泰勒公式及其应用
泰勒公式其应用

泰勒公式其应用一、一阶泰勒公式1.带有Lagrange 型余项的Taylor 公式定理1(泰勒) 若函数f 在(a,b)上存在直到n 阶的连续导函数,在(a,b)内存在n +1阶导函数,则对任意给定的),(,0b a x x ∈,至少存在一点ξ使得:()(1)1000000()()()()()()()()1!!(1)!n n nn f x f x f f x f x x x x x x x n n ξ++'=+-++-+-+ξ在0,x x 之间。
2.带有皮亚诺余项的泰勒公式定理2若函数f 在(a,b)上存在直到n 阶的连续导函数,则对任意给定的),(,0b a x x ∈()000000()()()()()()0(())1!!n n n f x f x f x f x x x x x x x n '=+-++-+- (1)称为泰勒公式的余项.3、 函数的Maclaurin 公式210()2!!nxn x x e x x n =+++++352112sin (1)0()3!5!(21)!m m m x x x x x x m --=-+++-+-24221cos 1(1)0()2!4!(2)!m m m x x x x x m +=-+++-+ 231ln(1)(1)0()23nn n x x x x x x n -+=-+++-+ 2(1)(1)(1)(1)10()2!!n n x x x x n ααααααα---++=+++++2110()1n n x x x x x=+++++- 二、应用1.把函数)(x f 展开成n 阶Maclaurin 公式例1: 把函数22sin )(x x x f =展开成含16x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!7!5!3sin 7753x x x x x x +-+-=,) (!7!5!3sin 141410622x x x x x x +-+-=. ) (!7!5!3sin 1616128422x x x x x x x +-+-=例2: 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!6!4!21cos 6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= ∴ ) (!62!321)2cos 1(21cos 665422x x x x x x +-+-=+=. 2.求)(x f 的n 阶导数例3: )1ln()(2x x x f +=,求)3)(0()(≥n fn .【解】))(022()1ln()(22222--+-++-=+=n n x n x x x x x x x f 又)(0!)0(!1)0()0()()(n nn x x n f x f f x f +++'+= )(02243n n x n x x x +-++-=所以,21!)0()(-=n n f n ,2!)0()(-=n n f n3.利用Taylor 公式求极限 例4 求极限(1) )]1ln([cos lim2202x x x e x x x -+--→ (2)011lim (cot )x x x x →-. 【分析】用泰勒公式求极限把函数展开到x 多少次方呢?对于分子和分母有一个能确定次数的,把另一个展开到相同次数即可,例如:3sin limxx x x -→333))(61(limx x o x x x x +--=→=6161lim 330=→xx x但是对于分子和分母都不能确定次数的,要以具体情况而定。
泰勒公式及应用

泰勒公式及其应用摘要本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。
泰勒公式是数学分析中的重要知识,在某些题目中运用泰勒公式会达到快速解题的目的。
本文主要从六个方面对泰勒公式进行综合论述利用泰勒公式求极限、证明中值公式、证明不等式、估计、在方程中的应用、在近似计算的的应用。
一、泰勒公式及其余项1:泰勒公式对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构造一个n 次多项式,n n x x n x f x x x f x x x f x f x Tn )0(!)0()0(!2)0('')0(!1)0(')0()0()(2-++-+-+= 称为函数f 在点0x 处的泰勒(Taylor)多项式,)(x Tn 的各项系数),,2,1(!)0()(n k k x f k =称为泰勒系数。
2:泰勒余项定理1:若函数f 在点0x 存在直到n 阶导数,则有))0(()()(n x x n T x f -+= ;即))0(()0(!)0()0(!2)0('')0)(0(')0()()(2n n n x x x x n x f x x x f x x x f x f x f -+-++-+-+= 其中)()()(x Tn x f x Rn -=称为泰勒公式的余项。
形如))0((nx x - 的余项称为佩亚诺型余项。
特殊的当0=x 时;)(!)0(!2)0('')0(')0()()(2n nn x x n f x f x f f x f +++++= 称为(带有佩亚诺型余项的)麦克劳林(Maclaurin)公式。
定理2:(泰勒定理) 若函数f 在],[b a 上存在直至n 阶的连续导函数,在),(b a 内存在)1(+n 阶导函数,则对任意给定的],[0,b a x x ∈,至少存在一点∈ξ(a,b)使得+-++-+-+=n n x x n x f x x x f x x x f x f x f )0(!)0()0(!2)0('')0)(0(')0()()(21)1()0()!1()(++-+n n x x n f ξ其中=-=)()()(x Tn x f x Rn 1)1()0()!1()(++-+n n x x n f ξ,)10(),0(0<<-+=θθξx x x ,称为拉格朗日型余项。
泰勒公式大全

泰勒公式大全泰勒公式是微积分中的重要概念,它可以将一个函数在某一点附近展开成无限项的多项式,从而方便我们进行计算和研究。
本文将按照不同的类别介绍泰勒公式的各种形式和应用。
一、泰勒公式的基本形式泰勒公式的基本形式是:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中,$f(x)$是要展开的函数,$a$是展开点,$f^{(n)}(a)$表示$f(x)$在$a$处的$n$阶导数,$n!$表示$n$的阶乘。
二、泰勒公式的常用形式1. 麦克劳林公式当$a=0$时,泰勒公式就变成了麦克劳林公式:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$这个公式在计算中非常常用,因为它可以将很多函数展开成简单的多项式形式。
2. 带余项的泰勒公式在实际计算中,我们往往只需要保留泰勒公式的前几项,而不需要展开到无穷项。
这时,我们可以使用带余项的泰勒公式:$$f(x)=\sum_{n=0}^{m}\frac{f^{(n)}(a)}{n!}(x-a)^n+R_m(x)$$其中,$m$表示展开的项数,$R_m(x)$表示余项,它的表达式为:$$R_m(x)=\frac{f^{(m+1)}(\xi)}{(m+1)!}(x-a)^{m+1}$$其中,$\xi$是$a$和$x$之间的某个值,$m+1$阶导数的值在$a$和$\xi$之间取值。
三、泰勒公式的应用1. 近似计算泰勒公式可以将一个复杂的函数近似成一个简单的多项式,从而方便我们进行计算。
比如,我们可以使用麦克劳林公式将$\sin x$和$\cos x$展开成多项式形式,从而计算它们的值。
2. 函数的性质研究泰勒公式可以帮助我们研究函数的性质,比如函数的最值、极值、拐点等。
通过对泰勒公式的各项系数进行分析,我们可以得到函数在展开点附近的一些性质。
3. 数值逼近泰勒公式可以用来进行数值逼近,比如我们可以使用带余项的泰勒公式来逼近函数的值。
泰勒公式及其在极限运算中的运用

泰勒公式及其在极限运算中的运用泰勒公式是数学分析中的一个重要公式,广泛应用于函数极限、导数计算以及微积分等领域。
本文将对泰勒公式进行详细介绍,并讨论其在极限运算中的应用。
泰勒公式是由苏格兰数学家布鲁尔-泰勒 (Brook Taylor) 在18世纪提出的。
该公式是将一个函数在其中一点的附近进行多项式展开的一种方法。
泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+Rn(x)在该公式中,f(x)表示需要求解的函数,a是给定的点,f(a)是函数在该点的函数值,f'(a)是函数在该点的一阶导数值,f''(a)是函数在该点的二阶导数值,f^n(a)表示函数在该点的n阶导数值。
最后一项Rn(x)表示剩余的误差,即多项式展开与原函数之间的差值。
泰勒公式的应用之一是极限运算。
当需要求解一些函数在其中一点的极限值时,可以利用泰勒公式来进行近似计算。
具体的步骤如下:1.选择给定的点a;2.求解函数在该点的一阶、二阶、三阶...n阶导数值;3.将导数值代入泰勒公式中,并计算多项式展开的和;4.计算剩余项Rn(x);5.将得到的多项式展开式和剩余项带入极限公式中,计算极限值。
在极限运算中,泰勒公式的应用可以大大简化计算的复杂度。
若函数是连续可导的,且多项式展开的项数足够多,那么剩余项Rn(x)的大小趋近于零,可以忽略不计。
这样,通过泰勒公式计算得到的多项式展开式就是函数在给定点的极限值的一个很好的近似。
泰勒公式的应用并不仅限于极限运算,还可以用来计算函数的导数值。
通过求解各阶导数值,可以利用泰勒公式将函数在其中一点的值展开成其导数的和。
这对于函数的近似计算和函数特性的研究有着重要的意义。
总结来说,泰勒公式是一种重要的数学工具,可以用于函数的近似计算和函数在其中一点的极限运算。
泰勒展开与泰勒公式的原理及应用

泰勒展开与泰勒公式的原理及应用在数学领域中,泰勒展开和泰勒公式是非常重要的概念。
它们不仅仅是数学的基本理论,还有广泛的应用,涉及到数学、物理、工程等各个领域。
本文将对泰勒展开和泰勒公式的原理和应用进行详细的讲解。
一、泰勒展开的原理泰勒展开是将一个函数在某点进行展开,使得该函数在该点处的函数值等于其展开式中前几项的和。
具体来说,泰勒展开的原理是利用函数的导数来逼近函数的值。
泰勒展开公式如下:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+…$其中,$f(x)$表示要展开的函数,$a$表示展开点,$f'(a)$表示$f(x)$在$a$点的一阶导数,$f''(a)$表示二阶导数,$f'''(a)$表示三阶导数,$…$表示高阶导数。
展开式总共有无限项,即展开式中包含了函数的所有导数。
如果只取展开式中的前$n$项,则可以得到如下式子:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(a)}{k!}(x-a)^k$这就是泰勒展开的$n$阶近似公式。
二、泰勒公式的原理泰勒公式是将一个函数在某个区间内进行展开,使得该函数在这个区间内的函数值可以用展开式中的前几项来近似表示。
具体来说,泰勒公式的原理是通过多项式逼近原函数。
泰勒公式与泰勒展开的区别在于,泰勒公式是在一个区间内进行展开,而泰勒展开一般是在某一点进行展开。
泰勒公式可以表示为:$f(x)=\sum\limits_{k=0}^{n}\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+R_n(x)$其中,$f(x)$表示要展开的函数,$n$表示要展开的级数,$x_0$表示展开的中心点,$R_n(x)$表示余项,表示展开式与原函数之间的误差。
泰勒公式的应用超强总结

泰勒公式的应用超强总结泰勒公式(Taylor series)是一种用来近似表示函数的方法,它将一个光滑的函数表示为多项式的形式。
在实际应用中,泰勒公式有着广泛的应用,包括物理、工程、经济等领域。
以下是泰勒公式的一些超强应用总结。
1.函数逼近:泰勒公式可以将一个复杂的函数逼近成一个多项式,用来简化计算。
这在数值计算和科学建模中广泛应用。
比如,在物理学中,我们可以使用泰勒公式将一个非线性运动的函数逼近成一个线性函数,从而简化计算。
2.误差估计:通过泰勒公式,我们可以对近似函数的误差进行估计。
在实际计算中,我们通常使用有限项的泰勒公式近似计算,而丢弃高阶项将会引入误差。
通过估计误差,我们可以更好地控制近似结果的精度,从而提高计算效率。
3.求解无解析解的问题:有些函数在数学上没有解析解,即无法用一个简单的表达式表示。
泰勒公式可以帮助我们近似求解这些问题。
比如,在微积分中,我们可以使用泰勒公式近似求解一些复杂的微分方程,从而得到数值解。
4.数值积分:泰勒公式可用于数值积分的近似计算。
在实际计算中,我们通常使用数值积分方法来计算曲线下面积或求解积分方程。
泰勒公式可以将被积函数展开成无穷级数,再通过对级数进行近似计算来求解积分。
5.精确度改善:通过对泰勒公式进行适当的变换和近似,可以提高计算结果的精度。
在数值计算中,我们经常会遇到舍入误差和近似误差等问题,通过泰勒公式的应用可以对这些误差进行修正和改善,从而得到更精确的计算结果。
6.其他应用领域:泰勒公式还可以应用于信号处理、图像处理、优化问题等领域。
例如,在信号处理中,泰勒公式可以用来进行信号的近似重构和滤波。
在优化问题中,泰勒公式可以用来近似目标函数,并帮助我们求解最优化问题。
总之,泰勒公式在科学和工程中具有广泛的应用。
通过对函数的逼近和近似,我们可以简化计算、提高精度、解决无解析解的问题,以及在数值计算、积分、优化等领域中得到更好的结果。
因此,掌握泰勒公式的应用是非常重要的,可以帮助我们更好地理解和解决实际问题。
考研泰勒公式大全

考研泰勒公式大全泰勒公式是指对于可导函数在一些点附近进行近似展开的一种方法,泰勒公式包括一阶泰勒公式、二阶泰勒公式、高阶泰勒公式等。
下面将详细介绍泰勒公式的各种形式以及应用。
1.一阶泰勒公式:一阶泰勒公式也称为线性近似公式,其形式如下:f(x)=f(a)+f'(a)(x-a)其中,f(x)表示可导函数在点x处的函数值,f(a)表示可导函数在点a处的函数值,f'(a)表示可导函数在点a处的导数的值。
一阶泰勒公式的应用:一阶泰勒公式可以用来进行函数曲线的直线近似,特别是在计算中的一些复杂函数值时,可以通过一阶泰勒公式进行近似计算。
同时,一阶泰勒公式也可以用来求函数在一些点处的导数值。
2.二阶泰勒公式:二阶泰勒公式也称为二次近似公式,其形式如下:f(x)=f(a)+f'(a)(x-a)+(x-a)^2/2!*f''(a)其中,f(x)表示可导函数在点x处的函数值,f(a)表示可导函数在点a处的函数值,f'(a)表示可导函数在点a处的导数的值,f''(a)表示可导函数在点a处的二阶导数的值。
二阶泰勒公式的应用:二阶泰勒公式可以用来进行函数曲线的二次近似,尤其是在计算中的一些复杂函数值时,可以通过二阶泰勒公式进行近似计算。
二阶泰勒公式还可以用来求函数在一些点处的导数值和二阶导数值。
3.高阶泰勒公式:高阶泰勒公式是指泰勒公式的更一般形式,其表达式为:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2!*f''(a)+...+(x-a)^n/n!*f^n(a)其中,n为正整数,f^n(a)表示可导函数在点a处的n阶导数,n!表示n的阶乘。
高阶泰勒公式的应用:高阶泰勒公式可以用来进行函数曲线的更高阶近似,特别是在计算中的一些复杂函数值时,可以通过高阶泰勒公式进行近似计算。
高阶泰勒公式还可以用来求函数在一些点处的导数值和各阶导数值。
泰勒公式及其应用

泰勒公式及其应用泰勒公式是微积分中的一个基础公式,用于将一个函数在某个点处展开成幂级数的形式。
泰勒公式在物理,工程和数学等领域中至关重要,因为它提供了一个计算一些复杂函数的函数值的便捷方法。
本文将介绍泰勒公式的基本原理及其在各个领域中的应用。
泰勒公式的基本原理在数学中,泰勒公式是利用函数在某一点的导数展开成无限级数的公式。
假设给定一个函数 $f(x)$,我们希望将其在 $x=a$ 处展开成幂级数的形式。
此时,根据泰勒公式,我们可以得到:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$$其中,$f^{(n)}(a)$ 表示函数 $f(x)$ 在 $x=a$ 处的 $n$ 阶导数。
公式中展开成无限级数的所有$n$ 阶导数都被合并到一个系数中,即 $(x-a)^n$ 剩下的就是阶乘算法。
一般来说$=\frac{d^{n} f}{dx^{n}}$,就是将$f$求导$n$次例如,如果我们要将函数 $y=\sin x$ 在 $x=0$ 处展开为幂级数的形式,我们可以使用泰勒公式:$$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots $$这个级数的每一项都根据 $n$ 的变化而变化,这确定了它的无限和。
通过泰勒公式,我们得到了一个幂级数的形式,使我们能够计算不同的 $x$ 值的函数值。
泰勒公式的应用范围泰勒公式的应用范围非常广泛。
下面我们将重点介绍泰勒公式在物理,工程和数学等领域中的应用。
1. 物理学应用泰勒公式在物理学中的应用非常广泛。
例如,当我们研究两个物体之间的吸引力时,我们可以使用牛顿万有引力定律:$$F = G\frac{m_1m_2}{r^2}$$其中,$F$ 是物体之间的引力,$m_1$ 和 $m_2$ 是两个物体的质量,$r$ 是两个物体之间的距离,$G$ 是宇宙引力常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 .5 1
0 .5
6
420 .511 .524
6
➢ n=9, 用9次曲线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
1
1 .5
2
4
6
➢ n=11, 用11次曲线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
1
1 .5
2
4
6
➢ n=13, 用13次曲线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
■ 用多项式逼近 sin x 的图像
➢ n=1, 用直线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
1
1 .5
2
4
6
➢ n=3, 用三次曲线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
1
1 .5
2
4
6
➢ n=5, 用5次曲线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
1
1 .5
2
4
6
➢ n=7, 用7次曲线近似正弦曲线
(n 1)!
( (0,1)) 或 o(xn )
➢ f (x) ex
ex 1 x x2 xn ex xn1
2!
n! (n 1)!
➢ f (x) sin x
sin x x x3 x5 (1)k1
x 2k 1
sin(
x
2k 1 2
)
x 2k 1
3! 5!
(2k 1)! (2k 1)!
1
1 .5
2
4
6
➢ n=17, 用17次曲线近似正弦曲线
1 .5 1
0 .5
6
4
2
0 .5
1
1 .5
2
4
6
■ 应用例子
例 试计算e 的近似值,误差小于10-6
例
求极限
lim
x0
x
sin x3
x
(n=9) e 2.718281
例 求极限 lim n2 (n a n1 a ) n (往年高数竞赛题)
Chap 4 .3
Taylor定理
■ 回顾增量公式 (微分) f f (x)x o(x)
即 f (x) f (x0 ) f (x0 )( x x0 ) o(x x0 )
微分
得到用线性函数来近似函数的公式,但是缺点是 (1)不够精确; (2)误差是定性的,难确切估计
Taylor 公式将考虑用多项式逼近函数
(n) (x0 n!
)
(
x
x0
)n
o((x
x0
)n
)
➢ 分析 若记
P(x)
f
(x0 )
f (x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(
n) (x0 n!
)
(
x
x0
)
n
结论即
f (x) P(x)
lim
0
xx0 ( x x0 )n
➢ 怎么证明这个结论? 很自然的想法是多次用L’Hospital法则 (问题出在最后一步)
例 求下列函数的Maclaurin 公式 (1) f (x) xex
(2) f (x) ln(2 3x x2 )
例 设 f(x)在x =0的邻域二阶可导,且
sin x x f (x)
lim
x0
x3
0
试求 f (0), f (0)和 f (0)的值
(往届期中试题)
例 f (x) 在R 有二阶导数,f (x) 0, 试证:
➢ 试写出cosx 的Maclaurin 公式
➢ f (x) (1 x)
(1 x) 1 x ( 1) x2 ( 1)( n 1) xn o(xn )
2!
n!
➢ f (x) ln(1 x)
x2 x3 ln(1 x) x
(1)n1 xn (1)n
x n1
23
n
(n 1)(1 x)
回到n-1次
f (n1) (x) P(n1) (x)
lim
xx0
n!(x x0 )
lim f (n1) (x) [ f (n1) (x0 ) f (n) (x0 )(x x0 )]
xx0
n!(x x0 )
➢ 注意条件相当弱,只要在 x0一点有n 阶导数
■ 区间(a,b)上的 Taylor 公式 f (x)在( a,b ) 有n+1 阶导数,x0(a,b),则在 ( a,b ) 成立
多项式的形式:在x0 应等于 f(x0)
f (x0 ) f (x0 )( x x0 ) a2 (x x0 )2
■ 一点附近的 Taylor公式
f (x)在x0 附近定义,且在x0 有n 阶导数,则
f (x)
f (x0 )
f (x0 )(x x0 )
f
(x0 2!
)
(
x
x0
)
2
f
x, h R (h 0) f (x h) f (x h) 2 f (x)
H.W 习题4 26 (2)(3)(5) 28 31
本节要点 ➢ Taylor公式仍然是对函数的逼近(近似)
它比线性近似更加精确 ➢ 应用Taylor公式主要在两类习题 1)求极限,可用Peano余项形式
2)证明题,一般需要应用Lagrange余项形式
f (n1) ( )
(n 1)!
➢ 可用Cauchy定理证明(用n次)
例 写出 f(x)=x2 lnx 在x=1处的二阶Taylor 公式
■ 一些常用公式(Maclaurin公式)
f (x)
f (0)
f (0) x
f (0) x2 2!
f
(n) (0) n!
xn
Rn (x)
Rn (x)
f (n1) ( x) xn1
f (x)
f (x0 )
f (x0 )( x x0 )
f
( x0 2!
)
(x
x0
)2
f
(n) (x0 n!
)
(x
x0
)n
Rn
(x)
其中
Rn (x)
f (n1) ( )
(n 1)!
(
x
x0
)n1
在 x, x0 之间
➢ 仍记 P(x) 为前述的多项式,结论为
f (x) P(x) (x x0 )n1