层间引力较强,水分子不易进入晶层.
☞ K+的大小刚好嵌入相邻晶层间的氧原子网格形成 的空穴中,周围有12个氧与它配伍,起到连接作用, 把相邻晶层拉在一起,水分子不易进入晶层;
相关文档
最新文档